
Scientific Programming 20 (2012) 275–292 275
DOI 10.3233/SPR-2012-0353
IOS Press

Exploring capabilities within ForTrilinos by
solving the 3D Burgers equation

Karla Morris a,∗, Damian W.I. Rouson a, M. Nicole Lemaster a and Salvatore Filippone b

a Sandia National Laboratories, Livermore, CA, USA
b Università di Roma “Tor Vergata”, Roma, Italy

Abstract. We present the first three-dimensional, partial differential equation solver to be built atop the recently released,
open-source ForTrilinos package (http://trilinos.sandia.gov/packages/fortrilinos). ForTrilinos currently provides portable, object-
oriented Fortran 2003 interfaces to the C++ packages Epetra, AztecOO and Pliris in the Trilinos library and framework [ACM
Trans. Math. Softw. 31(3) (2005), 397–423]. Epetra provides distributed matrix and vector storage and basic linear algebra cal-
culations. Pliris provides direct solvers for dense linear systems. AztecOO provides iterative sparse linear solvers. We demon-
strate how to build a parallel application that encapsulates the Message Passing Interface (MPI) without requiring the user to
make direct calls to MPI except for startup and shutdown. The presented example demonstrates the level of effort required to
set up a high-order, finite-difference solution on a Cartesian grid. The example employs an abstract data type (ADT) calculus
[Sci. Program. 16(4) (2008), 329–339] that empowers programmers to write serial code that lower-level abstractions resolve into
distributed-memory, parallel implementations. The ADT calculus uses compilable Fortran constructs that resemble the mathe-
matical formulation of the partial differential equation of interest.

Keywords: ForTrilinos, Trilinos, Fortran 2003/2008, object oriented programming

1. Introduction

The story of modern, scientific programming is the
story of modern, mainstream programming: perfor-
mance gains derive primarily from increasing levels
of parallel execution. Likewise, the story of modern,
scientific programming languages resembles the glob-
alization of modern society: mixed-language environ-
ments increasingly predominate. The ForTrilinos soft-
ware package sits at the intersection of these two trends
and was first released in the August 2010 Trilinos
open-source library and framework (release 10.4.1).
ForTrilinos brings to the Fortran community the
object-oriented (OO), native interfaces to C++ pack-
ages in the Trilinos library and framework.

The current article presents the first attempt to
construct a three-dimensional (3D) partial differen-
tial equation (PDE) solver based on ForTrilinos. We
present a case study that involves solving a 3D gener-
alization of the classical one-dimensional (1D) PDE of

*Corresponding author: Karla V. Morris, PhD, Combustion Re-
search Facility, Sandia National Laboratories, 7011 East Avenue,
MS 9055, Livermore, CA 94550, USA. Tel.: +1 925 294 3287;
E-mail: knmorri@sandia.gov.

Burgers [4]. As one of the few nonlinear PDEs with
known analytical solutions, the Burgers equation (in
both its 1D and 3D forms) often plays a role in theo-
retical investigations as a proxy for the more compli-
cated 3D Navier–Stokes equations (NSE). The Burg-
ers equation retains the unsteady, advective, and dif-
fusive nature of the NSE without the many additional
complications associated with pressure gradients. The
Burgers equation also provides qualitative insights into
phenomena ranging from charge density waves, vor-
tex lines in high-temperature superconductors, and the
large-scale structure of the universe. See [5] and [6] for
surveys of applications for the Burgers equation and
see [2] and [3] for exact analytical solutions of the 1D
and 3D Burgers equation, respectively.

The goal of the current effort was to investigate the
level of programming effort required to build a repre-
sentative scientific software application atop ForTrili-
nos and provide a detailed guide for future users on
ways to exploit the available capabilities. Our study
employs one of the compact finite difference schemes
developed by Lele [9]. In these schemes, the finite-
difference approximations to the nodal derivatives re-
sult from inverting a linear system of equations with
the nodal function values as the right-hand side (RHS).

1058-9244/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved

276 K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation

These schemes’ compact stencil and high-order accu-
racy have made them popular for computing complex
fluid flows in geometries amenable to finite difference
approximations [12]. In the current context, the solu-
tion of the linear systems required by compact finite
difference schemes provides a useful showcase for the
linear solver interfaces ForTrilinos provides.

In the interest of brevity and to avoid repetition,
the remainder of this article assumes familiarity with
Fortran 2003. We refer readers who are familiar with
Fortran 90/95 but unfamiliar with OO programming
(OOP) in Fortran 2003 to the scientific software de-
sign text by Rouson et al. [16]. We refer readers who
are unfamiliar with Fortran 90/95 – including the ra-
tionale for using modules and derived types – to the
modern Fortran text by Metcalf et al. [10]. Section 2 of
the current article presents the mathematical methodol-
ogy employed in the current demonstration application
and the software design methodology employed in For-
Trilinos. Section 3 presents the resulting demonstration
application and the recommended approach for access-
ing the requisite ForTrilinos capabilities. Section 4 dis-
cusses the results. Section 5 concludes and presents the
path forward.

2. Methodology

2.1. Mathematical model

The 3D Burgers equation describes the nonlinear ad-
vection and diffusion of a vector quantity:

∂u
∂t

= −u · ∇u + ν∇2u, (1)

where u is a vector field with components u, v and
w and ν is a constant parameter. The analogy to the
3D NSE lies in viewing u as a fluid velocity vec-
tor field with ν playing the role of the fluid’s kine-
matic viscosity. There are some limits to this view-
point: arriving at a NSE viscous term of the same form
as the corresponding term in Eq. (1) requires apply-
ing an incompressibility constraint to the velocity field
and enforcing that constraint via a pressure gradient
term, but Eq. (1) contains no pressure gradient and its
solution therefore does not satisfy incompressibility.
Due to similar reservations, [17], for example, refer to
the medium in their Burgers-equation study of turbu-
lence in a self-gravitating medium as a “sticky dust”
rather than as “viscous matter”. Nonetheless, the Burg-
ers equation’s formal similarity to the incompressible
NSE and the existence of exact solutions to the Burg-
ers equation have inspired considerable activity around

mining the Burgers equation for insights into fluid be-
havior.

From a software demonstration standpoint, the Burg-
ers equation offers two primary benefits. First, it mod-
els some of the basic numerical properties of many of
the more complicated governing equations of interest
to engineering and science. Second, the equation itself
(most often in the 1D form) has been used to model
phenomena such as gas dynamics, traffic flow, flood
waves in rivers, chemical reactions, shock and sound
waves and many others.

We solve Eq. (1) in a 3D cube with periodic bound-
ary conditions in each direction, approximating all spa-
tial derivatives with a sixth-order-accurate finite differ-
ence scheme from [9]. The chosen family of finite dif-
ference schemes have the general form

Af′ = Bf, (2)

Cf′′ = Df, (3)

where f, f′ and f′′ are nodal solution values and first
and second derivatives, respectively, and where A, B,
C and D are all sparse coefficient matrices. The Ap-
pendix provides the stencils that generate the coeffi-
cient matrices. The tridiagonal matrix structure of the
corresponding 1D problem generates a band-diagonal
system in 3D.

We employ a second-order Runge–Kutta algorithm
to advance the governing equation in time. The tempo-
rally discrete form of Eq. (1) is thus

un+1/2 = un + [N(un) + L(un)]
Δt
2

, (4)

un+1 = un + [N(un+1/2) + L(un+1/2)]Δt, (5)

where L is a discrete linear operator that approximates
the diffusive term in (1) and N is the discrete nonlin-
ear operator that approximates the advective term. We
calculate the time step Δt based on the stability re-
quirements of the linear term, which is more restrictive
asymptotically than the stability restriction on the non-
linear term (the Courant condition) in the context of an
explicit time advancement algorithm.

2.2. Software methodology

The solver presented here demonstrates several For-
Trilinos capabilities and, in doing so, showcases sev-
eral object-oriented features of Fortran 2003. The cho-
sen example is intended to inform users interested in

K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation 277

creating and operating on ForTrilinos objects within a
fully objected-oriented application. The software de-
sign philosophy employed herein closely resembles
that of the ForTrilinos package.

A ForTrilinos-enabled application leverages a deep
software stack. This stack resolves issues related to
language interoperability, portability and memory
management in ways that remove such concerns from
the end user. The top layer corresponds to user code
of the kind presented in the current paper. The bottom
layer comprises the Trilinos package of interest. Typ-
ically the Trilinos layer does all of the heavy lifting
in terms of crunching and communicating numbers in
parallel across a distributed-memory platform.

The middle layers comprise the ForTrilinos and
CTrilinos packages. CTrilinos wraps Trilinos function-
ality and flattens its data structures for the sake of lan-
guage interoperability. CTrilinos exports C function
prototypes to which ForTrilinos links via the C-inter-
operability constructs that Fortran 2003 provides. This
approach guarantees portability via standards-compli-
ance. ForTrilinos in turn wraps CTrilinos in native, ex-
tensible derived types that mirror the underlying Trili-
nos C++ class hierarchies. The ForTrilinos layer also
provides a novel reference-counting scheme that au-
tomates dynamic memory management, resolving a
dilemma that results when objects in one language
shadow those in a second language: How does the
second language know when to destroy an object for
which there no longer exists a handle in the first lan-
guage? In more concrete terms, how does C++ deter-
mine when to destroy objects that the Fortran driver
code no longer needs. Morris et al. [11] and Rouson et
al. [15] provide more detail on the design and imple-
mentation of the ForTrilinos reference-counting archi-
tecture.

The current demonstration solver leverages the re-
cent ForTrilinos release in Trilinos 10.8. This is the
first ForTrilinos release capable of running on com-
modity x86 Intel and compatible processors using the
Numerical Algorithms Group (NAG) Fortran compiler
running under Linux and Mac OS X. Previous For-
Trilinos releases required the IBM XL Fortran com-
piler running under IBM’s proprietary AIX operating
system on IBM’s POWER-architecture processors.

3. Results

3.1. Available capabilities

ForTrilinos currently provides OO Fortran interfaces
to the Trilinos Epetra, AztecOO and Pliris packages.

The Epetra package hosts classes that support paral-
lel and serial basic linear algebra functionality. Epe-
tra classes provide the foundation for all Trilinos pack-
ages. AztecOO is the OO interface to the Aztec pack-
age, providing massively scalable iterative solvers for
sparse linear systems. AztecOO accepts external pre-
conditioners. The Pliris package supports a parallel,
OO interface to the solution of dense linear systems,
employing LU factorization on double precision data.

Additionally, ForTrilinos contains the procedural in-
frastructure for accessing Amesos, Galeri and Ifpack
from Fortran. OO Fortran interfaces for these lat-
ter packages will be constructed upon user request.
Amesos is a direct sparse solver package that pro-
vides a common interface to functionality in pop-
ular numerical libraries including LAPACK, UMF-
PACK (version 4.4), TAUCS (version 2.2), PARDISO
(version 1.2.3 outdated), SuperLU (version 4.1), Su-
perLU_DIST (version 2.5), DSCPACK (version 1.0),
SCALAPACK (version 1.7), and MUMPS (version
4.7.3 experimental support for version 4.9). Galeri pro-
vides an interface to generate Epetra_Map objects
to describe the partitioning of data across distributed
memory, Epetra_CrsMatrix objects that encap-
sulate sparse matrices in compressed row-wise for-
mat, and Epetra_VbrMatrix objects that encapsu-
late sparse matrices in a block row-wise format. Ga-
leri provides a functionality very close to MATLAB’s
gallery() function for creating several well-known
finite difference and finite element matrices. The If-
pack package provides OO algebraic preconditioners
for iterative solvers. AztecOO objects can use these
preconditioners.

In the current demonstration application, Epetra and
AztecOO objects satisfy all linear algebra require-
ments within the solver. Sections 3.3–3.5 detail the
demonstration application software design and imple-
mentation.

3.2. Accessing ForTrilinos

The ForTrilinos package is not built by default; thus
it must be explicitly enabled in the Trilinos configura-
tion system. For the details of this, we refer the reader
to the sample configuration scripts and documentation
contained in the Trilinos software distribution.

The OO Fortran interfaces are developed for each
class within a package: each module encapsulates a
derived type and its type-bound procedures (TBPs).
The module name comprises the corresponding C++
class name prefixed by a “F”. The derived type

278 K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation

program main
use mpi, only : mpi_init,mpi_finalize,mpi_comm_world
use FEpetra_MpiComm, only : Epetra_MpiComm
use FEpetra_Map, only : Epetra_Map
use iso_c_binding, only : c_int
implicit none
type(Epetra_MpiComm) :: comm
type(Epetra_Map) :: map,map_copy
integer :: ierr
! MPI startup
call mpi_init(ierr)
! Object construction
comm = Epetra_MpiComm(mpi_comm_world)
map = Epetra_Map(&
Num_GlobalElements=512_c_int,IndexBase=1_c_int,comm=comm)

map_copy = Epetra_Map(map)
! Object destruction
call map_copy%force_finalize
call map%force_finalize
call comm%force_finalize
! MPI shutdown
call mpi_finalize(ierr)

end program

Fig. 1. ForTrilinos object construction (lines 13–16) and explicit destruction (lines 19–21).

name matches the C++ class name. For example,
the FEpetra_Map module contains the derived type
Epetra_Map. The accepted practice for users to ac-
cess a derived type and its functionality is via use
association at the beginning of a programming unit
(e.g., a main program, module, or module procedure).
Lines 3–4 in Fig. 1 demonstrate use association of
Epetra_MpiComm and Epetra_Map objects that
encapsulate a Message Passing Interface (MPI) com-
municator and a description of the data distribution, re-
spectively. We recommend use of the only clauses in
lines 3–4 for access control, to document what is being
imported into the programming unit in question, and to
reduce compile-time overhead associated with module
entities that are not used outside the module. In addi-
tion to providing access to the type, the depicted use
statement style enables access to all of the type’s public
TBPs.

In keeping with the object-oriented programming
(OOP) philosophy of hiding information, ForTrili-
nos derived types contain no public data components.
A ForTrilinos object or user-defined object containing
a ForTrilinos object must be explicitly constructed be-

fore use. For this purpose, each ForTrilinos derived
type provides constructor functions, including a copy
constructor. All constructors overload the name of the
language-intrinsic structure constructor, which in turn
overloads the derived type’s name as is the common
idiom across most OO languages. Figure 1 shows code
for constructing and destroying three distinct objects
in a main program. Lines 2–5 use-associate several de-
rived types and procedures within the main program.
Lines 7–8 declare three Epetra objects. Line 9 declares
an integer argument required by MPI. Line 11 starts
MPI. Lines 13 constructs an Epetra_MpiComm
that encapsulates a MPI communicator. Lines 14–16
construct an Epetra_Map that aggregates the com-
municator into a description of the data distribution.
Line 17 invokes a copy constructor that returns a deep
copy of the passed object.

The construction process creates a ForTrilinos For-
tran object that shadows an underlying Trilinos C++
object. The ForTrilinos object stores meta-data about
the Trilinos object and delegates to Trilinos the con-
struction, distribution, and subsequent manipulation
of data. When a user invokes a ForTrilinos construc-

K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation 279

Fig. 2. UML class diagram for a demonstration 3D Burgers equation application build atop ForTrilinos. UML does not contain an Array type. To
represent the Vector_Field u component, we adopt the array notation proposed by Rouson et al. [16].

tor, the constructor registers the new object for auto-
mated memory management, including the object’s ul-
timate destruction to maintain consistency between the
shadow-object meta-data and the underlying object it
shadows. The ForTrilinos derived type implementation
also includes TBPs that can force object destruction
upon user request. Such explicit destruction is never
necessary except for objects declared in the main pro-
gram, in which case conscientious programming prac-
tice dictates destroying objects before the program ter-
minates. Lines 19–21 of Fig. 1 destroy all objects de-
clared in the main program. For objects declared in
subprograms, the ForTrilinos/CTrilinos infrastructure
leverages modern Fortran’s type finalization construct
to automate object destruction.

3.3. Class structure and behavior

The demonstration application uses the ForTrili-
nos classes1 and relationships shown in the Unified

1Modern Fortran, as embodied in the 2003 and 2008 standards,
allows for declaring extensible derived types with the “class” key-
word. All derived types intended for use by ForTrilinos users are ex-

Modeling Language (UML) class diagram of Fig. 2.
The 3D vector field equation of Burgers naturally lends
itself to representation via the depicted vector_
field abstraction and the mathematical operators
it supports. As shown, one vector_field object
is composed of three scalar_field components.
A scalar_field has an Epetra_Vector com-
ponent. An Epetra_Vector has an Epetra_Map
component. An Epetra_Map object has an
Epetra_Comm component. A scalar_field also
uses an Epetra_CrsMatrix object. We summarize
next the roles of each member of this class hierarchy.

The Epetra_Comm is an abstract class that pub-
lishes abstract interfaces for a “communicator” that fa-
cilitates interactions within an abstract model of a com-
munication subsystem. Concrete implementations of
these interfaces are provided for two such subsystems:
Epetra_MpiComm for distributed-memory parallel
subsystems and Epetra_SerialComm (not shown)
for serial subsystems. The Epetra_Map holds a
description of the data layout on the machine; in

tensible. We therefore adopt a convention of treating “derived type”
as synonymous with “class”.

280 K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation

particular, it describes how an index space maps
onto a parallel machine. The Epetra_Map has an
Epetra_Comm component that details the available
processes constituting the (abstract) parallel machine
being employed. An Epetra_Vector stores dis-
tributed, 1D arrays, basing their layout on its
Epetra_Map component. A Epetra_CrsMatrix
stores a compressed, sparse matrix, the rows of which
are laid out in memory following the distribution spec-
ified by the Epetra_Map that also describes the
Epetra_Vector layout.

For purposes of the demonstration application, the
scalar_field class abstracts 3D scalar functions
sampled on a uniform, Cartesian grid.2 Figure 2 shows
the scalar_field object’s private Epetra_
Vector component, f, and its public TBPs. The
f component holds 3D nodal values unrolled onto
a 1D index space and distributed across the com-
puting platform. The scalar_field module pro-
vides a like-named constructor and a collection of
generic operators (Laplacian, +, ∗, −, etc.) imple-
mented as TBPs. These TBPs provide arithmetic and
differential calculus functionality. The same mod-
ule provides a force_finalize destruction pro-
cedure that should only be necessary for objects
declared in the main program. The destruction of
scalar_field objects local to subprograms hap-
pens at the direction of the compiler, and the destruc-
tion of the corresponding Epetra_Vector compo-
nents happens at the direction of the aforementioned
ForTrilinos reference-counting architecture.

Each element of the vector_field component
array, u, models a component of the Burgers equa-
tion solution vector u. The vector_field class
defines generic operators implemented as TBPs pro-
viding discrete approximations to the differential and
arithmetic operators in Eqs (4)–(5). The operator im-
plementations invoke generic operators supported by
the scalar_field class.

The use of an abstract data type (ADT) calcu-
lus of the kind defined by the vector_field and
scalar_field generic operators has been de-
scribed elsewhere [13,16]. Many other possibilities ex-
ist for decomposing the 3D Burgers equation into a set
of classes. The composition of classes presented above
allows for demonstrating the use of ForTrilinos objects
in the challenging setting of aggregating them into a
multilevel class hierarchy and then constructing, ma-

2Although our grid choice facilitates a simple demonstration,
most Trilinos use cases involve unstructured grids.

nipulating, and destructing the aggregate objects re-
peatedly across deeply nested call trees. The lessons
learned in doing so should prove instructive in other
use cases with these properties.

3.4. Implementation

The full implementation of the 3D Burgers solver
will be made available in the examples directory of
an upcoming ForTrilinos release. This section presents
several excerpts from a current, working implementa-
tion. The emphasis here is twofold: demonstrating the
construction of objects that aggregate ForTrilinos ob-
jects and demonstrating the TBPs invoked on those
objects to accomplish tasks that prove useful in the
demonstration application. Additionally, we include a
few suggestions on style and discuss the support For-
Trilinos provides for encouraging safety.

3.4.1. Scalar field construction
Figure 3 excerpts a portion of the scalar_field

module. Lines 2–8 import ForTrilinos types, their
public TBPs, and other module procedures. Line 13
hides all module entities by default. Line 14 exposes
scalar_field, its public TBPs, and constructors.
The scalar_field type specification in lines 15–
27 aggregates an Epetra_Vector and a logical
flag signaling a successful construction. The type spec-
ification excerpts some of the TBPs from the actual
implementation: isConstructed returns the con-
struction flag; df_dx approximates a derivative; and
total and laplacian implement the generic addi-
tion operator (+) and the Laplacian differential opera-
tor (.laplacian.), respectively.

The constructor at line 49 takes as arguments a pro-
cedure pointer and a communicator and uses the pro-
cedure associated with the pointer to initialize the con-
structed object’s Epetra_Vector component. The
class keyword at line 52 declares the passed com-
municator to be polymorphic. This declaration allows
the passed argument to be of type Epetra_Comm or
any type that extends Epetra_Comm.

At line 64–65, the constructor uses the passed com-
municator to create an Epetra_Map: a simple lin-
ear map in the current example. At line 74, the
constructor uses the resulting map to construct the
Epetra_Vector component, constructing the com-
ponent first with default zero-initialization (line 74)
and then invoking the ReplaceGlobalValues
TBP at lines 75–76 to replace the component’s entries
with the values generated by the passed initialization
procedure.

K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation 281

module scalar_field_module
use ForTrilinos_assertion_utility ,only : error_message,assert
use FEpetra_Comm ,only: Epetra_Comm
use FEpetra_Map ,only: Epetra_Map
use FEpetra_Vector ,only: Epetra_Vector
use FEpetra_CrsMatrix,only: Epetra_CrsMatrix
use FAztecOO ,only: AztecOO
use ForTrilinos_error,only: error
use field_module ,only : initial_field ! Procedure pointer
use iso_c_binding ,only : c_double,c_int ! Interoperable kinds
use globals ,only : nspace,nx,ny,nz,dx
implicit none
private ! Hide everything by default
public :: scalar_field ! Expose type, constructor, TBPs
type :: scalar_field
private
type(Epetra_Vector) :: f
logical :: constructed=.false.

contains
procedure :: isConstructed !Check for successful construction
procedure :: total !Object summation operator
procedure :: laplacian !Object differential operator
generic :: operator(+) => total
generic :: operator(.laplacian.) => laplacian
procedure :: x => df_dx ! 1st derivative w.r.t. x
! (additional type-bound procedures not shown)

end type
! Module variables
type(Epetra_Map), allocatable :: map
real(c_double), dimension(nx) :: x_node
integer(c_int), save :: NumMy_xy_planes, &

my_first_xy_plane,my_last_xy_plane
! Module constants
integer(c_int) ,parameter :: IndexBase=1
integer(c_int) ,parameter :: NumGlobalElements = nx*ny*nz
integer(c_int) ,parameter :: NumGlobal_xy_planes = nz, &

Num_xy_points_per_plane = nx*ny
interface scalar_field
procedure new_scalar_field

end interface

contains

logical function isConstructed(this)
class(scalar_field) ,intent(in) :: this
isConstructed = this%constructed

end function

Fig. 3. Scalar_field module excerpt: use-association of module dependencies, type specification, and constructor implementation.

282 K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation

function new_scalar_field(initial,comm) result(this)
type(scalar_field) :: this
procedure(initial_field) ,pointer :: initial
class(Epetra_Comm) ,intent(in) :: comm
real(c_double) ,dimension(:) ,allocatable :: f_v
integer(c_int) :: i,j,k,NumMyElements
! Requires (preconditions):
call assert(mod(NumGlobal_xy_planes,comm%NumProc())==0 &

,error_message(’new_scalar_field: number of processes not &
divisible by number of xy planes.’))

! Define local variables:
NumMy_xy_planes = NumGlobal_xy_planes/comm%NumProc()
NumMyElements = NumMy_xy_planes*Num_xy_points_per_plane
! Define module variables:
forall(i=1:nx) x_node(i) =(i-1)*dx
if (.not. allocated(map)) map = &

Epetra_Map(NumGlobalElements,NumMyElements,IndexBase,comm)
! Define derived type components:
! Initialize and spread 3D field values along linear 1D array
allocate(f_v(NumMyElements))
my_first_xy_plane = comm%MyPID()*NumMy_xy_planes + 1
my_last_xy_plane = (comm%MyPID()+1)*NumMy_xy_planes
forall(i=1:nx,j=1:ny,k=my_first_xy_plane:my_last_xy_plane) &

f_v(i + (j-1)*ny + (k-my_first_xy_plane)*ny*nz) = &
initial(x_node(i),x_node(j),x_node(k))

this%f=Epetra_Vector(map,zero_initial=.true.)
call this%f%ReplaceGlobalValues(NumMyElements,f_v, &

map%MyGlobalElements())
this%constructed=.true.
! Ensures (postcondition):
call assert(this%isConstructed() &

,error_message(’new_scalar_field: construction failed.’))
end function

! (additional type-bound procedure implementations not shown)

end module

Fig. 3. (Continued.)

3.4.2. ForTrilinos assertion utility
Lines 56–58 and 79–80 demonstrate software design

philosophy often termed “programming by contract”.
This approach requires a subprogram to satisfy a con-
tract with the calling code. The contract specifies pre-
conditions required to be true before a subprogram ex-
ecutes and postconditions the subprogram ensures will
be true after it executes.

The ForTrilinos_assertion_utilitymod-
ule provides several routines that help enforce con-

tracts. Modeled after the C/C++ assert intrinsic,
the calls to assert subroutine at lines 56 and 79 halt
execution and print the passed error message to stan-
dard error whenever a logical expression passed as
the first argument evaluates to false. Another ForTrili-
nos assertion routine accepts an array of logical ex-
pressions and a corresponding array of error messages.
Another assertion routine halts execution when any el-
ement of an integer array is not identical to all other
elements.

K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation 283

function total(lhs,rhs)
class(scalar_field) ,intent(in) :: lhs,rhs
type(scalar_field) :: total
real(c_double), parameter :: one=1._c_double,zero=0._c_double

! Requires (preconditions):
call assert(lhs%isConstructed(),error_message(&
’scalar_field%total(): unconstructed left-hand side.’))
call assert(rhs%isConstructed(),error_message(&
’scalar_field%total(): unconstructed right-hand side.’))

total%f=Epetra_Vector(map,zero_initial=.true.)
call total%f%Update(one,lhs%f,one,rhs%f,zero)
total%constructed = .true.

! Ensures (postconditions):
call assert(total%isConstructed(),error_message(&
’scalar_field%total(): unconstructed function result.’))
end function

Fig. 4. Scalar_field addition operator implementation.

In C/C++, one can turn all assertion-checking off
at compile-time to eliminate associated runtime penal-
ties in production code. Akin [1] described an approach
that can likewise eliminate runtime penalties with most
Fortran compilers: define a global constant and use it
to conditionally toggle the execution of certain code
on or off (debugging code in Akin’s case). With this
approach, the beginning of line 56 might instead read

if (assertions) call
assert(mod(NumGlobal_xy_planes,

comm% ...

and elsewhere might be a declaration of the form

logical, parameter :: assertions =
.false.

in which case most compilers would eliminate the
call to assert during an optimization step known
as “dead-code-removal”. Recompiling with asser-
tions set to .true. would turn assertion-checking
on. For a simple alternative solution, one could wrap
assert with preprocessor macros, in which case,
the code associated with the utility could be removed
automatically during a preprocessing stage when not
needed.

3.4.3. Scalar field arithmetic
The requisite scalar_field arithmetic operators

invoke TBPs on the private Epetra_Vector com-

ponents. As an example, the total function in Fig. 4
sums two scalar fields. This function’s preconditions
verify that the lhs and rhs operands were success-
fully constructed. The postcondition verifies the con-
struction status of the return argument.

Polymorphic declarations of each operand as a
class at line 2 allows each actual argument to be a
scalar_field or any type that extends scalar_
field. The total function result is likewise a
scalar_field computed by invoking the Update
TBP of its Epetra_Vector component f. Update
evaluates expressions of the form a*lhs%f+b*rhs
%f+c*total%f and assigns the result to total%f.
In the case shown at line 13 in Fig. 4, a and b are unity,
c is zero, and each constant is declared to be of kind
c_double as required to match the C-interoperable
hardware representation ForTrilinos requires for all
TBP arguments. The entire operation executes in paral-
lel in distributed memory consistent with the data dis-
tribution specified by the Epetra_Map.

3.4.4. Scalar field differential calculus
All scalar_field differential operators involve

the same class interactions. We focus here on the first
partial derivative with respect to x shown in Fig. 5.
Following the form of the differentiation described by
Eqs (2) and (3), the current implementation computes
derivatives in three steps:

284 K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation

function df_dx(this)
type(scalar_field) :: df_dx
class(scalar_field) ,intent(in) :: this
type(Epetra_CrsMatrix), allocatable :: A
type(Epetra_Vector) :: b
type(AztecOO) :: Solver
type(error) :: err

! Requires (preconditions):
call assert(this%isConstructed(),error_message(&

’scalar_field%x(): unconstructed argument.’))

associate(x => df_dx%f)
! Create matrix A and vectors x, b
if (.not.allocated(A)) A=Matrix_diff_x(coef_1st)
x=Epetra_Vector(A%RowMap())
call x%Random() ! initial guess
b=RHS_diff_x(this,coef_1st,1) ! coef_1st module variable:
! Solve Ax=b for x ! definition not shown.
Solver=AztecOO(A,x,b) ! See Appendix A.1.1.
call Solver%iterate(A,x,b,MaximumIter,tolerance,err)
call assert([err%error_code()==0_c_int] , &

[error_message(’Solver%iterate: failed’)])
end associate
df_dx%constructed = .true.

! Ensures (postconditions):
call assert(df_dx%isConstructed(),error_message(&

’scalar_field%x(): differentiation failed.’))
end function

Fig. 5. Scalar field first-derivative operator implementation.

(1) Constructing the LHS matrix A: The x-derivative
TBP delegates this step to the private mod-
ule procedure Matrix_diff_x at line 15 in
Fig. 5. The latter procedure returns an Epetra_
CrsMatrix holding a compressed representa-
tion of the sparse coefficient matrix described
in the Appendix. The Epetra_CrsMatrix
constructor at line 26 in the Matrix_diff_x
function in Fig. 6 takes three arguments: (1) an
enumerated value FT_Epetra_DataAccess
_E_t set to designate a copy (the alternative be-
ing a view); (2) an Epetra_Map encapsulating
the description of the row distribution in memory
of the Epetra_CrsMatrix and correspond-
ing to the distribution of the Epetra_Vector
component; and (3) an array expressing the num-
ber of nonzero elements of each local row in the

matrix. Finally, lines 63 and 69 insert the appro-
priate coefficients into the constructed object via
the InsertGlobalValues TBP.

(2) Constructing the RHS matrix–vector product Bf:
The x-derivative TBP delegates this step to the
private module procedure RHS_diff_x at
line 18 in Fig. 5. The latter procedure extracts
a copy of its argument’s nodal values local to
the given process at line 12 in Fig. 7, constructs
an Epetra_Vector to hold the matrix–vector
product at line 14, performs the requisite mul-
tiplications locally, and then replaces the corre-
sponding global values in the function result at
line 41. This is essentially a matrix-free calcu-
lation of the matrix–vector product. (An alterna-
tive approach implemented elsewhere for the z
derivative constructs the matrix B and then in-

K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation 285

function Matrix_diff_x(coef)
use ForTrilinos_enum_wrappers,only:FT_Epetra_DataAccess_E_Copy
real(c_double),dimension(:), intent(in) :: coef
type(Epetra_CrsMatrix) :: Matrix_diff_x
type(error) :: err
integer(c_int),dimension(:),allocatable :: MyGlobalElements
integer(c_int),dimension(:),allocatable :: NumNz
integer(c_int) :: MyGlobalElements_diagonal(1)
integer(c_int) :: NumMyElements,i
integer(c_int) :: indices(4), NumEntries
real(c_double) :: values(4), one=1.0
integer(c_int),parameter :: diagonal=1

! Get updated list and number of local equations from Map
NumMyElements = map%NumMyElements()
MyGlobalElements = map%MyGlobalElements()

! Create an integer vector NumNz that is used to build
! the Epetra Matrix NumNz(i) is the number of non-zero
! elements for the ith global equation on this processor
allocate(NumNz(NumMyElements))
NumNz = 5

! Create an Epetra_Matrix
associate(A=>Matrix_diff_x)
A = Epetra_CrsMatrix(FT_Epetra_DataAccess_E_Copy,map,NumNz)

! Add rows one at a time
! Need some vectors to help
values(1:4)=coef(1:4)
do i=1,NumMyElements

if (mod(MyGlobalElements(i)-1,nx)==0) then
indices(1) = MyGlobalElements(i)+2
indices(2) = MyGlobalElements(i)+1
indices(3) = MyGlobalElements(i)+nx-1
indices(4) = MyGlobalElements(i)+nx-2
NumEntries = 4

else if(mod(MyGlobalElements(i),nx)==0) then
indices(1) = MyGlobalElements(i)-nx+2
indices(2) = MyGlobalElements(i)-nx+1
indices(3) = MyGlobalElements(i)-1
indices(4) = MyGlobalElements(i)-2
NumEntries = 4

else if (mod(MyGlobalElements(i)-2,nx)==0) then
indices(1) = MyGlobalElements(i)+2
indices(2) = MyGlobalElements(i)+1
indices(3) = MyGlobalElements(i)-1

Fig. 6. First-derivative LHS matrix construction.

286 K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation

indices(4) = MyGlobalElements(i)+nx-2
NumEntries = 4

else if(mod(MyGlobalElements(i)+1,nx)==0) then
indices(1) = MyGlobalElements(i)-nx+2
indices(2) = MyGlobalElements(i)+1
indices(3) = MyGlobalElements(i)-1
indices(4) = MyGlobalElements(i)-2
NumEntries = 4

else
indices(1) = MyGlobalElements(i)+2
indices(2) = MyGlobalElements(i)+1
indices(3) = MyGlobalElements(i)-1
indices(4) = MyGlobalElements(i)-2
NumEntries = 4

end if
call A%InsertGlobalValues(MyGlobalElements(i), &

NumEntries,values,indices,err)
call assert([err%error_code()==0_c_int] , &

[error_message(’A%InsertGlobalValues: failed’)])
!Put in the diagonal entry
MyGlobalElements_diagonal=MyGlobalElements(i)
call A%InsertGlobalValues(MyGlobalElements(i), &

diagonal,[one],MyGlobalElements_diagonal,err)
call assert([err%error_code()==0_c_int] , &

[error_message(’A%InsertGlobalValues: failed’)])
end do

!Finish up
call A%FillComplete(.true.,err)

end associate
end function

Fig. 6. (Continued.)

vokes that matrix’s Multiply_Vector TBP
to form the product. The latter approach requires
interprocess communication but delegates the or-
chestration of all such communication to Trili-
nos.)

(3) Solving the linear system Af′ = Bf: At line 20
in Fig. 5, the x-derivative TBP constructs an
AztecOO solver object from the aforementioned
sparse LHS matrix A, the RHS vector b (holding
Bf), and the solution vector f’. Line 21 invokes
the solver’s iterate TBP to compute the solu-
tion of the linear system.

3.4.5. Vector field construction, arithmetic and
differential calculus

As described in Fig. 2, a vector_field aggre-
gates three scalar_field components. The full 3D

Burgers equation solver constructs vector_field
objects by constructing each corresponding scalar_
field component. Each vector_field arithmetic
operator invokes the corresponding arithmetic operator
of each scalar_field component. The vector_
field differential operators .laplacian. and
.dotGradiant. delegate all associated derivative
calculations to the scalar_field differential cal-
culus TBPs.

Because the vector_field class has no direct in-
teraction with ForTrilinos, we omit most details of its
class implementation. We provide one arithmetic oper-
ator implementation corresponding to the addition op-
erator in Fig. 8 to illustrate the complicated class rela-
tionships currently possible in working with ForTrili-

K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation 287

type(Epetra_Vector) function RHS_diff_x(this,coef,order)
class(scalar_field), intent(in) :: this
real(c_double), intent(in), dimension(:) :: coef
integer(c_int), intent(in) :: order
integer(c_int) :: i,NumMyElements
integer(c_int),dimension(:),allocatable :: MyGlobalElements
real(c_double),dimension(:),allocatable :: Bf_v,f_v

MyGlobalElements=map%MyGlobalElements()
NumMyElements=map%NumMyElements()

f_v=this%f%ExtractCopy()
associate(Bf=>RHS_diff_x)
Bf=Epetra_Vector(map)
allocate(Bf_v(Bf%MyLength()))
select case (order)
case(1) ! calculate RHS for 1st derivative
do i=1,NumMyElements
if (mod(MyGlobalElements(i)-1,nx)==0) then

Bf_v(i) = (coef(6)/(4.0*dx))*(f_v(i+2)-f_v(i+nx-2))+&
(coef(7)/(2.0*dx))*(f_v(i+1)-f_v(i+nx-1))

else if(mod(MyGlobalElements(i),nx)==0) then
Bf_v(i) = (coef(6)/(4.0*dx))*(f_v(i-nx+2)-f_v(i-2))+&

(coef(7)/(2.0*dx))*(f_v(i-nx+1)-f_v(i-1))
else if (mod(MyGlobalElements(i)-2,nx)==0) then

Bf_v(i) = (coef(6)/(4.0*dx))*(f_v(i+2)-f_v(i+nx-2))+&
(coef(7)/(2.0*dx))*(f_v(i+1)-f_v(i-1))

else if(mod(MyGlobalElements(i)+1,nx)==0) then
Bf_v(i) = (coef(6)/(4.0*dx))*(f_v(i-nx+2)-f_v(i-2))+&

(coef(7)/(2.0*dx))*(f_v(i+1)-f_v(i-1))
else

Bf_v(i) = (coef(6)/(4.0*dx))*(f_v(i+2)-f_v(i-2))+ &
(coef(7)/(2.0*dx))*(f_v(i+1)-f_v(i-1))

end if
enddo

case(2) ! RHS for 2nd derivative
! (Implementation not shown)

case default
stop ’RHS_diff_x: invalid derivative order.’

endif
call Bf%ReplaceGlobalValues(NumMyElements,Bf_v &,MyGlobalElements)
end associate

end function

Fig. 7. First-derivative RHS matrix–vector product calculation.

nos: the code in that figure enables user-defined opera-
tors to operate on a composite object with components
that themselves are composite objects that aggregate
Epetra_Vector components.

3.5. Application driver

Figure 9 shows the demonstration application main
driver. Much of the explanation of the figure follows

288 K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation

type(vector_field) function total(lhs,rhs)
class(vector_field) ,intent(in) :: lhs, rhs

! Requires (preconditions):
call assert(lhs%isConstructed(),error_message(&
’vector_field%total(): unconstructed left-hand side.’))
call assert(rhs%isConstructed(),error_message(&
’vector_field%total(): unconstructed right-hand side.’))

total = vector_field()
total%u(1)=lhs%u(1)+rhs%u(1)
total%u(2)=lhs%u(2)+rhs%u(2)
total%u(3)=lhs%u(3)+rhs%u(3)
total%constructed = .true.

! Ensures (postconditions):
call assert(total%isConstructed(),error_message(&

’vector_field%total(): unconstructed right-hand side.’))
end function

Fig. 8. Implementation of addition operator in the vector_field module.

program main
#include "ForTrilinos_config.h"
#ifdef HAVE_MPI
use mpi
use FEpetra_MpiComm, only: Epetra_MpiComm

#else
use FEpetra_SerialComm, only: Epetra_SerialComm

#endif
use iso_c_binding, only: c_int,c_double
use vector_field_module, only: vector_field
use field_module, only: initial_field
use initializer, only: u_initial,v_initial,w_initial,zero
implicit none

#ifdef HAVE_MPI
type(Epetra_MpiComm) :: comm

#else
type(Epetra_SerialComm) :: comm

#endif
type(vector_field) :: u,N_u,u_half
procedure(initial_field) ,pointer :: initial_u,initial_v, &

initial_w,initial
real(c_double) :: dt,half=0.5,t=0.,t_final=0.1,nu=1.
integer(c_int) :: ierr

Fig. 9. Main program for the 3D Burgers solver application.

K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation 289

! Initializing MPI
#ifdef HAVE_MPI
call MPI_INIT(ierr)
comm = Epetra_MpiComm(MPI_COMM_WORLD)

#else
comm = Epetra_SerialComm()

#endif
! Vector field construction
initial_u => u_initial
initial_v => v_initial
initial_w => w_initial
u = vector_field(initial_u,initial_v,initial_w,comm)
initial => zero
N_u = vector_field(initial,initial,initial,comm)
u_half = vector_field(initial,initial,initial,comm)
! Time advance vector field
do while (t<=t_final) !2nd-order Runge-Kutta:

dt = u%runge_kutta_stable_step(2,nu)
N_u = u.dotGradient.u
! first substep
u_half = u + ((((.laplacian.u)*nu) - N_u)*(half*dt))
N_u = u_half.dotGradient.u_half
! second substep
u = u + ((((.laplacian.u_half)*nu) - N_u)*dt)
t = t + dt

end do
call u%output()
! Final memory cleanup before finalization
call N_u%force_finalize
call u_half%force_finalize
call u%force_finalize
call comm%force_finalize
! Finalizing MPI
#ifdef HAVE_MPI
call MPI_FINALIZE(ierr)

#endif
end program

Fig. 9. (Continued.)

code discussions earlier in the current article. One fea-
ture not used earlier, however, is the ability to tog-
gle between serial and parallel builds by setting con-
figuration flags. The C pre-processor directives begin-
ning at lines 3, 14, 25 and 57 provide this flexibility.
Line 2 sets up the build system to pass configuration
flags such as the HAVE_MPI variable that determines
the type of build. This line is needed only when the
source code needs access to configuration flags.

Not shown is the abstract interface initial_
field employed at line 20. It provides an interface of

a function that returns a real value given three real val-
ues. The time advancement of the 3D Burgers equation
occurs in lines 40–49. Also not shown is the output
TBP invoked on the vector_field state. Other de-
tails of main mirror examples of code earlier in this
article.

4. Discussion

The main driver presented in Fig. 9 demonstrates
several principles related to our goals for ForTrilinos.

290 K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation

The most obvious is the goal of maintaining the OOP
philosophy of the larger Trilinos project while working
within idioms that feel natural to Fortran programmers.
An example is the use of user-defined structure con-
structors that overload the name of the class of objects
they construct. Fortran 90/95 had intrinsic structure
constructors provided by the language and these like-
wise overload the class name so taking advantage of
the Fortran 2003 user-defined structure constructor ca-
pability seems natural. Furthermore, naming construc-
tors after the class matches the practice in most other
OOP languages. We believe common idioms have ex-
pressive power.

On the other hand, there are ways in which we have
made subtle departures from common Fortran practice.
An important one arises in the need for the copy con-
structor at line 17 in Fig. 1. If instead a user were to
execute the language’s intrinsic assignment in the form
map_copy = map, then map_copy would hold a
reference (via pointer association) to map rather than
holding a separate copy. This behavior stems from the
underlying reference-counting scheme cited in Sec-
tion 2.2. The fact that this behavior would seem unnat-
ural to most Fortran programmers led to our advice in
Section 3.2 that all objects must be constructed by a
ForTrilinos constructor before use – one specific im-
plication being that the copy constructor is generally
preferable to the intrinsic assignment in terms of en-
gendering behavior that would likely seem more intu-
itive to most Fortran programmers.

Because most Fortran programmers have only re-
cently gained access to compilers that support the OOP
constructs of Fortran 2003, the current authors have
had to develop some new idioms along the way. We
have summarized many of them in publications on
modern Fortran program design and construction for
numerical applications [7,13,14,16].

The demonstration application driver illustrates
other principle aims of ForTrilinos. One is the de-
sire to enable scientific programmers to write code us-
ing what appear to be serial semantics but to support
those semantics via parallel method invocations on
distributed-memory data structures. Two by-products
of this approach appear in the minimal number of
MPI calls required to put together an application and
the minimal number of changes that must be made
to switch between serial and parallel versions of an
application. Only two MPI calls appear in the ap-
proximately 1500 lines of source code comprising
the high-order, finite-difference, 3D Burgers equa-
tion demonstration solver: MPI_init for startup and

MPI_finalize for shutdown. Likewise, the applica-
tion has only 18 lines associated with C pre-processor
conditionals required to switch between serial and par-
allel builds.

Closely related to the encapsulation of most MPI
calls is the encapsulation and hiding of the distributed
data structures on which those calls operate. Charac-
teristic of OOP, this encapsulation and information-
hiding positively impacts application program con-
struction and debugging. For example, should a For-
Trilinos user need to print an object’s data during a de-
bugging exercise, doing so does not require that the
end user understand the underlying data structure. In
particular, the user need not know how the data is
distributed. Trilinos offers various input/output (I/O)
methods a user can invoke to export the data in vari-
ous formats. Section 5.2 describes plans for providing
access to these methods in ForTrilinos.

5. Conclusions and future work

We have demonstrated the level of effort required
to build atop ForTrilinos in one common use case:
high-order numerical solution of the 3D vector par-
tial differential equation of Burgers. The chosen class
structure illustrates the complex class hierarchies one
can build atop ForTrilinos with modern Fortran com-
pilers: a vector_field class aggregates three in-
stances of a scalar_field class, which in turn ag-
gregates an Epetra_Vector and uses an Epetra_
CrsMatrix. The Epetra_Vector aggregates an
Epetra_Map, which in turn aggregates an Epetra
_Comm.

The vector field abstraction publishes several arith-
metic and differential operators. The main driver pro-
gram manipulates expressions composing these opera-
tors. These expressions and most remaining main pro-
gram code use syntax that is identical whether the
code runs in serial or parallel mode. The highest-level
expressions ultimately resolve to lower-level ForTrili-
nos type-bound procedures invoked on distributed-
memory objects manipulated in parallel.

Just over a year from its initial release, ForTrilinos
remains relatively early in its development. An impor-
tant ongoing effort involves expanding the ForTrili-
nos coverage of Trilinos C++ packages. The follow-
ing subsections describe other near-term priorities. We
offer these to solicit user input on next steps.

K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation 291

5.1. Matrix-free calculations and performance tuning

Although we used the current demonstration appli-
cation to highlight matrix construction, a more so-
phisticated use of ForTrilinos might employ the Trili-
nos Epetra_Operator class to build a matrix-free
solver. In the current application, the predetermined
regularity of the sparseness patterns in the LHS A
matrix could facilitate direct operation on the itera-
tive solution vectors employed in and generated by
AztecOO. In many cases where we currently use a
concrete matrix class such as Epetra_CrsMatrix,
the relevant Trilinos methods manipulate the under-
lying object via its abstract Epetra_Object par-
ent class. A user could therefore extend the Epetra_
Operator abstract class by providing a concrete
class that implements the Epetra_Operator de-
ferred bindings.

Matrix-free computation could offer significant per-
formance benefits associated with reduced storage re-
quirements. Although we have verified the correct-
ness of the demonstration application running in par-
allel on eight nodes in a dual-socket, four-core CPU
configuration totaling 64 cores, detailed profiling and
performance-tuning of the demonstration application
and the underlying ForTrilinos interfaces will be the
subject of future research. We plan to explore the
matrix-free approach as part of our performance-
tuning effort.

5.2. Interface simplification and file input/output
(I/O)

While the primary role of ForTrilinos is to wrap
Trilinos C++ packages, we also aim to add value
wherever possible rather than to merely translate the
C++ idioms into Fortran. One simple way of doing
so is to exploit Fortran’s rich array facilities to sim-
plify argument passing. Whereas several of the C++
methods receive an array as well as the array bounds
as separate arguments, Fortran arrays carry along such
information. An upcoming version of ForTrilinos will
publish interfaces that query array arguments for their
bounds in lieu of asking Fortran programmers to pass
redundant and therefore potentially error-prone bounds
information.

A more significant way to add value will involve
native Fortran I/O. File I/O, if not implemented and
supported properly, can produce large load imbalances
when one processor is doing the I/O and the others are
idling. This can be mitigated to some extent by using
ROMIO extensions to MPI, and using the collective

MPI read and write routines. However, implementing
this requires invasive knowledge of the internal struc-
ture of the derived types and a good grasp of the MPI
collective I/O routines. In keeping with the Trilinos
design philosophy, we plan to remove these two hur-
dles with two strategies: wrapping the EpetraExt I/O
subroutines and writing native ForTrilinos I/O subrou-
tines.

The EpetraExt package provides access to ASCII
files written in the MatrixMarket format3 and binary
files written in the HDF5 format. Subroutines are pro-
vided to convert an Epetra_Map to and from these
formats. ForTrilinos will provide wrappers to these
subroutines for transparent access for the users.

Finally, ForTrilinos programmers often print data in
ASCII format for debugging or testing purposes. In
a likely ForTrilinos use case, this information will be
spread across processors and therefore require special-
ized knowledge to correctly access. To make this ac-
cess straightforward, ForTrilinos will provide a few na-
tive subroutines for writing the required data to format-
ted ASCII files.

Acknowledgements

Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy under contract
DE-AC04-94AL85000. The authors thank the Office
of Naval Research Sense and Response Logistics pro-
gram for their support. The authors also thank Hari
Radharkrishnan for guidance on the parallel le I/O plan
for ForTrilinos. The second author thanks Prof. Stavros
Kassinos for hosting a visit to the University of Cyprus,
where most of the second author’s contributions to this
paper took place.

Appendix: Spatial derivative approximation

A.1. First derivative

Lele [9] defined the following first-derivative sten-
cil:

βf ′i−2 + αf ′i−1 + f ′i + αf ′i+1 + βf ′i+2

= c
fi−3 − fi−3

6h
+ b

fi−2 − fi−2

4h

+ a
fi−1 − fi−1

2h
. (6)

3http://math.nist.gov/MatrixMarket/reports/MMformat.ps.

292 K. Morris et al. / Exploring capabilities within ForTrilinos by solving the 3D Burgers equation

This leads to a pentadiagonal LHS coefficient matrix in
1D and a block-diagonal matrix in higher dimensions.
For the sixth-order accuracy used in our demonstration
solver, the parameters in Eq. (6) are β = 0, α = 1

3 ,
a = 14

9 , b = 1
9 and c = 0.

A.2. Second derivative

The corresponding second-derivative approximation
is

βf ′′i−2 + αf ′′i−1 + f ′′i + αf ′′i+1 + βf ′′i+2

= c
fi−3 − 2fi + fi−3

9h2 + b
fi−2 − 2fi + fi−2

4h2

+ a
fi−1 − 2fi + fi−1

h2 . (7)

For the sixth-order accuracy used in our demonstration
application, the parameters in Eq. (7) are β = 0, α =
2
11 , a = 12

11 , b = 2
11 and c = 0.

References

[1] E. Akin, Object-Oriented Programming via Fortran 90/95,
Cambridge Univ. Press, Cambridge, 2003.

[2] E.R. Benton and G.W. Platzman, A table of solutions of
the one-dimensional burgers equation, Quart. Appl. Math. 30
(1972), 195–212.

[3] J.G. Blom and J.G. Verwer, Vlugr3: a vectorizable adaptive
grid solver for PDEs in 3D, part I: algorithmic aspects and new
applications, Appl. Numer. Math. 16 (1994), 129–156.

[4] J.M. Burgers, A mathematical model illustrating the theory of
turbulence, Adv. Appl. Mech. 1 (1948), 171–199.

[5] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spec-
tral Methods: Fundamentals in Single Domains, Springer-
Verlag, Berlin, 2006.

[6] J. Davoudi, A.A. Masoudi, M.R.R. Tabar, A.R. Rastegar and
F. Shahbazi, Three-dimensional forced burgers turbulence sup-
plemented with a continuity equation, Phys. Rev. E 63 (2001),
056308.

[7] S. Filippone and A. Buttari, Object-oriented techniques for
sparse matrix computations in Fortran 2003, ACM Trans.
Math. Softw. 38(4) (2012), to appear.

[8] M.A. Heroux, R.A. Bartlett, V.E. Howle, R.J. Hoekstra,
J.J. Hu, T.G. Kolda, R.B. Lehoucq, K.R. Long, R.P. Pawlowski,
E.T. Phipps, A.G. Salinger, H.K. Thornquist, R.S. Tuminaro,
J.M. Willenbring, A. Williams and K.S. Stanley, An overview
of the Trilinos project, ACM Trans. Math. Softw. 31(3) (2005),
397–423.

[9] S.K. Lele, Compact finite difference schemes with spectral-
like resolution, J. Comp. Phys. 103 (1992), 16–42.

[10] M. Metcalf, J.K. Reid and M. Cohen, Modern Fortran Ex-
plained, Oxford Univ. Press, Oxford, 2011.

[11] K. Morris, D. Rouson and J. Xia, On the object-oriented design
of reference-counted shadow objects, in: Proc. 4th Interna-
tional Workshop on Software Engineering for Computational
Science and Engineering, ACM Press, New York, NY, 2011,
pp. 19–27.

[12] C. Rosales and C. Meneveau, Linear forcing in numerical sim-
ulations of isotropic turbulence: physical space implementa-
tions and convergence properties, Phys. Fluids 17(9) (2005),
095106.

[13] D.W.I. Rouson, Towards analysis-driven scientific software ar-
chitecture: the case for abstract data type calculus, Sci. Pro-
gram. 16(4) (2008), 329–339.

[14] D.W.I. Rouson, H. Adalsteinsson and J. Xia, Design patterns
for multiphysics modeling in Fortran 2003 and C++, ACM
Trans. Math Soft. 37(1) (2010), 1–30.

[15] D.W.I. Rouson, K. Morris and J. Xia, Managing C++ objects
with modern Fortran in the driver’s seat: this is not your par-
ents’ Fortran, Comput. Sci. Eng. 13 (2012), 46–54.

[16] D.W.I. Rouson, J. Xia and X. Xu, Scientific Software Design:
The Object-Oriented Way, Cambridge Univ. Press. Cambridge,
2011.

[17] S.F. Shandarin and Y.B. Zeldovich, The large-scale structure
of the universe: turbulence, intermittency, structures in a sef-
gravitating medium, Rev. Modern Phys. 61(1) (1989), 185–
220.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

