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Abstract—The intensity of cosmic radiation may differ over five orders of magnitude within a few hours or days during the Solar 

Particle Events (SPEs), thus increasing for several orders of magnitude the probability of Single Event Upsets (SEUs) in space-

borne electronic systems. Therefore, it is vital to enable the early detection of the SEU rate changes in order to ensure timely 

activation of dynamic radiation hardening measures. In this paper, an embedded approach for the prediction of SPEs and SRAM 

SEU rate is presented. The proposed solution combines the real-time SRAM-based SEU monitor, the offline-trained machine 

learning model and online learning algorithm for the prediction. With respect to the state-of-the-art, our solution brings the following 

benefits: (1) Use of existing on-chip data storage SRAM as a particle detector, thus minimizing the hardware and power overhead, 

(2) Prediction of SRAM SEU rate one hour in advance, with the fine-grained hourly tracking of SEU variations during SPEs as 

well as under normal conditions, (3) Online optimization of the prediction model for enhancing the prediction accuracy during run-

time, (4) Negligible cost of hardware accelerator design for the implementation of selected machine learning model and online 

learning algorithm. The proposed design is intended for a highly dependable and self-adaptive multiprocessing system employed 

in space applications, allowing to trigger the radiation mitigation mechanisms before the onset of high radiation levels. 

Index Terms— solar particle event, single event upset, machine learning, online learning, hardware accelerator, reliability, self-

adaptive multiprocessing system 

——————————      —————————— 

1 INTRODUCTION

S CMOS technology scales into the deep nanometer 
range, the design of integrated circuits (ICs) for space 

missions becomes more and more challenging. The radia-
tion-induced Single Event Upsets (SEUs) represent one of 
the main reliability concerns for space-borne ICs. An SEU 
is a transient bit flip in storage elements such as flip-flops, 
latches and SRAM cells. This effect may occur when ener-
getic particles (e.g., heavy-ions, alpha particles, neutrons, 
protons) pass through the sensitive regions within the 
memory elements. As a result of SEUs, the temporary data 
corruption and system malfunction could occur. Therefore, 
the efficient detection and cost-effective mitigation of SEUs 
in electronic systems for space applications are crucial. 

One of the main causes of SEUs in space is the Solar Par-
ticle Event (SPE) phenomenon [1]. During an SPE, a large 
number of energetic particles are emitted into space and 
this event can last from several hours up to several days. 
These energetic particles can induce SEUs either by direct 
ionization or by indirect ionization [2]. Since the particle 
flux directly determines the SEU rate of an electronic sys-
tem, based on the data obtained from past space missions 
[3][4], the SEU rate may increase hundreds to thousands of 
times during the SPE peak periods. Thus, it is important to 

track the variation in particle flux in real-time, and conse-
quently activate the suitable mitigation techniques to pro-
tect the sensitive elements in the on-board electronic sys-
tems. An example is the adaptive multiprocessing system, 
which can dynamically adapt the rad-hard modes (e.g., 
core-level triple module redundancy) or low-protection 
modes (e.g., high performance and low power consump-
tion) as the radiation conditions change [5]. 

For the detection of SPEs, various commercial or cus-
tom-designed particle detectors are use [6]. The particle de-
tectors allow for measuring the particle flux or Linear En-
ergy Transfer (LET) based on the induced soft errors. The 
most common particle detectors used in space missions are 
diode- [7] and SRAM-based detectors [8][9][10]. In addi-
tion, alternative solutions such as bulk built-in current de-
tectors [11], acoustic wave detectors [12], and 3D NAND 
flash detectors [13] can be also used. Due to the low imple-
mentation cost, SRAM-based detectors have been widely 
used in space missions. However, the main limitation of 
existing SRAM detectors is that they are mainly imple-
mented as stand-alone devices. For the self-adaptive sys-
tems, however, it is important to measure accurately the 
radiation exposure that directly affects the target system. 
Thus, the on-chip radiation detection is imperative. 

In order to achieve efficient SEU mitigation and main-
tain the functionality of the system, it is necessary to enable 
the real-time flux variations prediction, i.e., to predict the 
upcoming SPEs. In such a way, radiation protection tech-
niques can be deployed before the burst of particles during 
SPEs. In order to facilitate the SPE prediction based on real-
time SEU detection, various machine learning algorithms 
can be applied to predict SEU variations. Many works have 
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reported the use of various machine learning algorithms to 
forecast the onset and duration of SPE, as well as for the 
characterization and optimization in the rad-hard system 
design [14][15][16][17][18][19]. However, to the best of our 
knowledge, there is no much of publicly available work on 
the use of machine learning algorithms for the prediction 
of SPEs and SEUs from in-flight detected SEU data, in or-
der to facilitate the self-adaptive mechanisms in space-
borne electronic systems. 

The aim of this paper is to utilize an embedded on-chip 
SRAM-based SEU monitor, the supervised machine learn-
ing model as well as historical solar events flux data to 
forecast the in-flight SRAM SEU rate, and thus, the occur-
rence of the SPEs. The ability to predict accurately the in-
crease in the radiation levels during SPEs minimizes the 
risk that the target system would be exposed to adverse 
conditions without being sufficiently protected. 

The rest of the paper is structured as follows. Section 2 
briefly discusses the state-of-the-art and our contributions. 
Section 3 provides an overview of the proposed system. 
The historical solar events analysis procedure is detailed in 
Section 4. The training and evaluation for supervised ma-
chine learning and online learning algorithm are presented 
in Section 5. Section 6 introduces the architecture of a ded-
icated hardware accelerator. The analysis of results is de-
tailed in Section 7. Section 8 evaluates the application of the 
proposed design in the self-adaptive dependable multipro-
cessing system. This paper is concluded in Section 9. 

2 STATE-OF-THE-ART AND PAPER CONTRIBUTIONS 

2.1 Space Radiation  

The space radiation particles can be separated into two cat-
egories: particles captured by the planetary magneto-
sphere in the radiation belt and radiation particles from 
deep-space [1]. The planetary magnetic fields, such as the 
Van Allen belt around the Earth, can trap the charged par-
ticles, for example, protons, electrons and heavy ions. The 
radiation field from deep-space consists of Galactic Cosmic 
Rays (GCRs) and SPEs, which are mainly composed of 
heavy-ions and protons. GCR comes from outside the solar 
system and maybe originating from explosive events, e.g., 
the supernova explosion. The SPEs occur due to the erup-
tive phenomena in the solar corona, such as the solar flares 
and Coronal Mass Ejection (CME). 

When an SPE occurs, it can become the dominant con-
tributor to the space radiation environment.  As a result, 
the intensity of energetic protons, ions, and electrons in the 
interplanetary space can be rapidly increased. According 
to the definition from the National Oceanic and Atmos-
pheric Administration (NOAA) Space Environment Cen-
ter [20], the start of one SPE is the at least three consecutive 
five minute intervals flux data points ≥ 10 𝑐𝑚−2𝑠−1𝑠𝑟−1 of 
proton with energy ≥ 10 𝑀𝑒𝑉. In addition, the end of the 
solar event is defined as the last time the flux ≥
10 𝑐𝑚−2𝑠−1𝑠𝑟−1. SPEs may last from several hours to sev-
eral days, and could reach the peak flux within tens of 
minutes to several hours, and then slowly decay in several 
hours to several days. Moreover, the SPE peak flux could 

be two to five orders of magnitude higher than the back-
ground conditions. Thus, the SPEs could be strong enough 
to cause hazards in space applications. For example, the 
measured SEU rate of a 4k*32 bit 0.25 µm CMOS SRAM 
module in a geostationary satellite during a few SPEs is il-
lustrated in Table I [21]. The approximate value of the 
background upset rate is obtained by linear fitting to the 
monthly average data. 

 

 

2.2 Prediction of Space Radiation Effects  

In the recent past, different machine learning algorithms 
have been employed for the forecasting of space weather 
in the space missions for various purposes, such as plan-
ning spacecraft and satellite routes/manoeuvres, protect-
ing astronauts, etc. E. Camporeale et al. reviewed the cur-
rent achievements, forecasting opportunities and future 
role of machine learning in space weather [14]. In [15], H. 
M. Bain et al. applied the machine learning classification 
techniques on the existing Space Weather Prediction Cen-
ter (SWPC) statistical proton prediction model. The result 
showed that the machine learning model could make a 
much faster decision than the previous numerical models. 
A NASA-invest space intelligence system was proposed by 
A.J. Engell [16], which had the capability for the forecast-
ing of solar-driven events and provided the high fidelity as 
well as pre-to-post eruptive transitional forecasts. 

However, the SPEs could not be reliably predicted since 
the current quantitative prediction methods (e.g., [22]) re-
quire the continuous data, such as particle flux data, flare 
location, radio burst data, etc. R. Glein et al. [23] used the 
BRAMs embedded in an FPGA as the particle detector and 
counted the corresponding SEUs to determine the radia-
tion condition. In addition, by calculating the mean time 
between failures based on four measured points, the SPE 
onset can be timely detected [24], but this approach cannot 
provide fine-grained monitoring of SPE variations. 

The machine learning methods have been also used in 
the rad-hard system design, such as the optimization of the 
Soft Error Rate (SER) characterization. F. Rocha de Rosa et 
al. [17] applied the supervised and unsupervised machine 
learning techniques on the multicore system, for the pur-
posed of soft error analysis. In [18], T. Lange et al. used the 
machine learning algorithms to optimize the fault-injection 
simulation campaigns as well as evaluate the system func-
tional failure rate. S. Hirokawa et al. [19] exploited the ma-
chine learning method to facilitate soft error discrimina-
tion method, and verified the importance of the multiple 
sensitive volume method. 
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2.3 Our Contributions 

In contrast to the state-of-the-art solutions for the SPE and 
SEU prediction discussed in Section 2.2, we predict the up-
coming SPE by achieving the fine-grained SEU prediction, 
thus, forecasting the solar condition and the system relia-
bility variations. The presented paper extends our previ-
ous work [25][26] by implementing the online adjustment 
of the prediction function parameters, and enhancing the 
functionality of the hardware accelerator, which are to the 
best of our knowledge not feasible with any of the reported 
design. Additionally, we have analyzed the application of 
the proposed design in a fault-tolerance multiprocessing 
system, in order to enable the self-adaptive optimal miti-
gation techniques selection. 

Our solution supports a supervised machine learning 
model to provide a fine-grained prediction of the SRAM 
SEU rates at least 1 hour in advance. Moreover, an online 
learning method, which can further improve the predic-
tion accuracy of machine learning in real-time, is intro-
duced. The use of online adjustment allows adapting the 
system to completely unexpected situations which could 
not be predicted based on the offline training. 

A low-cost hardware accelerator is customized to exe-
cute the proposed machine learning prediction model and 
online learning algorithm. The cost and area/power over-
heads of the proposed hardware accelerator are negligible 
compared to the host SRAM. Besides that, the application 
of the proposed design in the self-adaptive fault-tolerance 
multiprocessing system is analyzed, allowing to trigger the 
optimal SEU mitigation methods under variable radiation 
conditions. 

3 SYSTEM OVERVIEW 

Our approach for the SPEs and SEUs prediction flow is il-
lustrated in Fig. 1. The basic principle is the prediction of 
the in-flight SEU count rate of an on-board SRAM-based 
SEU monitor. Therefore, the upcoming SPEs can be de-
tected from the rise of the predicted SEU rate. The main 
reason for using the prediction together with the SEU 
measurement, rather than just measuring the SEU rate, is 
to minimize the possible adverse impact of radiation on the 
system operation. Namely, if only the SEU measurement is 
employed, it may be too late to react once the SEU is de-
tected, because the monitor needs a certain time period to 
collect and process the information.  

The proposed method consists of two phases: 
Offline phase – application of historical space flux data 

(from previous space missions) to establish a suitable SEU 
prediction machine learning model. 

Online phase – measurement of the real-time in-flight 
SRAM SEU count rate, and the prediction of upcoming 
SEU changes. 

There are two main blocks in the offline phase: solar 
condition analysis and supervised machine learning. In the 
solar condition analysis block, the in-flight hourly Soft Er-
ror Rate (SEU rate) of the target SRAM during several his-
torical solar events is determined, which is discussed in 
Section 4. The collected hourly SEU rates are processed for 

training in the supervised machine learning block. Based 
on the off-line training, a suitable SEU prediction model 
can be obtained, which is described in Section 5. 

The online phase contains two main blocks: real-time 
SEU detection and hardware accelerator. The real-time 
SEU detection is performed continuously during the mis-
sion. Most existing SRAM-based monitors [8][9][10] have 
been implemented as stand-alone particle detectors. How-
ever, for the self-adaptive systems for space applications it 
is important that the particle monitor is embedded into the 
target system in order to detect the radiation conditions to 
which the target system is exposed during the mission. An 
embedded low-cost SRAM-based SEU monitor is intended 
to be used in the online phase for the real-time SEU meas-
urement [27]. It is essential to mention that the existing 
SRAM resources are utilized for SEU measurement, which 
minimized the area and power overhead.  

 

 

Fig. 1. Block diagram of the proposed prediction method. 

Using the scrubbing approach, Error Detection and Cor-
rection (EDAC) code, and the over-counting detection reg-
ister file with a dedicated detection flow [27], the proposed 
monitor can ensure accurate counting of all upsets that oc-
cur in the target SRAM, and distinguish the error type in 
each memory word. Appropriate EDAC codes can be se-
lected and implemented with the dedicated detection flow 
for the detection or correction of SEUs, Multiple-Cell Up-
sets (MCUs) and permanent faults on memory words, such 
as SEC-DED (Single Error Detection-Double Error Correc-
tion), SEC-DAEC-TAEC (Double Adjacent Error Correct-
ing-Triple Adjacent Error Correction), 3-bit burst ECC [27], 
etc. Therefore, bit errors and the corresponding error type 
in each memory word can be accurately detected. Moreo-
ver, in order to provide further protection against multi-
ple-bit errors in each memory word, we aim to apply the 
well-known interleaving technique. This technique can 
distribute the memory cells from the same word into dif-
ferent columns, so that they are physically distant from 
each other and the probability that a single particle hits 
multiple bits of the same word is drastically reduced. Thus, 
MCUs in different memory words can be corrected or de-
tected by the EDAC code, and the MCUs in the same 
memory word can also be mitigated by using the inter-
leaved SRAM technology. In these ways, the proposed 
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monitor can provide the accurate in-flight fault counting 
capability during run-time, which is essential for the fol-
lowing prediction. 

The number of detected SEUs per hour is stored and 
processed by the hardware accelerator. The hardware ac-
celerator implements the off-line trained machine learning 
model and the online learning algorithm. The online learn-
ing algorithm is used in order to enhance the accuracy of 
prediction, since the off-line training model may not take 
into account all realistic scenarios, as discussed in Section 
5.4. Therefore, the predicted SEU data can be collected and 
the improvement of the prediction accuracy can also be 
achieved during the runtime, which is detailed in Section 
6. Moreover, Triple-Module Redundant (TMR) flip-flops 
[28] are used in components of the online phase to enhance 
the robustness against radiation particles. 

The functionality of SRAM may also be affected by Sin-
gle Event Functional Interrupts (SEFIs) and Single Event 
Latchup (SEL) or micro-SEL. It is thus imperative to apply 
appropriate design measures to mitigate these effects. 
Since the SEFIs are caused by particle strikes in control 
logic, one such event may result in hundreds or thousands 
of upsets. To mitigate these effects, the control logic should 
be protected with radiation-hardening-by-design tech-
niques. We aim to investigate various selective protection 
schemes at multiple abstraction levels, such as the combi-
nation of gate-level TMR and error detection and correc-
tion. We have already conducted extensive research in re-
lation to SEL protection, and have proposed an SEL pro-
tection switch (SPS) based on inverter as an SEL sensor 
[29]. The SPS detects excessive supply current flow, as a 
key manifestation of SEL, and restarts the power to restore 
the normal operation. It has been tested on a real chip with 
around 20 000 on-chip SPS cells. Irradiation tests have 
shown that a chip with SPS is immune to SEL at a maxi-
mum tested LET of 67 MeVcm2mg-1 [29]. 

4 SOLAR CONDITION ANALYSIS  

The procedure to obtain the in-flight SEU rate from histor-
ical solar events flux data is introduced in this section. This 
procedure provides the training data for the machine 
learning block. The general steps of this process are: 

1) Historical space flux data collection; 
2) SPE energy spectra reconstruction; 
3) SRAM SEU rate estimation. 

 
4.1 Flux Data Collection 

In this study, in order to ensure that the selected solar 
events are comprehensive and representative, according to 
the statistics from NOAA [20], all 36 SPEs which affected 
the earth environment during the solar cycle 24 (2008-2019) 
are selected as analyzing target. There are several satellites 
and instruments that have continuously measured the 
space ions flux during the selected events. For the target of 
this study, satellites located close to the Earth in the helio-
sphere and outside the Earth's magnetic influence are pre-
ferred, where the additional radiation impact from geo-
magnetically trapped ions and the shield protection from 
the Earth's magnetic field can be neglected. As a result, the 

Geostationary Operational Environmental Satellite-Space 
Environment Monitor (GOES-SEM) [30] and Advanced 
Composition Explorer-Solar Isotope Spectrometer (ACE-
SIS) [31] public databases have been used for proton and 
heavy-ion flux data source, respectively. The GOES-SEM 
database has continuously provided high-quality proton 
data since 1974. The ACE-SIS database continues to pro-
vide [He, C, N, O, Ne, Na, Ma, Al, Si, S, Ar, Ca, Fe and Ni] 
flux data since 1997. 

4.2 SPE Energy Spectra Reconstruction 

The differential flux for each ion needs to be processed in 
order to obtain the energy spectrum, which is required for 
the SEU rate estimation. In this study, the target is to re-
construct the hourly average energy spectrum for the ions 
and protons, which is a total of 5107 hours for the selected 
events. The flux data obtained from online databases can-
not directly be used for the SEU rate estimation due to: (i) 
limited types of detected heavy ions, (ii) insufficient en-
ergy range, and (c) ion flux data gaps. The common ap-
proach to solve the above problems is to generate the mis-
sion flux data from composition ratios with existing flux 
information [32]. 

The CREME 96 [33] suite, which is one of the most 
widely used suites for evaluating the in-orbit SEU rate, was 
used to assist the analysis and verification in this study. 
The CREME96 SPE models (peak five minutes (P5M), 
worst week (WW), and worst day (WD)) are based on the 
corresponding average flux data of the October 1989 event, 
which is one of the largest events in past decades. 

 

  

The target SRAM in this study is the COTS SRAM from 
Cypress which is designed in 65 nm bulk CMOS technol-
ogy. In [34], a series of heavy ion and proton radiation tests 
have been carried out on the target SRAM, and the experi-
mental data has been fitted to the Weibull function, de-
fined by Eq. (1). The Weibull function is characterized by 
four parameters: the on-set parameter (𝑥0), the saturation 
cross-section (𝜎𝑠𝑎𝑡), the width parameter (W), and the di-
mensionless exponent (S). In Eq. (1), since the Weibull 
curve is used for fitting heavy-ion and proton cross-section 
data, the x represents either the LET for heavy-ions or the 
energy for protons, and 𝑥0 is the LET or energy threshold.  

There are in total four types of the SRAM cross-section 
values obtained from [34]: bit or event cross-section with 
static or dynamic operating mode, respectively. The event 
cross-section is calculated by counting the number of 
events as opposed to the number of bit flips. Whereas bit 
cross-sections allow a representation of the SEE sensitivity 
of the memory from a usage perspective looking at the out-
put of how many bits are flipped. Moreover, in the 
CREME96 HUP model, heavy-ion cross-section must be 
specified in bits for the direct ionization-induced SEU rate 
evaluation. Besides that, there is a difference in the SRAM 
cross-section depending on the operating mode (static or 
dynamic). Since the target SEU monitor does not degrade 
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the basic function of the target SRAM, the SRAM could 
work in read/write (dynamic) or idle (static) modes. After 
evaluating the static and dynamic SRAM cross-sections on 
the CREME96 SPE models, it was observed that higher 
SEU rate occurs in static mode. Therefore, as a proof of con-
cept, the SRAM radiation test result of bit cross-section in 
static mode is used in this study. The static Weibull fitting 
parameters for heavy-ion and proton bit cross-section of 
the target SRAM are shown in Table II. For heavy-ion 
cross-section parameters, the 𝜎𝑠𝑎𝑡  is in cm2/bit, the 𝑥0 
means the LETth in MeVcm2mg-1, and W is also in 
MeVcm2mg-1. For proton cross-section parameters, the 𝜎𝑠𝑎𝑡 
is in cm2/bit, the 𝑥0 means the Eth in MeV, and W is also in 
MeV. 

 

  

Since the ACE-SIS database only provides 14 types of 
heavy-ion flux data, it is important to analyze the effect of 
limited types of heavy-ions for this study. Table III de-
scribes the target SRAM SEU rate estimated for all ions 
from He (2) to U (92) and the ACE-SIS detected ions by us-
ing the CREME96 SPE models, respectively. The results 
show that in all three SPE models, the error caused by the 
incompletely detected ion type is less than 1%. Therefore, 
by only using the ACE-SIS ions for the heavy-ion-induced 
upsets analysis is accepted. However, the energy range of 
the ACE-SIS is from 5 to 150 MeV, which is quite low and 
insufficient for the following SEU rate estimations. In order 
to reconstruct a suitable energy spectrum for ACE-SIS ions 
with a proper energy range, i.e., from 1 MeV to 1 GeV, the 
first order power-law fit [35] is used to extrapolate to a 
higher energy range. Moreover, the simple moving aver-
age process was applied to evaluate the hourly fluxes date 
when the source data is invalid at some moments. 
 

 

The proton data from the GOES database has been 
available in good quality and sufficient energy range (over 
700 MeV) for the energy spectra reconstruction. In this 
study, the first-order exponential in rigidity approach is 
applied for the proton data. The mathematical fitting ex-
pression is: 

𝜑(> 𝐸) = 𝑁0𝑒−𝑅/𝑅0                              (2) 

where the 𝜑(> 𝐸)  is the integral energy fluence in pro-

ton/cm2, 𝑁0 is a normalization constant, 𝑅 is the proton ri-
gidity (proton momentum) in MV (million volts), and 𝑅0 is 
the characteristic rigidity in MV. The proton rigidity 𝑅 is 
related to the proton energy (MeV) by: 

𝑅(𝑀𝑉) = √𝐸2 + 2𝑚0𝐸                          (3) 

where the 𝐸 is the proton energy in MeV and 𝑚0is the rest 
mass of proton (938 MeV). Since the above approach fit 
performs not so well when the energy is very low, the 
power-law fit method is used when E is less than 10 MeV. 
In addition, the proton energy spectrum needs to be esti-
mated in the same range as the heavy-ion. Thus, the high 
energy range proton data (HEPAD energy channel, greater 
than 375 MeV for GOES 15) was extrapolated with the 
power-law fit. Fig. 2 shows the ACE-SIS Carbon ion and 
GOES 15 proton one-hour average flux data and the corre-
sponding fit-extrapolation obtained with respect to the 
CREME96 SPE models, respectively. The reconstructed 
hourly spectrum for March 08, 2012, 00:00, which is before 
the peak of one solar event.  

4.3 SEU Rate Estimation 

By applying the reconstructed energy spectra and the tar-
get SRAM cross-section parameters in the CREME96 suite, 
the hourly SEU rate for the selected events can be obtained. 
The device shielding is critical for space applications, thus, 
the first step is to obtain effective energy spectra after the 
shielding. Since this study was not aimed at specific space 
projects, a 100 mils of aluminum shielding was assumed, 
which is the conventional equivalent shielding thickness 
for spacecraft [34]. 

Since the heavy-ion-induced SEUs depends on the en-
ergy deposition, but not the number of hits like proton-in-
duced SEUs, the Sensitive Volume (SV) geometry is 
needed for the SEU rate estimation. The CREME96 suite 

Fig. 2. March 08, 2012, 00:00, ACE-SIS Carbon and GOES-15 
proton reconstructed hourly energy spectra with respect to the 
CREME96 SPE models, respectively. Dashed lines correspond 
to the corresponding extrapolation method flux fitting results. 
Squares correspond to the ACE-SIS hourly carbon flux. Trian-
gles correspond to the hourly proton in the GOES low energy 
detector. Circles correspond to the hourly proton in the GOES 
HEPAD detector. 
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uses the RPP model (Rectangular Parallelepiped Parallelo-
gram) [36] for direct ionization induced upset events cal-
culation, in which the bit SV is assumed to have this shape. 
Choosing the RPP thickness that conforms to the device 
cross-section direction dependence is not trivial [21]. 

 

  

Fig. 3. March 6-11, 2012 SRAM hourly SEU rate estimated from 
GOES proton database. The particle flux for all of the lower to higher 
energy channels are shown, and all channels data are with good qual-
ity. 

  

Fig. 4. March 6-11, 2012, SRAM hourly SEU rate estimated from ACE-
SIS heavy-ion database. The particle ion flux of He, C and Ni for the 
lower and higher energy channels are shown, and the data are with 
poor quality. 

For the sake of simplicity, the RPP value recommended 
by CREME96 was selected, in which lateral dimensions 𝑥 
and 𝑦  are determined as the square root of the limiting 
cross-section for each bit, and the device depth 𝑧 is 0.5 𝑢𝑚. 
The saturation cross-section can be determined from the 
Weibull fitting as illustrated in Table. II. Applying the 
above parameters in the CREME96 suit, the heavy-ion-in-
duced and proton-induced hourly SEU rate can be ob-
tained, respectively. Figs. 3 and 4 present the obtained pro-
ton-induced and heavy-ion-induced hourly SEU rate with 
respect to the corresponding ion flux from March 6 to 11, 
2012, respectively. The final hourly SEU rates for target 
SRAM during the selected events are the sum of calculated 
proton and heavy-ion induced SEU rate. 

5 SEU PREDICTION WITH MACHINE LEARNING 

This section elaborates how machine learning techniques 
can be applied for early detection of the SEU rate changes. 
The SEU prediction is intended to operate in conjunction 
with real-time in-flight SEU measurement and the ap-
proach aims to predict fine-grained SEU rate in advance by 
using the upset rates of the 𝑛ℎ last hours provided from the 

SEU monitor. Therefore, several machine learning regres-
sion models have been trained and evaluated to select the 
optimal model, which yields the best prediction accuracy. 
In addition, an online learning method is evaluated in or-
der to increase the prediction accuracy during the online 
phase. 

The regression models were selected based on a low-re-
source demand. The model training was conducted offline 
in a supervised manner by applying the estimated SEU 
data from past events. In this way, an already trained 
model can be used online to perform the prediction, which 
generally needs fewer computation resources. 

To perform the training of the machine learning models, 
first, the in-flight hourly SEU rate data acquired from his-
torical solar events are processed and transformed in order 
to be representative to actual upsets obtained from the SEU 
monitor (as described in Section 3). After, the machine 
learning regression model is trained with the transformed 
data acquired from historical solar events. Then, the accu-
racy of the trained model to predict the hourly upset rate 
is evaluated. These steps are described in detail in the fol-
lowing sections. Additionally, an algorithm is analyzed to 
perform online learning after the model is deployed. 

5.1 Pre-processing of the Data Set 

The in-flight hourly SEU rate data acquired from historical 
solar events form the test and training data set for the ma-
chine learning models. The hourly SEU rate values are ob-
tained by processing the hourly flux database, as explained 
in Section 4. The processed hourly flux data together with 
the cross-section of the target SRAM are used to calculate 
the hourly SEU rate by using the CREME96 suite. In this 
way the SEU/bit/day is obtained. Since in the actual sys-
tem, the data from the SEU monitor will be an integer rang-
ing from 0 to the size of the SRAM, the calculated 
SEU/bit/day are multiplied by the target SRAM size. In 
this study, the SRAM size of 2G bit is selected, which can 
provide enough detected SEU resolution during any solar 
events. Further, to get the hourly upset rate, the 
SEU/bit/day values are divided by 24h. Thus, the SEU 
rate per hour is obtained as it would be measured from the 
SEU monitor in the actual system. 

Most machine learning models do not perform well 
when the input data has a wide numerical range. There-
fore, a min-max scaling was applied to the data before the 
training, which scales the input data to a range from 0 to 1. 
This is archived by dividing the hourly SEU rate, obtained 
from the previous step, by the next power of two of the 
highest expected number of upsets. In this way, no actual 
division needs to be implemented in hardware since it is 
just a different representation of the input data as a fixed 
point integer.  

5.2 Model Training 

The transformed and pre-processed data is used to train 
and evaluate different machine learning regression models 
in a supervised manner. The data set was split, where 60% 
of the data was used to train the model and the remaining 
40% of the data was used to evaluate the model. In this 
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study, five well-known regression models have been ana-
lyzed: (1) Linear Regression, (2) Decision Tree Regression, 
(3) k-Nearest Neighbors Regression, (4) Multi-Layer Per-
ceptron (MLP) Neural Network and (5) Recurrent Neural 
Network (RNN) with Long Short-Term Memory (LSTM).  
The Python´s Scikit-Learn [37] and Kearas [38] frameworks 
were used to implement the above models.  

Usually, machine learning models have internal param-
eters or use internal states to adjust their algorithm and to 
perform an accurate prediction. These parameters are de-
termined and optimized based on the training data during 
the training process. In addition to the internal parameters, 
most of the machine learning models also have external pa-
rameters, which are called hyperparameters. These hy-
perparameters are often used to tune the training algo-
rithm, which determines the internal parameters. Thus, 
contrary to the internal parameters, hypermeters cannot be 
determined by the training algorithm itself. They need to 
be specified manually by the user before the training pro-
cess. In order to find the optimal set of hyperparameters of 
a model, a hyperparameter optimization has to be per-
formed. Therefore, the model is trained and evaluated sev-
eral times with different sets of hyperparameters.  

In this paper, the hyperparameters are determined by 
performing a random search coupled with grid search [39]. 
In this approach, the models are firstly evaluated with ran-
domly generated hyperparameter values. Then, a more de-
tailed grid search is performed within the region of the best 
hyperparameter values obtained by the random search. 

Besides the hyperparameters, the performance of the 
model also depends on the amount of past hourly SEU rate 
values are used for the prediction. The length 𝑛ℎ describes 
how many hours of past SEU rate values are used. Similar 
to the hyperparameter optimization, the optimal length for 
𝑛ℎ needs to be determined, thus, models were also evalu-
ated for different history length of the hourly SEU data. 

5.3 Model Evaluation  

To evaluate the prediction performance of a model, in this 
study, the root-mean-square error (RMSE) and the coeffi-
cient of determination (𝑅2) metrics are used. The RMSE de-
scribes the square root of the quadratic error of the ex-
pected values. In comparison to the mean absolute error, 
the root-mean-square error gives a higher weight to larger 
errors which are then penalized more. The 𝑅2  score is a 
combined evaluation metric which takes the RMSE and the 
variation (dispersion) of the model into account. Thus, the 
𝑅2 score provides a measure of how well future samples 
are likely to be predicted by the model. These metrics were 
calculated by comparing the test data set with the pre-
dicted test data set of the trained model.  

In order to obtain a more stable measurement, a cross-
validation strategy with a cross-validation fold of 10 was 
used. In this strategy, the data set is split into 10 different 
train and test data sets which are used to independently 
train and evaluate the models. Then, the calculated metrics 
for each independently trained and evaluated model are 
averaged over the different measurements. 

The performance of the models was evaluated for dif-
ferent length  𝑛ℎ of the past hourly SEU data, considering 

the hourly intervals between 3 ℎ and 24 ℎ. For each consid-
ered 𝑛ℎ, the above described hyperparameter optimization 
was performed, and the model performance was measured 
according to the specified metrics. Fig. 5 and 6 respectively 
show the 𝑅2 scores and RMSE for each regression model 
on different history data length. It can be seen that both the 
RNN with LSTM and the linear regression model have the 
highest accuracy, and the performance of the RNN is 
slightly better. The best performances are obtained with a 
past hourly SEU data  𝑛ℎ of 14 for the RNN and 17 for the 
linear regression model. 

 

 

Fig. 5. 𝑅2 scores (higher the better) for the selected regression mod-

els with varying history data length nh. 

 

 

Fig. 6. RMSE (lower the better) for the selected regression models 

with varying history data length nh. 

 
Although the RNN with LSTM model has slightly better 

performance, the main advantages of the linear regression 
model is that it is much simpler and requires significantly 
fewer resources [40]. Hence, the linear regression model 
has been chosen as the best option for the hardware accel-
erator, which is detailed in Section 6.  

It is worth mentioning that the current prediction for 
one-hour in advance is a case study, which is consistent 
with the recommended fault detection period of the target 
SRAM-based SEU monitor [27] and the resolution of his-
torical space flux data from public databases (as shown in 
Fig. 2, the hourly average flux data are used for energy 
spectra reconstruction). Estimation and verification of the 
prediction for several hours in advance will be addressed 
in our future work, and for that purpose additional in-
flight data could be required. 

Moreover, due to the fact that an SPE phenomenon is an 
explosive event, the change of space radiation intensity is 
abrupt. Therefore, the first SEU instance after the event ex-
plosive cannot be accurately predicted only from the de-
tected background SEU data. According to our analysis of 
all the SPEs in solar cycle 24, the target SRAM SEU rates 
for the first detected instance after solar event explosive is 
usually 1.5~6 times higher than the background condition, 
which is usually less than the recommended self-adaptive 
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mode trigger thresholds, which we introduce in Section 8. 
In addition, the dependable system would not operate 
without any protection even at low radiation levels. After 
detecting the first instance after the event explosive, the 
proposed one-hour in advance prediction allows to contin-
uously and accurately estimate the forthcoming SEUs. 
Therefore, the proposed prediction method is suitable for 
timely adapting the system to the changing environment 
before the onset of high radiation levels. 

5.4 Online Parameter Adjustment 

 

 

Fig. 7. Block diagram of the proposed online SEU prediction function 
parameter adjustment procedure. 

Since the offline trained machine learning model was ob-
tained according to the historical ion flux data, the pro-
posed model may not perfectly fit the real working envi-
ronment and could not adapt to a changing environment. 
For example, in deep-space mission the radiation exposure 
levels may vary significantly from the SPE levels available 
in databases used for off-line training. In addition, the SPE 
databases are available only for a number of possible sat-
ellite orbits. Furthermore, the intensity of new SPEs may 
vary considerably from the data used for training. There-
fore, the online learning method is needed to improve the 
existing offline trained model through learning from the 
data obtained in the actual working environment. The 
online learning is good for systems that receive data as a 
continuous flow and is based on learning autonomously 
and incrementally from a stream of incoming data. Each 
learning step is fast and cheap compared to the offline 
training, thus, the system can learn about the new data on 
the fly. 

In Fig. 7, the online learning process in this study is il-
lustrated. The SEU monitor can perform real-time SEU 
data detection during the online phase. Therefore, the 
online system can be trained incrementally by feeding the 
detected SEU data from the monitor and predicted SEU 
data from the prediction model sequentially. Thus, the pa-
rameters of the offline trained prediction model can be con-
tinuously optimized in real-time, thereby, adapt to the 
changing operating environment. 

In this study, the widely used online learning algorithm, 
Stochastic Gradient Descent (SGD), is used to update the 
parameters of the selected linear regression model. The 
SGD performs the gradient descend on a single instance, 
which is the predicted SEU and the corresponding de-
tected SEU data pair, for each training step. Since very little 
data is to be manipulated, the SGD algorithm makes the 
training process very fast. Moreover, only one training in-
stance data needs to be stored in memory at each iteration, 
which is one of the main reason for the selection of SGD 
algorithm. For a more detailed SGD description sees [41] 
for example. 

In order to evaluate the SGD online learning perfor-
mance, the data set used in the offline training was re-used 
here. The data set was randomly split, where 50% was used 
to get the initial linear regression offline training model, 30% 
of the data was used for online learning training and the 
remaining 20% of the data was used for online learning 
performance validation. The parameters in the initial lin-
ear regression model are the cornerstone of further optimi-
zation. The SGD algorithm optimizes the initial model 
based on the online learning training data set, 1668 in-
stance in this study. The algorithm detail and implementa-
tion of SGD in this study are described in detail in Section 
6.2. After the SGD performs computing on a single instance 
each time, the new parameters would be generated and 
updated to the linear regression SEU prediction model. Af-
ter learning of each instance, the evaluation is performed 
in the same approach as described in Section 5.3. 

 

 

Fig. 8. 𝑅2  score for the online learning evaluation on the data set. 

Since only one instance at each online learning step is 
used, the SGD algorithm is much less regular than the 
other gradient descent approaches. The cost function of the 
SGD always bounces up and down and decreasing only on 
average. Fig. 8 presents the performance in terms of the 𝑅2 
score for the SGD training instances on the test data set. It 
can be noticed that as more instances are processed, de-
spite the evaluation results scores are bounce up and 
down, the overall prediction performance has been im-
proved. On the other hand, the other important parameter 
for SGD online learning is the learning rate, which decides 
the step size at each training step when calculating the de-
scent. If we set the learning rate too small, the optimization 
process would be slow, while if we choose it too big, the 
optimization process will be oscillating or cannot even per-
form the optimization. In this example, a small learning 
rate is selected, which makes the small variation of scores 
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for each instance. The detail of selecting the suitable learn-
ing rate in this study is described in Section 7.2. 

The above evaluation shows that the online learning al-
gorithm can gradually improve the prediction accuracy 
when the online working environment is consistent with 
the offline analysis environment. In Section 7.2, the online 
learning application of the other two scenarios are ana-
lyzed: when offline flux data are not available, applying 
online learning directly forms a prediction function from 
scratch; when the online working environment is not the 
same as the offline analysis hypothesis, using the online 
learning to improve the prediction equation. 

6 HARDWARE ACCELERATOR IMPLEMENTATION 

The hardware accelerator implements the machine learning 
algorithm based on the linear regression model and the online 
learning algorithm based on the SGD. The proposed design is 
intended to collaborate with an SRAM-based SEU monitor, 
and the offline-trained results from the linear regression 
model. Fig. 9 presents the architecture of the proposed hard-
ware accelerator design as well as the connection with collab-
oration models. Two register files record the detection of real-
time hourly SEU data from the monitor and the linear regres-
sion training parameters for the SEU data prediction. An ac-
cumulator is used to implement the required calculation. The 
control logic selects the inputs and the functionality of the ac-
cumulator as well as the updating of the parameter register 
file. The right shifter processes the pro-extended data, such as 
the pre-calculated SEU data from the accumulator to obtain 
the actual predicted SEU data. 
 

 

Fig. 9. Proposed hardware accelerator design with interface to exter-
nal logic. 

The calculation flowchart of the hardware accelerator is 
presented in Fig. 10.  It contains two main stages: SEU pre-
diction and the online model parameter adjustment. The 
two stages are used to implement the selected linear re-
gression module and the SGD algorithm and are explained 
in following subsections, respectively. 

6.1 Single Event Upset Prediction 

Based on the results from Section 5.3, the best accuracy of the 

SEU prediction can be obtained when the history data length 
of 17 is used. Therefore, the corresponding prediction func-
tion for the target SRAM, in this case, can be expressed as: 

SEUpred_accx10.0868 * x2 + (-1.1946) * x3 + 
1.0308 * x4 + 0.1016 * x5 + (-0.9142) * x6 + 0.8201 * x7 + (-
0.0178) * x8 + (-0.6824) * x9 + 0.6575 * x10 + (-0.0204) * x11 
+ (-0.4687) * x12+ 0.4181 * x13 + (-0.0271) * x14 + (-0.2207) 
* x15+ 0. 1815 * x16 + (-0.0732) * x17 

The coefficients of Eq. (4) are obtained from the trained 
linear regression machine learning model. The 𝑥𝑛 in Eq. (4) 
stands for the detected hourly SEU number from the mon-
itor in 𝑛 hours ago. Thus, the above prediction function 
can start to predict after the monitor consecutively works 
and records the first 17 hours of data. Since this design is 
intended to be used as an embedded part of the space-
borne system, simplicity and flexibility are among the most 
important concerns. Thus, to avoid floating-point calcula-
tion and reduce the hardware complexity, the coefficients 
in Eq. (4) are magnified by 2𝑛 times and only taking the in-
teger part to simplify the equation. The magnification fac-
tor needs to ensure that the new prediction equation in-
duced accuracy variation is less than 1%. In this study, the 
magnification factor 32 is used, and the corresponding pre-
diction function is as follow: 

SEUpred_acc_32 x13 * x2 + (-38) * x3 + 33 * x4 + 3 * 
x5 + (-29) * x6 + 26 * x7 + (-1) * x8 + (-22) * x9 + 21 * x10 + 
(-1) * x11 + (-15) * x12+ 13 * x13 + (-1) * x14 + (-7) * x15+ 6 * 
x16 + (-2) * x17  

Two 32*21-bit address register files are used for logging 
the historical SEU data and prediction function coefficients, 
respectively. Regarding the historical SEU data register file, 
a single 21-bit entry consists of a valid entry bit, and a 20-
bit representing the number of detected upsets. According 
to the historical solar events analysis for the solar cycle 24, 
which is introduced in Section 4, the peak value for the 
hourly upsets count of the target SRAM is 118122 up-
sets/hour/2Gbit. Therefore, the size of the selected regis-
ter file can guarantee regular data storage even during 
large SPE peak fluxes. Moreover, up to 32 historical hourly 
upsets records can be thus stored simultaneously. If the 
register file overflows, the oldest individual record will be 
automatically discarded. For the coefficients register file, 
the contents are loaded during the system setup and up-
dated after the online parameter adjustment procedure, 

Fig. 10. Decision flowchart for the hardware accelerator. 
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which is described in Section 6.2. After being magnified, as 
shown in Eq. (5), the coefficients are stored in each row, 
separately.  

The accumulator performs repeated addition calcula-
tions, thus implementing the multiplication operation in 
prediction function. Therefore, a much longer calculation 
time that the traditional multiplier is expected. In this 
study, for Eq. (5), a total of 262 clock cycles is needed in the 
accumulator. Therefore, the minimum required time for 
the calculation of Eq. (5) is 5.24 µs when the working fre-
quency is 50 MHz. As the historical SEU data register file 
is updated on the hourly basis (i.e. the calculation is re-
quired only once every hour), the calculation speed for the 
accumulator is sufficient for the analyzed application. The 
accumulator contains a 32-bit full adder, one two´s com-
plement number converter and a 32-bit register. The regis-
ter keeps the intermediate arithmetic result from the adder. 
The inputs for adder are the selected 𝑥𝑛 and previous re-
sults from the register. Moreover, the selected 𝑥𝑛 is con-
verted to the two´s complement form when the corre-
sponding coefficient identifies a subtraction operation. 
Considering the calculation in practical applications, the 
overflow is not expected. 

The control logic processes the coefficients in order to 
select the appropriate 𝑥𝑛  for accumulator, and to deter-
mine the number of repetitions in SEU prediction mode. 
The right shifter is used to shrink the calculation result 
based on the previous magnified factor, which is 5-bit right 
shift for Eq. (5).  

6.2 Online Parameter Adjustment 

The SGD algorithm is implemented here to update the SEU 
prediction model parameters, thus, adapt to the changing 
working environment. Due to the simplicity and low-cost 
purpose of the design, the implementation of the SGD al-

gorithm reuses the sa me hardware design as the SEU pre-
diction work, but with new control logic in the current op-
eration mode. When activated, after a new detected hourly 
SEU data is received, the online parameter adjustment is 
performed automatically. 

According to the SGD algorithm, the update of each pa-
rameter 𝐶𝑜𝑒𝑓𝑗 in the prediction function is based on the fol-

lowing equation: 

                         𝐶𝑜𝑒𝑓𝑗 ∶= 𝐶𝑜𝑒𝑓𝑗 − α
∂𝒥(θ)

∂𝐶𝑜𝑒𝑓𝑗
                                 (6) 

where the α is the learning rate and the 
∂𝒥(θ)

∂𝐶𝑜𝑒𝑓𝑗
 is the gradi-

ent of the cost function with regrad to the model parame-
ter 𝐶𝑜𝑒𝑓𝑗 . For the SEU prediction Eq. (5), the corresponding 

learning rate is set to 0.02, thus, in order to avoid dealing 

with the floating-point data, the magnified by 2𝑛 times for 

the learning rate is required. In this study, the magnifica-

tion factor 256 for the learning rate is selected. Regarding 

the partial derivative function  
∂𝒥(θ)

∂𝐶𝑜𝑒𝑓𝑗
 : 

                      
∂𝒥(θ)

  ∂𝐶𝑜𝑒𝑓𝑗
=

∂(ℎ(𝑥)−𝑦)2

∂𝐶𝑜𝑒𝑓𝑗
= 2(ℎ(𝑥) − 𝑦)𝑥𝑗                (7) 

where the  ℎ(𝑥) denotes the predicted SEU data from the 

selected prediction function, 𝑦 is the detected correspond-
ing SEU data and 𝑥𝑗  stands for the detected hourly SEU 

data from the monitor in 𝑗 hours ago. Due to the limitation 

of hardware resources, the online updating of one predic-
tion function parameter 𝐶𝑜𝑒𝑓𝑗 is broken down into the fol-

lowing steps: 

1) Calculate the error between predicted and ob-

served SEU values 𝐸, 𝐸 = ℎ(𝑥) − 𝑦; 

2) Obtain the corresponding gradient of cost func-
tion 𝐺𝑗, 𝐺𝑗 = 2 ∗ E ∗  𝑥𝑗; 

3) Multiply by the learning rate,  𝐿𝑗 = α ∗ 𝐺𝑗; 

4) Update the 𝐶𝑜𝑒𝑓𝑗,  𝐶𝑜𝑒𝑓𝑗 ∶=  𝐶𝑜𝑒𝑓𝑗 −    𝐿𝑗. 

In order to update all parameters, i.e. for Eq. (5), the above 

Fig. 11. Hardware accelerator SEU prediction performance for 2Gbit and 4 Mbit SRAM during large and small SPEs, respectively. The 

equation (5) is the prediction function with history data length 17 and magnification factor 32. The equation (9) represents the prediction 

with history data length 4 and magnification factor 1024.   
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steps need to be repeated 17 times. All required calcula-

tions are performed by the repeated addition/subtraction 

in the accumulator and shift register. The overall calcula-
tion time greatly depends on the size of 𝑥𝑗 in step 2). How-

ever, even if all 𝑥𝑗 reaches the maximum number, 118122 

upsets/hour/2Gbit, the required clock cycle to perform all 

the calculations is less than 3 M cycles, which corresponds 

to 0.06 s when the working frequency is 50 MHz. Although 

the online parameter adjustment requires much longer 

time than the forecast of SEU, it is still appropriate for this 

study since the calculation is only needed to perform once 

an hour. 

7 ANALYSIS OF RESULTS 

7.1 Prediction Performance Analysis 

In this section, the impact of SRAM size and history data 
size for the SEU prediction performance are analyzed. The 
analysis in Section 6 was done for a large size SRAM with 
a size of 2 Gbit and with the history data length of 17. How-
ever, many embedded systems do not have the multi-Gbit 
SRAM resources, but rather much smaller internal SRAM 
with the size from several Mbit to tens of Mbit. In such a 
case, the small detection area of the SRAM may not pro-
vide sufficient sensitivity, and it is necessary to evaluate 
the optimal SRAM size that is required for particle detec-
tion. Moreover, the selection of history data length of 17 
means the prediction cannot be done for the first 17 hours, 
which may be too long for some scenarios where faster pre-
diction is required. According to the history data length 
analysis in Section 6, length 4 also has an excellent 𝑅2 score 
with a slightly worse RMSE performance. For this case, the 
prediction equation is: 

 
SEUpred_fast  = 1.1939 * x1 + 0.1105 * x2 + (-0.7789) * x3 + 

0.4478 * x4             

The magnification factor 1024 is used for the above func-
tion, thus, the corresponding function implemented in 
hardware accelerator is:  
 
SEUpred_fast_1024  = (1223 * x1 + 113 * x2 + (-798) * x3 + 459 * 

x4) / 210                            

In Fig. 11, the hardware accelerator SEU prediction per-

formance based on functions (5) and (9), for 2 Gbit and 4 

Mbit SRAMs, during large and small SPEs, is illustrated. 

The SEU rate for the 4 Mbit SRAM was determined by scal-

ing the SEU rate for 2 Gbit, i.e. the scaling factor is deter-

mined as the size ratio of the two SRAMs. This approach is 

adopted because the SEU rate is roughly proportional to 

the SRAM produced in the same technology and using the 

same bit-cell architectures [42]. However, it is important to 

mention that this is a rough approximation because the 

cross-section may differ among different SRAMs. In order 

to facilitate the comparison of the evaluation scores, the 

RMSE scores in Fig. 11 are scaled with the corresponding 

SRAM size. 

It can be seen that functions (5) and (9) can predict the 

SEU variation fairly accurately for the small and large SPEs 

with 2 Gbit SRAM. However, in the case of 4 Mbit SRAM, 

only the large SPE can be observed. Neither of these equa-

tions can provide sufficient accuracy during a small SPE. 

The main reason is that the SEU monitor with 4 Mbit 

SRAM does not have sufficient resolution to provide valid 

SEU data for prediction during the SPE on-set period. 

 

 
Fig. 12. Hardware accelerator SEU prediction performance for 20 Mbit 

SRAM during a small SPE on Mar 08, 2011. 

 

In Fig. 12, the prediction performance for 20 Mbit SRAM 

during the same small SPE as previous is shown. It can be 

observed that the 20 Mbit SRAM can predict the small SPEs. 

In addition, due to not considering too much historical 

SEU data with low resolution, the function (9) has a better 

prediction performance than function (5). In order to get a 

smoother prediction curve than in Fig. 12 and thus ensure 

good quality of SPE prediction, a larger SRAM area needs 

to be used. In addition, in order to ensure the sensitivity to 

small variations of space flux, thus, solar condition 

changes can be accurately detected. We recommend that 

the SRAM size can guarantee to detect at least one SEU per 

hour under the background condition. For the target 

SRAM, the size of 35 Mbit is recommended for online real-

time detection. 

7.2 Online Learning Performance Analysis 

For the online learning process, the learning rate is a criti-
cal parameter for the SGD algorithm which determines 
how fast the system adapts to the changing data. The high 
learning rate allows the system to quickly adapt to new in-
puts. However, an excessively high learning rate may in-
duce the system to quickly forget the old data, which may 
reduce the accuracy. Conversely, a low learning rate makes 
the system less sensitive to changes in new data. Thus, it is 
necessary to evaluate an appropriate learning rate for the 
online parameter adjustment. Moreover, applying online 
learning to obtain the SEU prediction function from scratch 
is also analyzed, which is important when the offline train-
ing data is not available, such as in deep-space missions. In 
addition, since the online environment may be inconsistent 
with the offline analysis hypothesis, the prediction optimi-
zation from online learning has also been analyzed. 

Fig. 13 presents the gradient descent with the contour 

plot of the online learning cost function with respect to the 

SEU prediction coefficients Coef1 and Coef3, which are the 

two most weighted coefficients in the prediction function, 
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regarding the different learning rates. The RMSE cost func-

tion was used to perform the analysis. The numbers on the 

contour line stand for the expected RMSE prediction error 

with the corresponding coefficients, thus, the smaller the 

better for the model performance. Four online adjustments 

with different learning rates were performed, and all of 

them have the same starting point, where Coef1 is 1.11154 

and Coef3 is -0.88478. 

It can be found that as the online adjustment progresses, 

although there will be fluctuations, the prediction errors in 

Fig. 13 (a) and (b) are steadily decreasing. However, as the 

learning rate increases in Fig. 13 (c) and (d), the online ad-

justment could cause a large prediction error, which in-

duces the cliff drop in the prediction performance. The 

main reason is that a large learning rate may cause abnor-

mal data to have an excessive impact on prediction perfor-

mance. In addition, the online learning is based on the re-

sults from offline training, thus, a small learning rate is 

more suitable in this study. However, a too-small learning 

rate could cause a much longer time to adapt to the new 

working environment. Thereby, the learning rate of 0.02 is 

selected in this study. 

Since the SGD algorithm supports the learning from the 

new data on the fly, the training approach to abandon of-

fline learning and directly applying online learning to form 

a prediction function from scratch is possible. In Fig. 14, 

the prediction performance with the online learning on 

several amounts of instances for 2 Gbit SRAM is illustrated. 

The training starts from a linear regression model in which 

all the coefficients are set to 0. With constant inputs of de-

tected SEU data, the SGD algorithm is used to update co-

efficients. In this example, it shows that after the SGD al-

gorithm takes about 1000 instances, a relatively well-per-

forming SEU prediction equation can be obtained. Due to 

the requirement of quickly adapting to a new environment, 

a high learning rate is expected in the initial stage. How-

ever, as the prediction error continues to decrease, the 

gradually reduce learning rate should perform. Moreover, 

since the SPE phenomena don't occur frequently, the 

purely online learning process from scratch could take a 

long time to achieve a good prediction accuracy for space 

applications. 

The offline training is based on a limited data set and 

certain parameter assumptions, with may not be the same 

as the online condition. Thus, in the actual application, 

there are many other possible reasons that would affect the 

accuracy of the offline algorithm, such as the actual shield-

ing parameter, changing of the satellite orbits, variation of 

solar cycles, etc. For example, during the offline data set 

collection phase in Section 4.3, 100 mils of aluminum 

shielding were assumed. However, the actual shielding 

parameters may not be the same. In order to analyze the 

shielding impacts, a new data set has been collected as the 

same approach in Section 4, but with a new aluminum 

shielding parameter, 10 mm (394 mils), which is used in 

[32]. The prediction function Eq. (5) and the online learning 

algorithm are used to evaluate the new data set. Fig. 15 

shows the new data validation results, and the trained 0 

instance means the prediction performance when only 

uses Eq. (5) for the new data set evaluation. The results 

Fig. 13. The gradient descent with contour plot respect to the 
Coef1 and Coef3 under the different learning rate. 

 

Fig. 14. The prediction performance for online learning from 

scratch. 

Fig. 15. The prediction performance for online learning optimizes 

the offline prediction function on the new data set. 
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show that the prediction based on Eq. (5) has a decline dur-

ing the SPE peak period, and with the online learning as-

sistance, the forecast results can be gradually improved. 

Detailed analysis of the performance of online learning in 

the various environments will be our future work, such as 

with different orbits, solar cycles, offline analysis parame-

ters, etc. 

 

7.3 Synthesis Results 

As the overall idea is to implement the SRAM monitor and 

hardware accelerator together with the target system on a 

single chip, it is necessary to investigate the introduced 

power and area overhead. The synthesis results presented 

in this Section have been obtained for the IHP’s 130 nm 

bulk CMOS technology with the supply voltage of 1.2V, 

and the operating frequency of 50 MHz. Although the syn-

thesis analysis in this section uses different technology 

than the analyzed SRAM, the results are of significant 

value for hardware consumption comparison because the 

proposed design is general and can be implemented in dif-

ferent technologies. The choice of the target technology 

will define the SRAM’s cross-section which is obtained 

from irradiation experiments. 

 

 
 

In Table IV, the total area and power consumption for 

20 Mbit SRAM, SEU monitor and proposed hardware ac-

celerator are given. Although the power consumption of 

the proposed hardware accelerator design are about 18 

times larger than that of SEU monitor, compared with 20 

Mbit SRAM, the induced area and power consumption are 

only 4.55% and 0.95%, respectively. Moreover, regarding 

the hardware accelerator, two 32*21-bit address register 

files are one of the main contributors to the area consump-

tion, which can be reduced in the real case. Besides that, 

the power consumption for the proposed design is the pes-

simistic estimation which supposes it always keeps run-

ning. However, the hardware accelerator is only expected 

to perform once an hour, thus, the actual power consump-

tion would be much lower. Thus, these results indicate that 

the cost and overhead for the hardware accelerator are 

negligible compared to the host SRAM. 

8 APPLICATION OF THE PROPOSED DESIGN 

The proposed design is for the highly dependable and self-
adaptive multiprocessing systems employed in space ap-
plications, which aims to achieve the trade-off between re-
liability, power consumption and performance. Due to the 

inherent hardware redundancy in the multiprocessing sys-
tems, the reconfigurable/dynamic mechanisms are con-
venient for deployment, such as the core-level N-Module 
Redundancy (NMR), dynamic voltage frequency scaling, 
dynamic task scheduling, etc. The proposed design can be 
used for the prediction of the changes in harsh radiation 
environments. As a result, the optimal operating modes 
can be selected according to the radiation condition and 
the reliability requirements. 
 

 
Fig. 16. Decision flow for the optimal operation mode selection. 

In Fig. 16, the decision flow for the optimal operating 

mode selection from the proposed design is illustrated. 

The proposed decision flow is intended to be used in the 

self-adaptive platform and contains three main phases: 

real-time detection, design-phase analysis and real-time 

mode selection. The goal is to guarantee the reliability of 

the self-adaptive multiprocessing system. Our proposed 

design works in the detection phase, which provides the 

in-flight predicted hourly SEU data.   

With the information on the cross-section of SRAM de-

tector, obtained through the irradiation experiment, the 

predicted particle flux φPRED in the following time period T 

(T = 1 hour) can be computed as,  

                                    𝜑𝑃𝑅𝐸𝐷 =
𝑆𝐸𝑈𝑃𝑅𝐸𝐷

𝜎𝑆𝑅𝐴𝑀 × 𝑇
                                (10) 

where 𝑆𝐸𝑈𝑃𝑅𝐸𝐷  is the predicted number of upsets in the 

target SRAM in the following hour and 𝜎𝑆𝑅𝐴𝑀 is the cross-

section of the target SRAM and 𝜑𝑃𝑅𝐸𝐷 is in particle/cm2. 
In the analysis phase, the system failure rate 𝜆𝑠 and re-

liability function  𝑅𝑠(𝑡) of the target system are computed. 
The failure rate of the target system depends on the design, 
operating conditions and particle flux. In terms of operat-
ing conditions, the clock frequency and supply voltage af-
fect the failure rate. Higher supply voltage decreases the 
failure rate due to higher robustness to particle strikes, 
while higher frequency increases the failure rate due to 
higher error latching probability. If the system is tested un-
der a predefined nominal flux 𝜑𝑁𝑂𝑀, clock frequency 𝑓 and 
supply voltage 𝑉𝐷𝐷, the system failure rate under the pre-
dicted flux 𝜑𝑃𝑅𝐸𝐷 can be calculated as,  

                           𝜆𝑠_𝑆𝑌𝑆 =
𝜑𝑃𝑅𝐸𝐷

𝜑𝑁𝑂𝑀

× 𝜆𝑠_𝑁𝑂𝑀(𝑓, 𝑉𝐷𝐷)                  (11) 

 
where 𝜆𝑠_𝑁𝑂𝑀(𝑓, 𝑉𝐷𝐷)  denotes the nominal system failure 
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rate for a given frequency and supply voltage. The nominal 

failure rate can be determined either from irradiation ex-

periments or by simulation/analytical evaluation. If the 

nominal failure rate is obtained for different operating con-

ditions, a look-up table can be used to store these values 

and the table readout can be employed to obtain the appro-

priate value for each operating mode. 

For the sake of simplicity, the system failure rate can be 
denoted as 𝜆𝑠 , i.e. 𝜆𝑠 = 𝜆𝑠_𝑆𝑌𝑆. Assuming that the system re-

liability decreases exponentially over time 𝑡, the system re-

liability function 𝑅𝑠(𝑡) can be expressed as: 

 

                                        𝑅𝑠(𝑡) =  e−𝜆𝑠t                                 (12) 

The optimal operation mode should be determined in 
the selection phase from the system reliability require-
ments and the available reconfigurable mechanisms dur-
ing run-time. The IEC 61508 standard [43] proposes four 
Safety Integrity Levels (SIL), SIL 4 being the most depend-
able and SIL 1 the least, and is commonly referred by high-
reliability systems such as space applications. The Proba-
bility of Failures per Hour (PFH) requirements is deter-
mined for different SIL levels1. The PFH of the system can 
be calculated by [44]: 

     𝑃𝐹𝐻𝑠 =  1 −  𝑅𝑠(𝑡)    with  𝑡 = 1ℎ                (13) 

Therefore, from the above equations, the mapping rela-
tionship between the 𝑆𝐸𝑈𝑃𝑅𝐸𝐷  and  𝑃𝐹𝐻𝑠 can be estab-
lished, thereby, determining the real-time system SIL 
based on the radiation condition. As a case study, the pro-
posed design can be integrated into a 4-core multipro-
cessing system which supports the core-level NMR mitiga-
tion technique [5]. Three operating modes are performed 
in the multiprocessing system:  

1) De-stress mode. Three of the cores are powered 
off and one core is active. Thus, one core system 
reliability function is: 

𝑅𝑐𝑜𝑟𝑒(𝑡) =  e−𝜆𝑐t                             (14) 

2) Fault-tolerance mode. Two, three or all four cores 
simultaneously execute the same program in a 
Dual, Triple or Quadruple Modular Redundant 
(DMR, TMR or QMR) configuration, respectively. 
According to [45], the corresponding reliability 
functions are: 

                        𝑅𝐷𝑀𝑅(𝑡) =  e−2𝜆𝑐t                                  (15) 
                            𝑅𝑇𝑀𝑅(𝑡) =  3e−2𝜆𝑐t −  2e−3𝜆𝑐t                 (16) 
                            𝑅𝑄𝑀𝑅(𝑡) =  4e−3𝜆𝑐t −  3e−4𝜆𝑐t                 (17) 

3) High-performance mode. All cores execute differ-
ent tasks, and the reliability function for each core 
is equal to Eq. (14). 

By adjusting the "redundancy" and "power-off" states of 
the processing cores to switch operation modes, the system 

reliability and performance can be dynamically custom-
ized. Regarding the radiation-induced transient faults: the 
DMR enables fault detection at the module output but can-
not reduce the system PFH; the TMR can mask one core 
error and support the decrease of system PFH; the QMR 
can mask up to two core errors simultaneously, thus, po-
tentially to further attenuation the system PFH. 
 

 
 
From the predicted in-flight SRAM SEU, the system 

PFH can be finally calculated in real-time. Therefore, ac-
cording to a required SIL level, when the current PFH 
value exceeds an operation mode-specific threshold dur-
ing the run-time, the system can load the operation mode 
autonomously. As an example, table V presents the con-
nection between the predicted SRAM SEU rate and the dif-
ferent operating modes as well as the average hours for 
corresponding SEU rates in one year average. The SEU rate 
classification is determined from the published empirical 
results as seen in Table I, and the accurate SEU rate classi-
fication for the mode selection in the target multipro-
cessing system will be our future work. The average SEU 
rate duration time in one year is the merging of SEU rates 
under different solar conditions into a one-year average, 
detailed in [23]. 

 

 
 
In addition to triggering the on-demand operating 

mode, the proposed self-adaptive mode switching ap-

proach can also effectively reduce the power consumption 

of the target multiprocessing system. Table VI illustrates 

the power consumption comparison in one year of differ-

ent operating modes for the target system. The cumulative 

core energy per year for the self-adaptive mode switching 
can be calculated as 𝑃𝑦𝑒𝑎𝑟 = 5460𝜌 + 2 ∗ 3120𝜌 + 3 ∗

162𝜌 + 4 ∗ 18𝜌 = 12258𝜌 , where 𝜌  expresses the energy 

consumption of one core per hour. Comparing with the 

fault-tolerance modes which have the same performance 

1SIL 1: PFH=10-5 ~ 10-6 ; SIL 2: PFH=10-6 ~ 10-7 ; SIL 3: PFH=10-7 ~ 10-8 ;  

 SIL 4: PFH=10-8 ~ 10-9 
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with the self-adaptive model switching, the power con-

sumption of the proposed approach is even lower than the 

DMR mode. 

9 CONCLUSION 

In this work, an approach for the in-flight SEU prediction 
of the SRAM-based SEU monitor system in space-borne 
electronic systems is proposed. Thus, the upcoming flux 
variation, and the corresponding SPE, can be predicted 
from the rise of SEU count rate at least one hour in advance. 
The fine-grained hourly tracking of the SEU variations 
during the SPE, as well as under normal conditions, is sup-
ported. Moreover, the optimization of the prediction func-
tion during run-time is realized, thus, the prediction sys-
tem can adapt to the changing environment. The proposed 
concept combines the embedded SRAM-based particle de-
tector for online SEU detection, the supervised machine 
learning prediction model offline trained with the public 
flux database obtained from past space missions as well as 
the online optimization algorithm. A dedicated low-cost 
hardware accelerator for implementing the prediction and 
online learning system has been proposed, which is in-
tended to support the self-adaptive optimal model selec-
tion in the multiprocessing systems. Our analysis has 
shown that the proposed system has an outstanding pre-
diction accuracy for the analyzed application and with a 
negligible cost. 

A number of open issues have still to be addressed in 
our future work. Firstly, the prediction accuracy can be fur-
ther improved, such as providing the real-time measure-
ment of particle LET which can be used as an additional 
input parameter for the machine learning algorithm. Fur-
thermore, the integration of the proposed prediction sys-
tem in a self-adaptive multiprocessing system, and verifi-
cation with irradiation experiments, will be performed. 
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