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ABSTRACT
Motivation: The interpretation of gene interaction in biological
networks, generates the need for a meaningful ranking of network
elements. Classical centrality analysis ranks network elements
according to their importance but may fail to reflect the power of each
gene in interaction with the others.
Results: We introduce a new approach using coalitional games to
evaluate the centrality of genes in networks keeping into account
genes interactions. The Shapley value for coalitional games is used to
express the power of each gene in interaction with the others and to
stress the centrality of certain hub genes in the regulation of biological
pathways of interest. The main advantage of games on interaction
networks, with respect to previous applications of game theory to
gene expression analysis, is a finer resolution of the gene interaction
investigated in the model, which is based on pair-wise relationships
of genes in the network. In addition, the new approach allows for the
integration of a priori knowledge about genes playing a key function
on a certain biological process.

An approximation method for practical computation on large
biological networks, together with a comparison with other centrality
measures, is also presented.
Contact: Stefano.MORETTI@dauphine.fr

1 INTRODUCTION
Gene expression data may be collected by means of microarray
technology (Golub et al. (1999); Parmigiani et al. (2003)). Within
a single experiment of this sophisticated technology, the level of
expression of thousands of genes is estimated in a sample of cells
under given conditions (genetic diseases, environmental exposition,
pharmacologic treatment, levels of activation of a given pathway
of genes etc.). Several approaches have been proposed to identify
“central” genes of different biological pathways within the huge
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amount of information provided by this technology (Amaratunga
and Cabrera (2004); Tusher et al. (2001); Storey and Tibshirani
(2003)).

Gene co-expression networks (Zhang and Horvath (2005))
and other biological networks (e.g. representing protein-protein
interactions) are increasingly used to explore the system-level
functionality of genes and proteins (Carlson et al. (2006);
Jeong et al. (2001)). Co-expression networks, for instance,
are connection situations based upon the extent of correlation
between pairs of genes across a gene expression dataset. Nodes are
genes and connections are defined by co-expression of two genes.
Often, the Pearson correlation coefficient is the initial measure
of gene co-expression. This measure is then transformed into
an adjacency matrix, according to different alternative statistical
procedures (Zhang and Horvath (2005); Carlson et al. (2006)).
Depending on the aims of the study, weighted or un-weighted
networks, generated by the dichotomization of the corresponding
correlation matrix, may be considered. The need of interpreting
gene interaction in co-expression networks requires the ranking
of network elements. Centrality analysis ranks single elements
according to their importance within the network structure, and
different measures of centrality focus on various aspects of the
structure of a network (Mason and Verwoerd (2007); Junker et al.
(2006)), e.g., most central elements of protein networks were
essential to predict lethal mutations (Jeong et al. (2001)). Highly
connected hub genes, largely responsible for maintaining network
connectivity, were likely essential for yeast survival (Carlson et al.
(2006)), although standard centrality measures may fail to reflect the
power of each gene to interact with the others.

Cooperative game theory may also be used to analyze gene
expression data (see for instance Albino et al. (2008); Fragnelli
and Moretti (2008); Jeong et al. (2001); Lucchetti et al. (2009);
Moretti et al. (2007, 2008); Moretti (2009, 2010)). In Moretti
et al. (2007) the class of microarray games has been introduced
to quantitatively evaluate the relevance of each gene in generating
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or regulating a condition of interest (e.g. a disease), taking into
account the observed relationships in all subgroups of genes. In the
framework of microarray games, the relevance of genes is expressed
in terms of the Shapley value (Shapley (1953); Moretti and Patrone
(2008)). The Shapley value attributed to a certain gene in a given
microarray game corresponds to the relevance of that gene for the
mechanisms governing the genomic effects of the condition under
study. This game theoretic approach has been successfully applied
to real datasets (Albino et al. (2008); Moretti et al. (2008)) and
provides a characterization of a relevance index for genes which is
mainly based on the role they play inside gene-regulatory pathways
(Moretti et al. (2007)). A comparison between the results provided
by the analysis of the Shapley value of microarray games and
the results provided by classic statistical testing is discussed in
connection with the pathogenesis of neuroblastic tumors in Albino
et al. (2008), and in Moretti et al. (2008), where gene expression
in children differentially exposed to air pollution is studied.

Standard centrality measures (Mason and Verwoerd (2007);
Junker et al. (2006)) do not take into account the strength of
interrelations inside subgroups of genes, in contrast with a central
issue of coalitional games in cooperative game theory, which is
precisely to analyze the overall power of players according to their
role in all feasible “coalitions” (Shapley (1953); Moretti and Patrone
(2008)). In the context of social networks, Gòmez et al. (2003)
proposed a new family of centrality measures based on coalitional
games defined on networks, i.e. measures of the importance of
nodes in a network where links reflect the interactions among
individuals (nodes). Our idea was to use a similar approach in
the context of co-expression networks. We define an association
game as a coalitional game (also known as a cooperative game in
characteristic function form) (N, v), where N is the set of genes
studied in the expression dataset and v is the characteristic function,
which assigns a “worth” to each subset (coalition) of genes in N .
The worth of a coalition represents the overall magnitude of the
correlation between the genes of the coalition and a set of key-
genes selected a priori (e.g. a set of genes known to be involved
in biological pathways related to chromosome damage).

In order to study the cascade of activation/deactivation among
genes, gene interaction is restricted to the connections within an
associated interaction network or co-expression network Γ, and
therefore another coalitional game (N, wv

Γ) is studied, which is
defined as the restriction Myerson (1977) of the association game
(N, v) to the co-expression network computed on the dataset. The
difference of the Shapley values computed on the two coalitional
games (N, v) and (N, wv

Γ) is considered as a gene centrality
measure.

The paper is organized as follows. Next section, after the
introduction of some preliminary notations, is devoted to the
presentation of the game theoretic centrality measure. Section
3 presents a preliminary application of the method to a real
dataset. Section 4 introduces an approximation method for centrality
computation and the comparison of the results with other centrality
measures on a large network. Section 5 concludes.

2 APPROACH
2.1 Preliminaries
An (undirected) graph or network is a pair 〈V, E〉, where V is a set
of vertices or nodes and E is a set of edges e of the form {i, j} with
i, j ∈ V , i 6= j.

A path between i and j in a graph 〈V, E〉 is a sequence of nodes
(i0, i1, . . . , ik), where i = i0 and j = ik, k ≥ 1, such that
{is, is+1} ∈ E for each s ∈ {0, ..., k − 1} and such that all these
edges are distinct. Two nodes i, j ∈ V are connected in 〈V, E〉 if
i = j or if there exists a path between i and j in E.

A cycle in 〈V, E〉 is a path from i to i for some i ∈ V . A
path (i0, i1, . . . , ik) is without cycles if there do not exist a, b ∈
{0, 1, . . . , k}, a 6= b, such that ia = ib. A forest is a graph where
each path is without cycles.

A connected component of V in 〈V, E〉 is a maximal subset of
V with the property that any two nodes in this subset are connected
in 〈V, E〉. The set of all the connected components in 〈V, E〉 is
denoted by CE .

Now, we introduce some basic game theoretical notations. A
coalitional game or characteristic-form game is a pair (N, v),
where N denotes the finite set of players and v : 2N → IR the
characteristic function, with v(∅) = 0. If the set N of players is
fixed, we identify a coalitional game (N, v) with the corresponding
characteristic function v. A group of players T ⊆ N is called a
coalition and v(T ) is called the worth of this coalition. We will
denote by G the class of all coalitional games.

Let C ⊆ G be a subclass of coalitional games. Given a set of
players N , we denote by CN ⊆ C the class of coalitional games in
C with N as set of players.

The unanimity game (N, uR) on R ⊆ N is the game described by
uR(T ) = 1 if R ⊆ T and uR(T ) = 0, otherwise. Every coalitional
game (N, v) can be written as a linear combination of unanimity
games in a unique way, i.e. v =

∑
S⊆N,S 6=∅ λS(v)uS (see, for

instance, Owen (1995)). The coefficients λS(v), for each S ∈ 2N \
{∅}, are called unanimity coefficients of the game (N, v).

Let |N | be the cardinality of a finite set N . A payoff vector or
allocation (x1, . . . , xn) of a coalitional game (N, v) is an |N |-
dimensional vector describing the payoffs of the players, such that
each player i ∈ N receives xi.

A one-point solution (or simply a solution) for a class CN of
coalitional games is a function ψ that assigns a payoff vector ψ(v)
to every coalitional game in the class, that is ψ : CN → IRN .

The most widely used solution in the theory of coalitional games
is the Shapley value, introduced by Shapley in 1953 (Shapley
(1953)). This solution can be described in several ways. In order to
provide its original definition, we first need to introduce the notions
of order on N and of marginal vector.

We define the set ΣN of possible orders on the set N as the set of
all bijections σ : {1, . . . , |N |} → N , where |N | is the cardinality
of the set N and where σ(i) = j means that with respect to σ,
player j is in the i-th position. Let (N, v) be a coalitional game with
N as the set of players. For σ ∈ ΣN , the marginal vector mσ(v) is
defined by

mσ
i (v) = v([i, σ])− v((i, σ)) for all i ∈ N,

where [i, σ] = {j ∈ N : σ−1(j) ≤ σ−1(i)} is the set of
predecessors of i with respect to σ including i, and (i, σ) = {j ∈
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N : σ−1(j) < σ−1(i)} is the set of predecessors of i with respect
to σ excluding i.

The Shapley value φ(v) of a game (N, v) is then defined as the
average of marginal vectors over all |N |! possible orders in ΣN . In
formula

φi(v) =
∑

σ∈ΣN

mσ
i (v)

|N |! for all i ∈ N. (1)

An alternative representation of the Shapley value can be given
in terms of the unanimity coefficients (λS(v))S∈2N\{∅} of a game
(N, v), that is:

φi(v) =
∑

S⊆N :i∈S

λS(v)

|S| (2)

for each i ∈ N .

2.2 Genes and games
Suppose to have a set K of key-genes assumed to be equally
important for the regulation of a certain biological process. Let N
be the set of genes who are studied on a sequence of (microarray)
experiments under a condition of interest, for instance a genetic
disorder. Let I ⊆ {{i, k}|i ∈ N, k ∈ K} be the set of interactions
between genes in N and key-genes in K. We will say that a gene
i ∈ N and a key-gene k ∈ K interact if and only if {i, k} ∈ I . The
triple (N, K, I) is said a gene-k-gene (gkg) situation.

Given a set of genes S ⊆ N , the higher the number of key-
genes which interact with genes in S, the higher the likelihood
that genes in S are also involved in the regulation of the biological
process of interest. In order to measure the strength of association
of pathways of genes in N , for each group S ⊆ N we compute
the number of key-genes interacting only with genes in S. Let
v : 2N → N be the map assigning to each coalition S ∈ 2N \ {∅}
the number v(S) of key-genes in K which only interact (in I)
with genes in S. By convention, v(∅) = 0. The pair (N, v) is
called association game corresponding to (N, K, I). Note that the
assumption of equal importance for key-genes is central for the
definition of the characteristic function v. In fact, the value v(S),
for each S ∈ 2N \ {∅}, represents a measure of the relevance of
coalition S in terms of the number of key-genes directly interacting
only with genes in S. The possibility to compare the relevance of
different coalitions makes sense thanks to the assumption of equal
importance of key-genes.

In the remaining of the paper, to simplify the presentation of
the game theoretic model, we will also assume that key-genes
are independent, i.e. they do not directly interact between them.
However, this assumption is not fundamental as the one of equal
importance. If a group of m key-genes directly interact, it will
be sufficient to collapse them into an individual key-unit whose
importance equals m times the importance of a single key-genes.

EXAMPLE 1. Consider a set of genes N = {1, 2, 3, 4},
a set of key-genes K = {a, b, c} and a set of interactions
I = {{1, a}, {1, b}, {3, b}, {3, c}, {4, c}}. The association game
(N, v) is such that v(∅) = v(2) = v(3) = v(4) = v(2, 3) =
v(2, 4) = 0, v(1, 3) = v(1, 2, 3) = 2, v(1, 3, 4) = v(1, 2, 3, 4) =
3 and v(S) = 1 for all the remaining coalitions.

If gene i ∈ N has not directly an interaction with k ∈ K,
it may still be possible for i to interact with k via an interaction
with another gene j ∈ N (an intermediary) which in turn has

an interaction with k, or more generally, via a sequence of
intermediaries. So, it is essential to understand which genes really
interact, directly or via intermediaries, and how the network of such
interactions may affect the worth of coalitions of genes.

Let us consider now an interaction network 〈N, Γ〉, the nodes of
the graph being the genes. The set of edges Γ indicates interaction
ties between pairs of genes, i.e. a set {i, j} ⊆ N is an element of
Γ if and only if i and j have an interaction. Implicitly, this graph
shows us which coalitions are feasible, i.e., which coalitions have
all their members related by interactions.

Given a gkg situation (N, K, I) with the corresponding
association game (N, v) and an interaction network 〈N, Γ〉,
following the approach in Myerson (1977), we use the structure of
an interaction network to define a new game (N, wv

Γ), where the
value wv

Γ(S) of a coalition S equals the sum of the values assigned
by v to the connected components of the network restricted to this
coalition S. The game w is called the graph-restricted game.

DEFINITION 1. Let (N, K, I) be a gkg situation and let (N, v)
be the corresponding association game. Let 〈N, Γ〉 be an interaction
network. The graph-restricted game (N, wv

Γ) is defined by

wv
Γ(S) =

∑
T∈CΓS

v(T ) (3)

for each S ∈ 2N \ {∅}, where CΓS is the set of all the connected
components in 〈S, ΓS〉, and with the convention wv

Γ(∅) = 0.

EXAMPLE 2. Consider the gkg situation of Example 1 with the
corresponding association game (N, v). Consider the interaction
network (N, Γ̂) where Γ̂ = {{1, 2}, {2, 3}}. All the interactions
are represented in network of Figure 1.

The graph-restricted game (N, wv
Γ̂
) is such that wv

Γ̂
(1) =

wv
Γ̂
(1, 2) = wv

Γ̂
(1, 4) = wv

Γ̂
(1, 2, 4) = wv

Γ̂
(1, 3) = wv

Γ̂
(1, 3, 4) =

1, wv
Γ̂
(1, 2, 3) = 2, wv

Γ̂
(1, 2, 3, 4) = 2 and wv

Γ̂
(S) = 0 for all the

remaining coalitions.
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Fig. 1. Interaction network Γ̂ (thick lines) and the interactions of the gkg
situation described in Example 1 (thin lines).

EXAMPLE 3. Consider the gkg situation of Example 1 with the
corresponding association game (N, v). Consider the interaction
network (N, Γ̄) where Γ̄ = {{1, 2}, {2, 3}, {2, 4}, {3, 4}}. All the
interactions are represented in network of Figure 2.

The graph-restricted game (N, wv
Γ̄) is such that wv

Γ̄(3, 4) =
wv

Γ̄(2, 3, 4) = 1, wv
Γ̄(1) = wv

Γ̄(1, 2)wv
Γ̄(1, 4) = wv

Γ̄(1, 2, 4) =
wv

Γ̄(1, 3) = 1, wv
Γ̄(1, 2, 3) = wv

Γ̄(1, 3, 4) = 2, wv
Γ̄(1, 2, 3, 4) = 3

and wv
Γ̄(S) = 0 for all the remaining coalitions.
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Fig. 2. Interaction network Γ̄ (thick lines) and the interactions of the gkg
situation described in Example 1 (thin lines).

Since the basic paper Shapley and Shubik (1954), in several
different applications the Shapley value of a game has been
considered as a player’s power (see, for instance, the survey Moretti
and Patrone (2008) for references to the use of the Shapley value
as a power index in different contexts). Here, players are genes and
the Shapley value is considered as a gene’s power. The intuition
behind the meaning of gene’s power attributed to relation (1) follows
from this consideration. An order σ on a set of genes N may
be interpreted as a sequence of activations of study-genes and the
corresponding marginal vector may be seen as a measure of the
power of study-genes to establish relevant interactions with key-
genes according to σ. However, in absence of information about
which sequences of activations are more likely, it is reasonable to
average the marginal vectors over all possible orders as an indication
of the expected power of genes.

The difference between the power of a gene in the graph-restricted
game and its power in the association one is proposed as a centrality
measure for co-expression networks (see Gòmez et al. (2003) in the
context of social networks). Let (N, K, I) be a gkg situation and let
(N, v) be the corresponding association game. Let 〈N, Γ〉 be an
interaction network. The centrality measure γ(v, Γ) is defined by

γi(v, Γ) = φi(w
v
Γ)− φi(v), (4)

for each i ∈ N , where φ(v) is the Shapley value of the association
game v and φ(wv) is the Shapley value of the corresponding graph-
restricted game wv

Γ.

EXAMPLE 4. Consider the gkg situation with the corresponding
association game (N, v) and the interaction network of Example
2. According to relation (1), we have that φ(v) = ( 3

2
, 0, 1, 1

2
) and

φ(wv
Γ̂
) = ( 4

3
, 1

3
, 1

3
, 0). Thus, the centrality measure gives γ(v, Γ̂) =

(− 1
6
, 1

3
,− 2

3
,− 1

2
).

As an example of Shapley value computation via relation (1), we
show here the calculation for gene 1. In total there are 4! = 24
orders in ΣN . There are precisely 6 orders σ ∈ ΣN such that
σ−1(1) = 1 and other 6 orders σ ∈ ΣN such that σ−1(4) = 1.
In addition, for each intermediate coalition S ⊆ {2, 3, 4} of one
or two genes, there are two orders on N such that S is the set of
precessors of 1. Consequently, from relation (1), the Shapley value

of gene 1 is

φ1(v) = 1
24

(
6(v({1)− v(∅)) + 6(v(1, 2, 3, 4)− v(2, 3, 4))

+2(v(1, 2)− v(2)) + 2(v(1, 3)− v(3)) + 2(v(1, 4)− v(4))
+2(v(1, 2, 3)− v(2, 3)) + 2(v(1, 3, 4)− v(3, 4))
+2(v(1, 2, 4)− v(2, 4))

)
= 1

24

(
6× (1− 0) + 6× (3− 1) + 2× (1− 0) + 2× (2− 0)

+2× (1− 0) + 2× (2− 0) + 2× (3− 1) + 2× (1− 0)
)

= 1
24

(
6 + 12 + 2 + 4 + 2 + 4 + 4 + 2

)
= 36

24
= 3

2
.

Next section is devoted to illustrate a more efficient way to calculate
the Shapley value of genes.

EXAMPLE 5. Consider the gkg situation with the corresponding
association game (N, v) and the interaction network of Example 3.
Again, according to relation (1), we have that φ(v) = ( 3

2
, 0, 1, 1

2
)

(nothing changed in game v) and φ(wv
Γ̄) = ( 4

3
, 1

3
, 5

6
, 1

2
). Thus,

the centrality measure gives γ(v, Γ̄) = (− 1
6
, 1

3
,− 1

6
, 0). Note that

with respect to Example 4, where edges {2, 4} and {3, 4} were
not present, gene 2 continues to be the unique one with strictly
positive centrality according to γ, even if genes 3 and 4 increase
their centrality.

It should be noted that−v(N) < γi(v, Γ) < wv
Γ(N) for each i ∈

N . As a consequence, γ centrality computed on different interaction
networks are comparable scores only if they are defined on the same
interval scale, that is if the worth of the largest coalition in the graph-
restricted game is the same for both interaction networks.

2.3 Centrality computation
Actually, the computation of the Shapley value using relation (1)
may be very hard even if the number of genes is quite small. For
instance, note that with only 10 genes it necessary to consider
10! = 3628800 orders of genes in (1). In order to make real
applications, it is useful to decompose the association game and the
corresponding graph-restricted game by means of a relatively small
number of unanimity games with non-null unanimity coefficients.
As a consequence, the Shapley value of such games may be
computed in a less complex way via relation (2). In the following
we briefly describe this decomposition procedure.

Let (N, K, I) a gkg situation. For each key-gene k ∈ K, the set
of genes in N which have a strong interaction with k are denoted
by Nk = {i ∈ N |{i, k} ∈ I}. Let (N, v) the corresponding
association game. It is easy to show that the characteristic function
v can be written as a sum of unanimity games:

v =
∑

k∈K,Nk 6=∅
uNk . (5)

EXAMPLE 6. Consider the gkg of Example 1. We have that
Na = {1}, Nb = {1, 3}, Nc = {3, 4}. From relation (5), the
corresponding association game v is given by

v = u{1} + u{1,3} + u{3,4}.

Consequently, according to relation (2), the Shapley value of v can
easily be calculated as the following sum of vectors

φ(v) = (1, 0, 0, 0) + ( 1
2
, 0, 1

2
, 0) + (0, 0, 1

2
, 1

2
) = ( 3

2
, 0, 1, 1

2
).
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The remaining of this section is devoted to provide a
natural decomposition of a graph-restricted game based on the
reformulation of the association game given in (5).

First, we need to introduce the concept of minimal component
containing a coalition S. Let 〈N, E〉 be a graph. We denote by
〈N, FE〉 a graph where FE is a maximal subset of E with the
property that 〈N, FE〉 is a forest. The set of all the forests for E is
denoted byFE . Let S ∈ 2N\{∅}. A minimal component containing
S in a forest 〈N, E〉 is a minimal subset of N which contains S
and with the property that any two nodes in this set are connected
in 〈N, E〉. Note that in a forest, a minimal component containing
S, if exists, is unique. This fact allows us to denote the minimal
component containing S in a forest FE (if it exists) by MFE (S),
and the set of all the minimal components containing S in a graph
〈N, E〉 is denoted by ME(S) = {MFE (S)|FE ∈ FE}.

Let 〈N, Γ〉 be a graph. Consider an unanimity game (N, uS),
with S ∈ 2N \ {∅} and such that MΓ(S) 6= ∅. Without loss of
generality, suppose that MΓ(S) = {M i1

Γ (S), . . . , M ir
Γ (S)}, with

r ≥ 1. We define a new game (N, wuS
Γ ) in the following way

wuS
Γ =

r∑
j=1

(−1)j+1
∑

1≤i1<...<ij≤r

u
M

i1
Γ (S)∪...∪M

ij
Γ (S)

. (6)

EXAMPLE 7. Consider the interaction network of Example 3. Let
S = {1, 3}. Note that MΓ(S) = {{1, 2, 3}, {1, 2, 3, 4}}. From
relation (6) we have that

wuS
Γ = u{1,2,3} + u{1,2,3,4} − u{1,2,3}∪{1,2,3,4} = u{1,2,3}.

Games defined according to relation (6) are crucial for the
computation of the Shapley value of graph-restricted games in
practical situations. In fact, it can be proved that the game wuS

Γ is the
restriction of the unanimity game uS to graph Γ,and is also known
as the connecting S in Γ game (Gòmez et al. (2004)). Consequently,
it can be easily shown that given a gkg situation (N, K, I) with the
corresponding association game (N, v) and an interaction network
〈N, Γ〉, the graph-restricted game (N, wv

Γ) may be computed via
the following formula

wv
Γ =

=
∑

k∈K,Nk 6=∅,MΓ(Nk) 6=∅ w
uNk
Γ

=
∑

k∈K,Nk 6=∅,MΓ(Nk) 6=∅∑|MΓ(Nk)|
j=1 (−1)j+1 ∑

1≤i1<...<ij≤r u
M

i1
Γ (Nk)∪...∪M

ij
Γ (Nk)

,

(7)
where MΓ(Nk) = {M i1

Γ (Nk), . . . , M
|MΓ(Nk)|
Γ (Nk)}, for each

k ∈ K with Nk 6= ∅ and MΓ(Nk) 6= ∅.
From relations (2) and (7), it immediately follows that the Shapley

value of a graph-restricted game wv
Γ can be computed using the

following relation

φi(w
v
Γ)

=
∑

k∈K,i∈Nk,MΓ(Nk) 6=∅∑|MΓ(Nk)|
j=1 (−1)j+1 ∑

1≤i1<...<ij≤r
1

M
i1
Γ (Nk)∪...∪M

ij
Γ (Nk)

,

(8)
for each i ∈ N .

EXAMPLE 8. Consider the gkg with the corresponding
association game (N, v) and the interaction network of Example

2. Note that MΓ(Na) = {{1}}, MΓ(Nb) = {{1, 2, 3}} and
MΓ(Nc) = {∅}.

According to relation (7), we can write the graph-restricted game
wv

Γ as a sum of unanimity games

wv
Γ = u{1} + u{1,2,3}. (9)

Consequently, φ(wv
Γ) = ( 4

3
, 1

3
, 1

3
, 0).

EXAMPLE 9. Consider the gkg with the corresponding
association game (N, v) and the interaction network of Example 3.
Note that MΓ(Na) = {{1}}, MΓ(Nb) = {{1, 2, 3}, {1, 2, 3, 4}}
and MΓ(Nc) = {{3, 4}, {2, 3, 4}}.

According to relation (7), we can write the graph-restricted game
wv

Γ as a sum of unanimity games

wv
Γ = u{1}

+u{1,2,3} + u{1,2,3,4} − u{1,2,3}∪{1,2,3,4}
+u{3,4} + u{2,3,4} − u{3,4}∪{2,3,4}
= u{1} + u{1,2,3} + u{3,4}.

(10)

Consequently, φ(wv
Γ) = ( 8

6
, 2

6
, 5

6
, 3

6
).

In the next section, we present an application of this centrality
measure on a microarray data from children exposed to air pollution
(Moretti et al. (2008)).

3 PRELIMINARY APPLICATION
We present a preliminary application of the method to gene
expression data published in van Leeuwen et al. (2008), where
genome-wide oligonucleotide microarray analysis was applied to
blood cells of 23 children from Teplice (TP) region in the Czech
Republic. The TP region is a mining district characterized by high
levels of airborne pollutants including carcinogens. We consider the
gene expression matrix X of 20130 genes and 23 samples from TP
that was distilled from the data filtering and preparation as described
in van Leeuwen et al. (2008).

As a set of key-genes, we used four genes known to be
strongly associated with micronuclei frequencies, a bio-marker of
chromosome damage: 1) PRC1 (protein regulator of cytokinesis 1);
2) TP53 (tumor protein p53 (li-fraumeni syndrome)); 3) ZWINT
(zw10 interactor); 4) CCNB2 (cyclin b2) (Figure 3, green nodes).
As a first filtering step, absolute values of Pearson correlation
coefficients between each study-gene and each key-gene were
computed, providing four lists of correlation coefficients (one list
for each key-gene) with 20130 genes each, and the union of the
top 25 genes from the four lists were selected for further analysis
(n = 96). From the gene expressions of the selected 96 genes the
corresponding gene correlation matrix was computed, and an un-
weighted network, based on dichotomizing the correlation matrix,
was considered. More precisely, two genes were considered to
interact (i.e. linked by an edge in the network) if and only if
their absolute Pearson correlation coefficient was greater than 0.75
(Figure 3).

According to this criterion, it was possible to define the
association game on the total set of 100 genes as the set of players,
and the corresponding graph-restricted game. From the association
game, only 9 genes obtained a non-null Shapley value ranging from
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1 to 0.25 (Figure 3, yellow nodes). In fact, from relation (5), the
association game is defined by

v = u{1,2,3,4} + u{26,27,28} + u{38} + u{72}

and, as a consequence of relation (2), φ1(v) = φ2(v) = φ3(v) =
φ4(v) = 0.25, φ26(v) = φ27(v) = φ28(v) = 1

3
, φ38(v) =

φ72(v) = 1 and φi(v) = 0 for each other gene i.
In order to compute the Shapley value on the graph-restricted

game, as it was described in Section 2.3, we first should find the
sets of minimal connected componentsMΓ(Nk), for each key-gene
k. By definition, this requires the computation of the set of all the
forests F(Γ). Several algorithms exist for generating all spanning
trees of a graph that can be easily adapted to find all the forests
(e.g., Gabow and Myers, (1978); Kapoor and Ramesh, (1995);
Minty (1965)). However, as the number of forests in a graph can
be very large (especially for graphs generated from datasets with
thousands of genes) this option is excluded for practical purposes
on large datasets.

In this preliminary application, the computation of the Shapley
value on the graph-restricted game may be done by means of visual
inspection of the graph, looking at the shortest paths (depicted in
green in Figure 3) which connect nodes of unanimity coalitions
(yellow nodes in Figure 3). It is in fact easy to check that component
{1, 3} may be connected to nodes 2 and 4 only via paths which
contain node 24 (in red), and node 2 may be connected to node 4
only via paths which contain node 10 or node 22. Consequently, by
relation (7), the graph-restricted game is

wv
Γ = u{1,2,3,4,10,24} + u{1,2,3,4,22,24} − u{1,2,3,4,10,22,24}

+u{26,27,28} + u{38} + u{72}

and, by relation (2), φ1(w
v
Γ) = φ2(w

v
Γ) = φ3(w

v
Γ) = φ4(w

v
Γ) =

φ24(w
v
Γ) = 2

6
− 1

7
= 4

21
, φ10(w

v
Γ) = φ22(w

v
Γ) = 1

6
− 1

7
= 1

42
,

φ26(w
v
Γ) = φ27(w

v
Γ) = φ28(w

v
Γ) = 1

3
, φ38(w

v
Γ) = φ72(w

v
Γ) = 1

and φi(w
v
Γ) = 0 for each other gene i.

By relation (4) and the above calculations, only three genes
have a γ centrality measure larger than zero, i.e. OR2B2, SCD
and ODF4 (Table 1 and Figure 3, red nodes). We focus on genes
with strictly positive γ because they represent those genes with
a positive differential power between the graph-restricted game
and the association game. In other words, we are interested to
select those genes whose power increase as a consequence of their
interactions in the network. From the values of γ centrality reported
in Table 1 we argue that genes SCD and ODF4 have the same
importance, whereas OR2B2 is eight times more critical than the
other two in guaranteing the interconnection of the associated genes.

Such genes are connected to genes associated to the key-gene
TP53. This is a consequence of the fact the other three key genes
do not contribute to γ centrality, being the terms φ(u{26,27,28}) +
φ(u{38}) + φ(u{72}) both in φ(v) and φ(wv

Γ).
Among genes with positive γ, gene OR2B2 encodes for an

olfactory receptor protein which is member of a large family of
G-protein-coupled receptors. G proteins have been suggested to be
involved in the respiratory burst (release of ROS) caused by asbestos
(Elferink and Ebbenhout (1988)). The principal product of SCD is
oleic acid, which is formed by desaturation of stearic acid. The ratio
of stearic acid to oleic acid has been implicated in the regulation of
cell growth and differentiation through effects on cell membrane
fluidity and signal transduction. ODF4 encodes a protein that is

Fig. 3. Interaction network between genes (nodes). Interactions between
gene’s pairs are represented by edges. Isolated genes were removed. Thicker
edges show the shortest paths among the most associated genes. Most central
genes according to the γ measure of centrality are shown.

Table 1. Genes with γ centrality measure greater than zero.
Methods were implemented using R language (R Development
Core Team (2004))

ID Symbol Name γ Centrality

24 OR2B2 olfactory receptor, family 2, 4
21

subfamily B, member 2
10 SCD stearoyl-CoA desaturase 1

42
(delta-9-desaturase)

22 ODF4 outer dense fiber of 1
42

sperm tails 4

localized in the outer dense fibers of the tails of mature sperm. As
a functional annotation, all such genes encode for transmembrane
proteins.

4 APPROXIMATE COMPUTATION
As we already observed in the last section, the implementation of
algorithms aimed to generate the set of all forests in a real biological
network is an unpractical approach because of the huge storage
memory and the computational burden. This section is devoted to
the description of an alternative approach based on approximate
calculations, and to its application on a large biological network
where also other centrality measures are applied.

Let (N, K, I) be a gkg situation and let 〈N, Γ〉 be an interaction
network. For instance, with |N | = 15, |K| = 1, |I| = 5
and |Γ| = 21 (i.e., 〈N, Γ〉 has a graph density equal to 0.2),
the exact computation of the Shapley value of the restricted game
wv

Γ according to relation (8) and our R language implementation,
required less than two minutes (on a PC with a 2 GHz processor and
2 GB of memory). But the problem explodes exponentially in time
on more dense graphs.

For this reason, in order to make feasible (and reasonable in
terms of elapsed time) the application of the method also to larger
biological networks, we avoid the exhaustive generation of all
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forests and the consequent exact computation of the Shapley value
of a restricted game. Alternatively, we limit our analysis to a smaller
subset of forests, randomly selected from F(Γ) by means of a
probability sampling method which assigns a uniform probability
distribution to all subgraphs with a predefined number k of edges.
The value k is given by the cardinality of the set of edges in a forest
in F(Γ).

Given a set R(Γ) ⊂ F(Γ) of forests randomly generated
according to such a procedure, the set of the minimal components
containing S in 〈N, Γ〉 is denoted by M̄Γ(S) = {MFΓ(S)|FΓ ∈
R(Γ)} and the approximated Shapley value of wv

Γ is computed
according to equation (8) with M̄Γ in the role of MΓ.

According to this procedure, only 100 randomly selected samples
were needed to calculate the exact value of γ centrality for genes
presented in the preliminary application introduced in Section 3
(elapsed time less than one second).

This random sampling method was also used to calculate an
approximated γ centrality for a lager graph with 235 nodes and
2690 edges. Only one key gene (again gene TP53) was considered,
on the same dataset introduced in Section 3. In this case, 300
genes with the highest absolute value of Pearson correlation with
TP53 were initially selected for further analysis. From the gene
expressions of the selected 300 genes, following the same method
described in Section 3, a network was constructed. More precisely,
a link between two nodes was established if and only if their
absolute Pearson correlation coefficient was greater than 0.75.
Only genes connected (directly or via other nodes) to TP53 were
considered (finally, |N | = 235). We focused exclusively on the
component connected to key gene TP53 because the contribution of
the other key genes to γ centrality in a larger network (constructed
according to the procedure previously described) is the same as it
was calculated at the end of Section 3 on the network depicted in
Figure 3, that is null.

The algorithm for the approximated computation of γ centrality
was applied to the generated interaction network using 1000 random
samples. In addition, in order to further simplify calculations of the
Shapley value via relation (8), only minimal components with not
more than 10 nodes were considered in M̄Γ.

Only 42 genes showed an approximated γ centrality strictly
positive (indeed, representing genes with a positive differential
power). Those findings were compared with the most 42 central
genes according to other four common measures of centrality. In
the following, we briefly introduce those measures. In order to do
that, we denote by d(u, v) the minimum number of edges to connect
two nodes u and v in 〈N, Γ〉:

1) Degree centrality (Shaw (1954); Nieminen (1974)): the degree
centrality of v ∈ N is defined as the number of edges in e ∈ Γ
such that v ∈ e.

2) Closeness centrality (Beauchamp (1965); Sabidussi (1966)):
the closeness centrality of node v ∈ N is defined as

|N|−1∑
y∈N d(v,y)

. therefore it measures the extent to which node

v ∈ N is close to all other nodes in the 〈N, Γ〉.
3) Betweenness centrality (Bavelas (1948); Freeman (1977)): let

u, v, z ∈ N and let nu,v be the number of paths formed by
precisely d(u, v) edges and Let nu,v(z) be the number of paths
formed by precisely d(u, v) edges which contains node z. The
rate of communication between u and v that can be monitored

by an interior node z is denoted by δu,v(z) = nu,v(z)/nu,v .
If no shortest path between u and v exists δu,v(z) = 0
by definition. The betweenness centrality of z is defined as∑

u,v∈N,u 6=v,u6=z,v 6=z δu,v(z).

4) Eigenvector centrality (Bonacich (1972)): Let v ∈ N . Then the
eigenvector centrality of v is defined as the vth element of the
principal eigenvector of the adjacency matrix corresponding
to 〈N, Γ〉. This principal eigenvector is normalized such that
its largest entry is 1. This centrality is a measure for how
well connected a node is to other highly connected nodes in
a network.

For each pair of centrality measures considered, the percentage
of common genes among the first 42 with highest centrality for
each measure are reported in Table 2. Note that the betweenness
centrality has the maximum level of overlap with the list of genes
ranked according to the approximated γ centrality. Ten genes are
ranked among the first 42 with highest centrality according to all
centrality measures (i.e., UBE1, STK23, ODF4, RNF170, SPAG9,
TMCC2, C1QTNF9, SAMD4B, HEATR2 and LPHN1).

The most 12 central genes according to γ are reported on Table
3. Note that genes SCD, ODF4 and OR2B2, that were founded in
the analysis of the smaller network introduced in Section 3, are still
ranked among the most central genes, and other centrality measures
support this result (see Table 3). Among genes that are predicted
to be central only by gamma centrality (namely, MPP1, SIAH2,
EDIL3, OR1K1, TAS1R2), we observe that the human homolog of
Drosophila SIAH2 has been studied in literature in connection with
anticancer agents (Atique et al. (2008)), as well as SIAH1 has been
related to p53-mediated apoptosis (Relaix et al. (2000)); EDIL3
acts as an angiogenic factor in the context of solid tumor formation
(Aoka et al. (2002)).

In addition, from Table 3 it seems that γ centrality behaves
very close to betweenness centrality, at least with respect to
the most central genes (six genes in common among the top
ten). In order to understand whether this behavior is affected by
the random selection of edges in the procedure for γ centrality
approximation, we assessed the impact of the number of random
samples used in the procedure described in Section 4 on the overlap
with the most central genes from the different centrality measures.
Specifically, for different numbers of random samples m, with
m = 200, 400, 600, 800, 1000, 1200, we applied our algorithm
for γ centrality approximation to the same network. For each m,
the ten genes with highest approximated γ centrality were selected
and compared with the ten most central genes according to the
other centrality measures. The comparison of top ten lists was
reiterated ten times, for each m. Results are summarized in Figure
4. Note that already after 400 random samples, the overlap ratios
seem to stabilize and, for each value m, the list provided by the
approximated γ centrality shows the highest overlaps with the lists
provided by betweenness centrality and closeness centrality.

In some instances, we also observed that the sensibility of the
method based on γ centrality to structural variation of the network
is comparable to that of the other centrality methods analyzed in
this study. For example, if a new component connected to gene
TP53 is considered, with 240 nodes and 2888 edges (defined on
a Pearson correlation cutoff of 0.745) only three genes out of the
12 most central ones according to γ were detected also among the
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Table 2. Percentage of common findings among lists of
42 genes with highest centrality according to different
centrality measures. The average overlap of each measure
with the others is shown.

appr. γ Deg. Clos. Bet. Eigen.

approxim. γ * 43% 48% 48% 45%
Deg. 43% * 83% 31% 95%
Clos. 48% 83% * 38% 81%
Bet. 48% 31% 38% * 31%
Eigen. 45% 95% 81% 31% *

average 46% 63%% 61% 37% 64%

Table 3. Most 12 central genes according to γ centrality. Numbers shows
genes found among the 12 most central genes according to degree centrality
(1), closeness centrality (2), betweenness centrality (3), eigenvector centrality
(4).

Symbol Name appr. γ

UBE1 1,2,3 ubiquitin-activating enzyme E1 0.0309
STK23 1,2,3 serine/threonine kinase 23 0.0119
MPP1 membrane protein, palmitoylated 1, 55kDa 0.0072
SCD 3 stearoyl-CoA desaturase (delta-9-desaturase) 0.0047
ODF4 1,2,3 outer dense fiber of sperm tails 4 0.0046
RNF170 2,3 ring finger protein 170 0.0038
PLXNA3 1,4 plexin A3 0.0037
SIAH2 seven in absentia homolog 2 (Drosophila) 0.0035
OR2B2 3 olfactory receptor, family 2, subfam. B, memb. 2 0.0033
EDIL3 EGF-like repeats and discoidin I-like domains 3 0.0032
OR1K1 olfactory receptor, family 1, subfam. K, memb. 1 0.0032
TAS1R2 taste receptor, type 1, member 2 0.0032

most central ones on the original network (reported in Table 2). In
comparison, the number of genes that were found in both lists when
the other centrality measures were applied to both networks was 2
for degree centrality, 1 for closeness centrality, 3 for betwenness
centrality and 2 for eigenvector centrality.

From Table 2 it turns out that the list of most central genes
according to the approximated γ centrality shares a similar number
of genes with all the lists of genes generated by the other centrality
measures (between 43% and 48%). This result is not surprising, but
it can be explained by means of the very basic properties of the γ
index. The definition of γ centrality, based on the notions of minimal
components for coalitions (see relation 8), generalizes the idea of
number of paired relations (degree centrality), all shortest paths
(closeness centrality) or geodesic paths (betweenness centrality).
The interaction networks depicted in Figure 5 clarify this point. In
the interaction network of Figure 5.a, where all genes between 2 and
7 are needed to connect the associated genes 1 and 8, it is not natural
to discard the possibility of using longer paths, simply because
shorter ones exist. Then, on this network, γ centrality behaves
similar to degree centrality, providing the same level of importance
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Fig. 4. Common findings among lists of 10 genes with highest centrality
according to different centrality measures. The average number of common
genes (and the respective standard deviations) of γ centrality with each
other centrality measure computed over ten iterations of the approximation
algorithm are shown, for different numbers of randomly selected samples.

Fig. 5. Two different interaction networks (a and b) with eight genes
(interactions are represented by thick lines). Gene 1 and 8 are the most
associated genes in both networks, which directly interact (thin lines) to
the key-gene k. Centrality values of nodes according to different centrality
measures are shown in the corresponding tables.

to all genes between 2 and 7 (differently from the other measures,
which assign the biggest amount of importance to nodes 4 and 5 and
the smallest amount to 2 and 7). On the other hand, we would tend
to discard a long path between two genes, in favor of a one-edge
path, because in this case it imposes additional intermediaries genes
which are not needed to connect associated genes. This is the case of
the interaction network depicted in Figure 5.b, where genes 3 and 5
are intermediary genes not necessary to connect associated genes 1
and 8, and therefore they receive a null level of centrality both from
γ and betweenness centralities, whereas the other measures give an
intermediate level of centralities to such nodes.
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5 CONCLUSION
In this paper, a new measure of the importance of genes in
biological networks based on coalitional games is introduced.
The new measure, calculated from the Shapley value of two
coalitional games, has been used to express the centrality of each
gene in interaction with the others and keeping into account a
priori knowledge about genes playing a key function on a certain
biological process.

An approximation method for the calculation of γ centrality in
practical biological networks is also presented. According to this
procedure, the generation of all spanning forests in a biological
network is not needed, but the analysis is limited to a smaller subset
randomly selected from the set of all forests. Results provided by
the approximation procedure on biological networks are discussed
and compared to the results provided by the application of classical
centrality measures.

The use of γ index as a centrality measure is supported by the
basic intuition that it is a difference of power indices between a
situation where binary interactions are considered (i.e., the graph-
restriction game) and another one where they are not (i.e., the
association game), and by the comparison with properties related to
other centrality measures on some examples. In order to generalize
these argumentations, an important issue for future research is to
address a comprehensive analysis of the properties satisfied by the
Shapley value on graph-restricted games, with the objective to better
contextualize its interpretation as a centrality measure.
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