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ABSTRACT

Motivation: Highly Active AntiRetroviral Therapies (HAART) can

prolong life significantly to people infected by HIV since, although

unable to eradicate the virus, they are quite effective in maintaining

control of the infection. However, since HAART have several

undesirable side effects, it is considered useful to suspend the

therapy according to a suitable schedule of Structured Therapeutic

Interruptions (STI).

In the present article we describe an application of genetic

algorithms (GA) aimed at finding the optimal schedule for a HAART

simulated with an agent-based model (ABM) of the immune system

that reproduces the most significant features of the response of an

organism to the HIV-1 infection.

Results: The genetic algorithm helps in finding an optimal

therapeutic schedule that maximizes immune restoration, minimizes

the viral count and, through appropriate interruptions of the therapy,

minimizes the dose of drug administered to the simulated patient.

To validate the efficacy of the therapy that the genetic algorithm

indicates as optimal, we ran simulations of opportunistic diseases

and found that the selected therapy shows the best survival curve

among the different simulated control groups.

Availability: A version of the C-IMMSIM simulator is available at http://

www.iac.cnr.it/�filippo/c-ImmSim.html

Contact: f.castiglione@iac.cnr.it

1 INTRODUCTION

Highly active antiretroviral therapies (HAART) are based on

the combined use of extremely powerful antiretroviral agents

in the treatment of HIV infections. A HAART is composed
of multiple antiviral drugs, and it is commonly prescribed to

most HIV-positive patients, even before they start to present

any symptom of the disease (FDA, 1999). The therapy includes

at least two components: a Protease Inhibitor (PI) and a reverse

Transcription Inhibitor (TI). Nowadays, more complex

cocktails of antiretroviral drugs include a nucleotide analog

(DNA chain terminator), a second nucleotide analog (nuke) or
a Non-Nucleotide Reverse Transcription Inhibitor (NNRTI).

Although most studies agree that a HAART is not able to

eradicate the virus, it is quite effective in maintaining the

infection under control. An indirect confirmation comes from

the fact that the number of deaths caused by AIDS has dropped

significantly in the countries where HAART has been

extensively used (FDA, 1999).
However there are, at least, two issues related to HAART:

(i) as most of effective drugs, it has some unpleasant side effects

(e.g. lipodystrophy); (ii) drugs have to be administered over

many years (actually ‘forever’), which demands an enormous

degree of discipline from patients.
To address, at least in part, these problems, several

researchers and clinicians proposed to schedule interruptions

of treatment and possibly to delay the start of the HAART

(Structured Treatment Interruption, STI). Another reason

to suspend periodically the therapy is to give the virus

the chance to proliferate up to the point that the immune

system recognizes it and begins its response. This in turn

could reduce the chance of the emergence of resistant HIV

strains.
To be more precise, the HAART therapy has a 2-fold effect

on the viral/immune system dynamics. On the one hand, it

causes a decline in the number of free HIV virions in patients.

Plasma viremia declines in two phases: within 2 weeks, there is

99% of the decline. This phase is followed by a slower

phenomenon, lasting for 8 weeks, after which HIV viral titers

decline below the limit of detection of the assay. On the other

hand, it determines an ‘immune reconstitution’ (or restoration),

a sort of inverse process of the immune system damage caused

by the HIV. This is one of the primary goals of HAART.

Reconstitution consists of an increase in the number of

functional CD4 T helper cells that are pivotal for the immune

response against all pathogens (HIV included). The increase in

CD4 cell count happens in two stages: a rapid increase in the

number of circulating CD4 cell lymphocytes occurs within 1–2

weeks from the beginning of the HAART and continues over

the first 2–3 months. A second, slower phase of CD4 cell

expansion persists over subsequent months and may continue

for years in HAART regimen (Autran et al., 1997, 1999; Li

et al., 1998). In numbers, after 2–4 years of HAART, mean

increase in CD4 cell counts is approximately 200–400 106 cells/l*To whom correspondence should be addressed.
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(Scott-Algara et al., 2001; Mezzaroma et al., 1999). The
increase of CD4 cells occurs mainly in the first 2 years.
In the present work, we look for an optimal STI schedule of

the therapy by using a simulator of the disease progression
based on a detailed model of the HIV infection. Here, ‘optimal’
means a therapeutic schedule able to keep the infection under

control even during the suspension period. At the same time,
the optimal therapy should allow immune restoration, i.e. it
should favor the rebound of the CD4 T helper lymphocytes’

count.
There are a number of mathematical models aimed at

describing the immune system response against HIV. Few of

them also account for the use of a therapy (Nowak and May,
2000; Perelson and Nalson, 1999; Simson and Ho, 2003). Most
of these models work in continuous-time where optimal control

techniques can be applied in order to find the best time-
allocation strategy for the therapy (Kwon, 2007). The
techniques are similar to those used in cancer therapy

(Swan, 1990).

2 APPROACH

In the present study, we adopt an approach that differs in two
ways. First, the model is not described by differential equations

in continuous-time but it is a generalization of a discrete-time
stochastic cellular automaton belonging to the family of

so-called agent-based models (ABM) (e.g. similar approaches
can be found in Zorzenon dos Santos (1998); Pandey and
Stauffer (1990); Pandey (1991); Zorzenon dos Santos and

Coutinlo (2001); Hershberg et al. (2001); and Ruskin et al.
(2002). Second, since there is no analytical formulation of the
model, the application of classic optimal control techniques is

not a viable alternative and therefore, other, often heuristic,
solutions must be pursued. One of these heuristic approaches
are the genetic algorithms (GA) that are introduced below

(Corne et al., 1999; Mitchell, 1996). We have applied a
GA-based optimization technique to find out the optimal
schedule of HAART administration/interruption in order to

achieve both HIV control and immune system recovering.
Since immune restoration should result in a stronger immune

system, to verify the efficacy of the therapy found by

optimization, we simulated the occurrence of opportunistic
infections by introducing bacteria in the virtual patients at the
end of the therapeutic period.

One of the most common opportunistic bacterial infections
in immune deficient individuals is caused by the

Mycobacterium tuberculosis (Mtb). Developing from infection
to active tuberculosis is extremely rapid in HIV-infected
individuals and, usually, it occurs within weeks or months

from infection. The progression of the disease in individuals
with immune deficiency caused by HIV depends on the extent
of the CD4 cell count reduction and therefore can vary greatly.

Based on these considerations, we set the replication rate of the
‘virtual’ bacterium and the limiting value so to have that the
time from Mtb infection to active illness is 1–2 ‘months’.

For the comparison we used three other simulated control
groups. In the first case, (‘full therapy’) the drugs were
administered every day for the simulated therapeutic period;

in the second case, (‘random therapy’) the total amount of drug

was equal to that of the optimal therapy but the administration

within the therapeutic period was at random and, finally, in the

third case there was no therapy (‘void therapy’).

3 METHODS

The model of immune system response we employ has been quite

extensively described in Bernaschi and Castiglione (2001); and

Castiglione et al. (2004). In short, it consists of a 3-dimension stochastic

cellular automaton in which we represent the major classes of cells of

the lymphoid lineage (T Helper lymphocytes or TH, Cytotoxic T

lymphocytes or CT, B lymphocytes and antibody-producer plasma

cells, PLB) and some of the myeloid lineage. All these entities interact

each other following a set of ‘rules’ that describe the different phases of

the recognition and response of the immune system against a pathogen.

In order to represent the special features of the HIV infection, the

model has been enhanced with the description of HIV replication inside

infected lymphocytes, T production impairment, specific response

against HIV strains, HIV mutation and evolution. The evolution of

HIV in untreated patients has been studied and described in Castiglione

and Bernaschi (2005).

For the study of the effects of a HAART on the dynamics of the HIV

disease, we modified the model to account for the action of two classes

of inhibitors:

� Reverse Transcriptase Inhibitors (RTIs), a class of antiretroviral

drugs used to inhibit activity of reverse transcriptase, a viral DNA

polymerase enzyme that HIV needs to reproduce. In detail, when

the HIV infects a cell, reverse transcriptase copies the viral single-

stranded RNA genome into a double-stranded viral DNA. The

viral DNA is then integrated into the host chromosomal DNA

which then allows host cellular processes, such as transcription and

translation to reproduce the virus. RTIs block reverse transcrip-

tase’s enzymatic function and prevent completion of synthesis of

the double-stranded viral DNA thus preventing HIV from

reproducing. The first of these competitive reverse transcriptase

inhibitors to be approved by the US Food and Drug

Administration for treatment of HIV was Zidovudine (also

called AZT).

� Protease inhibitors (PIs) are a class of medications used to treat or

prevent infections by viruses (in general). PIs prevent viral

replication by blocking the activity of protease, an enzyme used

by viruses to cleave nascent proteins for final assembly of new

virions. In the case of HIV/AIDS, examples of antiretroviral

protease inhibitors are Saquinavir, Ritonavir, Indinavir,

Nelfinavir, just to mention some.

In our model, the HAART modify the HIV life cycle. In untreated

patients the life cycle of the virus can be described as follows: (i) when

the virus infects a cell it enters the cytoplasm; (ii) then its RNA is

transcribed into DNA of the host cell; (iii) the virus remains at rest until

an event activates the host cell. In that case the virus replicates (it is said

to actively replicate); (iv) a replicating virus also buds from cell

membrane. Correctly assembled virions are able to infect other cells so

that the life cycle starts again (see Fig. 1 for further details).

The application of a HAART composed by a transcriptase and a

protease inhibitor is described in the model as follows: the transcriptase

inhibitor does not allow a virus inside an infected cell to go from stage i

to stage ii the protease inhibitor acts in stage iv because, by inhibiting

the assembly of the virus, it produces virions that are at most defective

and therefore unable to infect other cells.

In the model, the effect of interruptions of the therapy can be

simulated in a very simple way under the assumption that the efficacy

drops to zero during an interruption.

HAART with genetic algorithms
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The CD4 T-cell replenishment damage due to the HIV is not an

‘emergent property’ in the current version of our model. We represent

this phenomenon from a functional point of view since there is no full

understanding of the microscopic mechanisms leading to the progres-

sive loss of peripheral CD4þT cells [the mechanisms of CD4þT-cell

loss in HIV-1 infection have been attributed to viral-induced CD4þ

T-cell death (Ho et al., 1995; Wei et al., 1995) and to progressive

destruction of immune cell’s micro environment (Rosenberg et al., 1998;

Wolthers et al., 1998)].

In our model we describe hematopoiesis (the process of cell

replenishment by production of new cells in the bone marrow) as a

mean reverting process at a baseline cell count: if cells are below

baseline then cells are created; if the count is above (because of a clone

expansion due to an immune response) then cells death is accelerated.

In either case, the cell count relaxes to the baseline level of cells. We

model the damage due to the HIV by decreasing this baseline level,

whereas immune reconstitution is modeled by increasing it. The

parameters of this process are set so as to reproduce, in absence of

therapy, a decrease of CD4 cell count in line with clinical expectations

of time to AIDS (Castiglione et al., 2004; Munoz and Xu, 1996)

whereas immune reconstitution due to a HAART is set to achieve

an average CD4 T-cell increase of about 200 cells in a microliter in

6 months (Mezzaroma et al., 1999; Scott-Algara et al., 2001).

Evolutionary algorithms have been applied with satisfactory results

to a very long list of hard combinatorial problems. A detailed

description or enumeration of such results is beyond the scope of the

present article but the interested reader can find useful reviews in Corne

et al. (1999) and Mitchell (1996).

Genetic algorithms, proposed by Holland in 1960, are a particular

class of evolutionary algorithms that use techniques inspired by

evolutionary biology such as inheritance, mutation, selection and

crossover (also called recombination). A GA is a method for moving

from one population of chromosomes to a new population by using a

kind of natural selection together with the genetic inspired operators

of crossover, mutation and so on. Each chromosome consists of genes

(e.g. bits), each gene being an instance of a particular allele (e.g. 0 or 1).

The selection operator chooses those chromosomes in the popula-

tion that will be allowed to reproduce, and on average the fitter

chromosomes produce more offspring than the less fit ones. A common

application of GAs if global optimization, where the goal is to find a

set of parameter values that maximizes a complex multi-parameter

function.

The approach we present in this article differs from ‘classic’ GA

applications since we use a simulator to evaluate the fitness function.

To the best of our knowledge, very few applications (Lollini et al., 2006;

Pappalardo et al., 2006) use a complete simulator in a genetic algorithm

and, for all we know, no application of this type exists in HIV-related

studies.

The therapy is applied to our virtual patient for a period of 6 months.

Since we simulate the infection of the virtual patient at time zero of the

simulation, we start HAART after (about) 7.5 years of simulated life,

i.e. during the chronic phase of the disease progress.

The HAART consists in administering daily a cocktail of drugs.

Therefore, we could optimize the therapy on a daily basis but we

quickly discarded this option since it is practically impossible for a

human being to follow, on daily basis, a schedule that is 6-month long.

Hence, in more practical terms, we defined our schedule on a weekly

basis. Another important choice, this time dictated by medical practice,

is that reverse transcriptase and protease inhibitors are always

administered at the same time.

In GA terms we defined a chromosome to represent a therapy

schedule. A chromosome is a binary string of 24 bits (i.e. weeks in

6 months). The jth bit (j¼ 0 , . . . , 23) indicates that during the jth week,

the simulated patient takes the antiretroviral drugs (Fig. 2).

There are many possible selection schemes for genetic algorithms,

each one with different characteristics. An ideal selection scheme is

simple to code, and efficient for both serial and parallel computing

platforms. Furthermore, a selection scheme should be able to adjust its

selection pressure so as to tune its performance for different domains.

Tournament selection is increasingly being used as a GA selection

scheme because it satisfies all the above-mentioned criteria. Significant

progress was made some years ago in understanding the convergence

rates of various selection schemes, including tournament selection

(Goldberg, 1991). All of these factors contributed to our choice to

implement this operator in our GA. Reproduction uses uniform

crossover. Given two chromosomes selected by the selection mecha-

nism, they will produce two offsprings. Genes in offspring are selected

Fig. 1. HIV replication cycle from National Institute of Allergy and

Infectious Disease (part of NIH) (http://www.niaid.nih.org/). The

dynamics can be summarized as follows: (a) HIV attaches to CD4

cell-surface receptor molecules by its gp120 molecule; (b) the virus and

cell membrane fuse, and the virion core (containing viral RNA and

other proteins) enters the cell; (c) the core releases its content in the cell

cytoplasm; (d) the viral RNA genome is converted into double-stranded

DNA through an enzyme unique to viruses, reverse transcriptase;

(e) The double-stranded viral (linear) DNA moves into the cell nucleus;

(f) using the viral enzyme called integrase, the viral DNA is integrated

into the cellular DNA; (g) Viral RNA is synthesized by the cellular

enzyme RNA polymerase II using integrated viral DNA as a template.

Two types of RNA transcripts mRNA and genomic RNA are

produced; (h) mRNAs are transported to the cytoplasm and used for

the production of several viral proteins that are then modified in the

Golgi apparatus of the cell; Genomic RNA is transported to the

cytoplasm as it is; (l) a new virion is assembled and then buds off.

HAART yes/no (1/0)

2 3 64 232221185 2019week 1

C
hrom

osom
e

1 1 1 1 11 1 10 0 00 0

Genes

0

Fig. 2. Figure describing the HAART schedule as a chromosome of the

genetic algorithm. A chromosome represents one possible drug

administration schedule. It is a binary string of 24 bits where the jth

bit when set equal to one means that during the jth week of the

therapeutic period, the patient takes the antiretroviral drugs (both

RTI and PI). If the chromosome jth bit is set equal to zero, then no

HAART is applied.
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from parents with the same probability. Mutation acts as follows: first,

a gene subject to mutation is chosen with probability p¼ 1/gn, where gn
represents the number of chromosome’s genes; second, the selected gene

is set equal to 1 with probability p¼ 1/ps and to 0 with probability

p¼ 1� (1/ps), where ps represents the population size. Elitism is used

on two specific elements of the population: (i) best fitness element;

(ii) second best fitness element.

As already mentioned, to determine the quality (i.e. the fitness) of

each chromosome of the population we used the C-IMMSIM simulator

(Castiglione and Bernaschi, 2005; Castiglione et al., 2004) that takes a

non-negligible amount of time to run. That is why we developed a

parallel implementation of the GA.

The parallel implementation works on any cluster of systems. The

only requirement is the availability of a shared filesystem in order to

exchange data among different computational nodes.

The implementation adopts a quite simple master/slave scheme. The

master node reads the parameters in input, generates the initial random

population of chromosomes (i.e. the different therapies) and dispatches

to slaves a subset of all therapies constituting the chromosome

population. Then, master and slaves set up all files required for the

simulation and run. At the end of the simulation of all assigned

therapies, the master node computes the fitness of each therapy by

looking at the dynamics of HIV and CD4 cell count generated by the

simulations. Then, it applies typical operations of genetic algorithms

(i.e. selection, crossover, mutation and elitism) on the original

population and dispatches to slave nodes the newly generated

population. This process is repeated for a predefined number of

generations.

The workload of the master for the computation of the fitness

function is negligible compared to running a simulation. Moreover,

since the communication between master and slaves is reduced to the

dispatch of the chromosome population, and also because the

simulations are completely independent each other, this parallel

implementation scales very well with the number of processors.

One of the crucial elements of a successful genetic search is a careful

definition of the fitness function that measures how good a solution is

for the optimization problem under study. In the present case, each

potential solution (represented by a possible therapy) receives a score

based on the results of a simulation of the dynamics of HIV and CD4

cell count during the therapeutic period made by means of the

C-IMMSIM simulator. It is reasonable to assume that a therapy resulting

in (i) a lower level of HIV (both free and viral), (ii) a higher CD4 count

and (iii) a reduced number of pills to be administered, should be given a

high score (fitness).

Therefore, we compute the fitness F g
i of the therapy i at generation

g as the sum of three terms:

� HIV load, computed by summing the free and proviral load divided

by viral set point in the beginning of therapy;

� CD4 fitness, given by the average of the ratio between the CD4 in

the beginning of the simulation (i.e. before the infection, which

corresponds to the normal CD4 count) and the actual CD4 count

during the therapeutic period;

� The number of active therapy days divided by the total number of

days in the therapeutic period.

Hereafter ts indicates the time the therapy starts; te the time the

therapy ends; for each therapy i at generation g, Hg
i ðtÞ is the sum of free

virions and proviral HIV in infected cells; Dg
i ðtÞ the CD4 T helper cell

count in the simulated space and finally z g
i ðtÞ is a function such that

z g
i ðtÞ ¼ 1 if the therapy is active at time t, zero otherwise.

The fitness of the ith individual (therapy) at generation g can be

written as follows:

F
g
i ¼ H

g
i þD

g
i þ z

g
i

where

H
g
i ¼

1

ðte � tsÞ

Xte

t¼ts

H g
i ðtÞ

Hg
i ðtsÞ

;

D
g
i ¼

1

ðte � tsÞ

Xte

t¼ts

D g
i ð0Þ

D g
i ðtÞ

;

z
g
i ¼

1

te � ts

Xte

t¼ts

z g
i ðtÞ:

The optimization consists in finding the best individual j (therapy)

corresponding to the minimal value of the affinity function, i.e.

j ¼ mini F
g
i .

4 DISCUSSION

As already mentioned, we set ts¼ 7.5 years from infection and

te¼ ts¼+6 months, i.e. the therapeutic horizon is 6 months.

Simulated space is 5 cubic millimeters of a lymph node.
The genetic algorithm population is composed by individuals

with identical initial settings that, as a consequence, show a

similar (but not identical, due to the stochastic components of

the model) dynamics. Individual variations account for a

different repertoire and a different major Histocompatibility

complex (MHC) that determine a different wild-type immuno-

genicity. In the GA optimization, a population of 32 individuals

is used corresponding to 32 different therapeutic schedules. For

each therapy, a set of 16 virtual patients was used to account

for differences among patients (this avoids that the optimal

therapy depends too much on the specific features of a single

patient). Therefore, the population size is 32� 16¼ 512.
The GA ran on 60 generations. Although population size and

number of generations could appear limited, it is important to

note that the number of simulations required to obtain the

optimal therapy is equal to 32� 16� 60¼ 30 720. Since each

simulation requires on, average, 30 mins on a high-end PC, we

resorted to a cluster of 128 PC to carry out this GA

optimization. Note that, by employing uniform crossover and

tournament selection in the genetic search we compensated the

limited population size that we were forced to adopt for

computational reasons.

The optimal therapy found after 60 generations on a

population of N¼ 32� 16 individuals, is displayed in Figure 3.
Figure 4 shows the average fitness 5Fg4¼ 1

N

P
i F

g
i com-

puted on all individuals at each generation g. Note that the

average fitness is not strictly monotone decreasing since this is

not the fitness of best adapted individual but the average

among all individuals. However, it shows clearly a plateau

indicating a lack of (or very small) improvement for genera-

tions greater than �50.
Among the three components of F g

i , it is z
g
i that results to be

the most decisive in determining the efficacy of the therapy.

This is in line with the evaluation of the best therapy (described

below), which shows that the optimal therapy is able to achieve

a performance comparable with the ‘full’ therapy but with

reduced drug dosage.
To show that the ‘optimal’ therapy resulting from the

GA-based optimization really achieves immune reconstitution

and it does so with ‘minimal’ drug administration, we

performed four sets of experiments in which, after the therapy,

HAART with genetic algorithms
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the simulated patient is challenged by four injections of

bacteria. In normal conditions (i.e. for a healthy organism)

the bacteria are eliminated whereas, under immunodeficient

conditions, the bacteria grow undisturbed due to the lack of a

strong immune response. By counting, on a set of 200 runs, the

number of survivors, we computed the survival curves for each

of the following four groups: for the first group of simulated

patients the optimal therapy is applied; for the second group a

‘full’ therapy is applied, in which drugs are administered every

day during the simulated therapeutic period; for the third group

a ‘random’ therapy is applied in which the total number of

therapy days is equal to that of the optimal therapy but the

distribution is at random within the therapeutic period and,

finally, in the fourth group there is no therapy (‘void therapy’),

i.e. no drug is administered to the virtual patient. Both full- and

void-therapy need to be considered as possible control groups

since the efficacy of any therapy must, obviously, remain within

the values of efficacy shown by these two extreme protocols.

The resulting survival curves are shown in Figure 5. As

expected, the survival curve shows better performances for the

full (34.11% survivals) and optimal (30.5%) therapies with

respect to the random (21.86%) and void (20.25%) therapies.

Moreover, the optimal therapy shows a performance close to

the full therapy, that is close to the upper bound of efficacy,

whereas the random therapy a performance close to the lower

bound corresponding to the absence of therapy. Note also that

in any case there is 100% of survival because complete immune

restoration is never achieved, also in the full therapy case. On

the other hand, the fact that the void therapy is able to

guarantee (about) a 20% of survival can be explained by the

fact that a weak immune system (low CD4 cell count) is not an

absent immune system and therefore some survivors are

possible due to the existence of minimal residual defense.
Finally, it is worth to mention that the optimal therapy uses

� 40% less medicine than the full therapy although it achieves

comparable survival results. This is particularly significant

since we started from the reasonable assumptions that the full

HAART has the best therapeutic effects but also the largest

(undesirable) side effects (whereas, in absence of therapy there

are no side effects at all but, obviously, not even therapeutic

effects), and looked for an optimal interruptions schedule that

could reduce undesirable side effects. The optimal schedule

found by the genetic algorithm does not avoid completely the

side effects of the therapy but reduces them maintaining at the

same time a level of efficacy very close to the full therapy as

shown by the survival curves in figure Figure 5. These results

are summarized in Table 1.

Patient is infected
with bacteria

day 0 day 3000

day 2910

day 2730 day 2905

Start simulation End of simulation

Patient is infected
with HIV

HAART

Fig. 3. Simulated patients are infected at time zero and start therapy at

day 2730 after infection (7.5 years). The best therapy found by genetic

optimization is shown on top. After therapy has terminated, an

opportunistic infection challenges the simulated patients. The immune

response to the antigen is monitored until the end of the simulation.

If the antigen count reaches the limiting value of 40� 106 copies/

microliter then the virtual patient is declared death and the simulation

stops. Efficient therapies achieve an immune restoration sufficient for

containing the antigen growth.
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Fig. 5. Survival curve for four different protocols. Full therapy is the

therapy applied each day. Optimal therapy is the therapy computed by

the genetic algorithm. Random therapy is a therapy with a total number

of therapy days equal to that of the optimal therapy but a random

distribution within the therapeutic period. Void therapy is the case

where no therapy is applied. Survival curves show a better performance

of the full and the optimal therapies with respect to the random and the

void therapies. Note how the optimal therapy shows an efficacy close to

the full therapy whereas the random therapy an efficacy close to the

case of absence of therapy. The inset plot shows a restricted range of the

same plot.
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5 CONCLUSION

By means of genetic algorithms we find an optimal schedule of

HAART based on structured interruptions. The effects of the

therapy have been simulated using an agent-based model of the

immune system that reproduces the most significant features

of the response of an organism to the HIV-1 infection.
The resulting optimal schedule has been validated by running

independent simulations with control groups. In particular, the

optimal schedule achieves a performance comparable to a full-

time therapy with a significant reduction of drug dosage.
Although these tests cannot be considered a validation

protocol, they indicate that the underlying model is coherent

and can be a viable alternative to animal models in the

preliminary phase of designing in vivo experiments.
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Table 1. Comparison among the four different therapy schedules

Therapy Number therapy weeks Survival rate (%)

Full 25 34.11

Best 15 30.50

Random 15 21.86

Void 0 20.25

The optimal therapy shows a performance close to the full therapy, although it is

administered for fewer weeks (i.e. 15 versus 25). With the same number of

therapeutic weeks, the random therapy shows a performance close to the lower

bound corresponding to the void therapy.
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