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Abstract

Summary: Simulated data is crucial for evaluating epistasis detection tools in genome-wide association
studies. Existing simulators are limited, as they do not account for linkage disequilibrium (LD), support
limited interaction models of single nucleotide polymorphisms (SNPs) and only dichotomous phenotypes,
or depend on proprietary software. In contrast, EpiGEN supports SNP interactions of arbitrary order,
produces realistic LD patterns, and can generate both categorical and quantitative phenotypes.
Availability and Implementation: EpiGEN is implemented in Python 3 and is freely available at
https://github.com/baumbachlab/epigen.
Contact: david.blumenthal@wzw.tum.de, tim.kacprowski@wzw.tum.de
Supplementary information: A detailed user guide for EpiGEN is available at Bioinformatics online.

1 Introduction
The goal of genome-wide association studies (GWAS) is to link genetic
variants to phenotypic traits of interest, most commonly a disease (Bush
and Moore, 2012). More specifically, GWAS usually look for biallelic
single nucleotid polymorphisms (SNPs) that are predictive of the phenotype.
While thousands of SNPs have been associated with diseases since the
early 2000s (MacArthur et al., 2017), they can account only for a fraction
of the investigated traits’ heritability. The most common hypothesis is that
the missing heritability can be explained by epistasis, i. e., by interactions
between SNPs that are jointly predictive of the phenotype but individually
have little or no effect (Manolio et al., 2009). Various epistasis detection
tools have been proposed (Jing and Shen, 2015; Niel et al., 2015; Chatelain
et al., 2018; Ansarifar and Wang, 2019; Chattopadhyay and Lu, 2019; Cao
et al., 2020). For evaluation, availability of simulated data is crucial.

Popular epistasis simulators include GWAsimulator (Li and Li, 2008),
HAPGEN2 (Su et al., 2011), GAMETES (Urbanowicz et al., 2012), EpiSIM
(Shang et al., 2013), simGWA (Yang and Gu, 2013), and TriadSim (Shi et al.,
2018). However, all of them are limited in different aspects (cf. Table 1).
Most notably, none of them can generate arbitrary (i. e., dichotomous,
categorical, and quantitative) phenotypes or simulate observation bias.
Moreover, many tools can simulate only pairwise interactions, are restricted
to specific epistasis models (e. g., multiplicative interactions), and are not
straight-forward to use as they require third-party input files.

Further approaches for simulating epistasis have been described by
Chatelain et al. (2018) and Id-Lahoucine et al. (2019) but lack of publicly
available implementations. Moreover, in (Chatelain et al., 2018), only
dichotomous phenotypes are supported, while the algorithm described
by Id-Lahoucine et al. (2019) does not generate phenotypes but positive,
negative, or neutral directions of epistatic selection. There are also various
tools for simulating genotype data without phenotypes (Siragusa et al., 2019;
Peng et al., 2019; Juan et al., 2020), which could substitute HAPGEN2 in
the first step of the simulation pipeline (cf. Sec. 2.1).

Table 1. Features of EpiGEN and existing epistasis simulators.
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generates arbitrary phenotypes 7 7 7 7 7 7 3

simulates observation bias 7 7 7 7 7 7 3

generates realistic LD patterns 3 3 7 3 3 3 3

supports MAF specification 7 7 3 3 3 7 3

simulates higher-order interactions 3 7 3 7 3 3 3

allows arbitrary epistasis models 7 7 3 7 3 7 3

requires no proprietary software 3 3 3 7 3 3 3

requires no third-party input files 7 7 3 3 7 3 3
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Fig. 1. EpiGEN’s simulation pipeline. G′: genotype corpus generated by HAPGEN2; S ′

and I ′: G′’s sets of SNPs and individuals; G: final genotype matrix; S ⊆S ′ and I ⊆I ′:
G’s sets of SNPs and individuals; y: phenotype vector; S⊆S : set of disease SNPs.

Since existing tools lack numerous features important for comprehensive
simulation of epistasis, we have developed EpiGEN — a generically
applicable, easy-to-deploy and feature-rich epistasis simulation pipeline.

2 Simulation pipeline
EpiGEN generates a genotype matrix G = (gs,i) ∈ {0,1,2}|S |×|I |, a
disease SNP set S ⊂S , and a phenotype vector y = (yi) ∈ P|I |, where
P = R for quantitative phenotypes and P = {0, . . . ,c− 1} for discrete
phenotypes with c categories. The entry gs,i of G encodes individual i’s
number of minor alleles at SNP s. EpiGEN’s simulation pipeline (Fig. 1)
consists of four sub-routines, described in detail in the following sections:

1. Call HAPGEN2 to generate genotype corpus G′ ∈ {0,1,2}|S ′|×|I ′|.
2. Subsample the SNP sets S ⊆S ′ and S⊆S .
3. Generate the phenotypes by applying an epistasis model to S.
4. Subsample the individuals I ⊆I ′.

2.1 Generating the genotype corpus

EpiGEN requires (a) a set of chromosomes for which G′ should be generated;
(b) a HapMap 3 population code (Altshuler et al., 2010); (c) the number
NI ′ of individuals in the corpus. For each chromosome, EpiGEN generates
a genotype corpus for NI ′ individuals by calling HAPGEN2 without
disease SNPs for the selected HapMap 3 reference panel. This ensures
that LD is modeled adequately. The joint corpus G′ is then obtained as the
concatenation of the corpora for the chromosomes. Since this step is by
far the computationally most expensive sub-routine, we ship EpiGEN with
pre-computed corpora for all chromosomes, all population codes, and 104

individuals (around 20 GB download size). Of course, the user can also
generate her own corpora. Note that, in principle, HAPGEN2 could be
substituted by any genotype simulator that produces realistic LD patterns.

2.2 Subsampling the SNPs

EpiGEN samples SNP sets S and S that respect user-defined side
constraints. To that end, EpiGEN requires (a) the set S of disease SNPs or
the size d of S and a range r1 ⊆ [0,1] of acceptable MAFs for all disease
SNPs s ∈ S; (b) the number NS of SNPs in the final genotype matrix G;
(c) a range r2 ⊆ [0,1] of acceptable MAFs for all SNPs s ∈S \ S. If S
is not provided by the user, EpiGEN samples S by randomly selecting d
SNPs from S ′ whose MAFs fall into the range r1. Subsequently, EpiGEN
initializes S := S and then extends S by sampling NS −d SNPs from
S ′ \ S whose MAFs fall into the range r2. Both ranges are extended
dynamically if too few SNPs satisfy these constraints.

2.3 Generating the phenotypes

Once the SNP sets S and S have been selected, EpiGEN generates
phenotypes for all individuals by applying a user-specified d-dimensional
epistasis model M : {0,1,2}d → D(P). D(P) denotes a set of suitable
probability distributions for phenotypes from P. If P= {0, . . . ,c−1}, we
define D(P) as the set of all categorical distributions with c categories;
if P= R, D(P) is the set of all normal distributions. For each individual
i ∈I ′, the phenotype yi is drawn from the distribution M(gS(i)), where
gS(i) := (gs,i)s∈S is i’s genotype at the SNPs contained in S. Epistasis
models hence generalize penetrance tables, which are often used to model
epistatic interaction in the case P= {0,1} (Wang et al., 2010; Urbanowicz
et al., 2012; Shang et al., 2013; Jing and Shen, 2015; Cao et al., 2020).

The epistasis model M can be specified either (a) by a full extensional
definition or (b) as a combination of parameterized risk models for
dichotomous and quantitative phenotypes. If P = R, M is extensionally
defined via parameters µg and σg of the normal distribution M(g) for each
genotype g∈ {0,1,2}d . If P= {0, . . . ,c−1}, probability vectors pg ∈Rc

≥0
for all g∈ {0,1,2}d must be provided. If c = 2, these vectors can optionally
be generated with tools such as GAMETES designed for this purpose.

For dichotomous and quantitative phenotypes, EpiGEN alternatively
provides the option to specify M via a set M of parametrized d-dimensional
risk models R : {0,1,2}d → R>0 (explained below). Given M , EpiGEN
defines the joint epistasis model M as follows: For each genotype g ∈
{0,1,2}d , let M (g) :=∏R∈M R(g) be the joint risk of the models contained
in M . If P= {0,1}, M (g) represents the disease odd of genotype g, and
the vector of probabilities of the categorical distribution M(g) is defined as
pg := (1− pg1, pg1), where pg1 := M (g)/(1+M (g)). If P= R, M (g) is
interpreted as the mean µg of the normal distribution M(g). The standard
deviations are globally set to σg := σ , where σ is provided by the user.

Three different kinds of risk models are available, namely, baseline
models Rbas

α , marginal models Rmar
α,t,s, and interaction models Rint

α,t′,S′ , where
α ∈ R>0, t ∈ {a,d,r}, t ′ ∈ {m,e,d,r}, s ∈ S, and S′ ⊆ S are parameters
provided by the user. Rbas

α models the baseline risk, i. e., is simply defined
as Rbas

α (gS(i)) := α . At most one baseline model can be included into
M . Rmar

s,a,α , Rmar
s,d,α , and Rmar

s,r,α model, respectively, additive, dominant, and
recessive marginal effects. They are defined as

Rmar
α,a,s(gS(i)) := [gs,i = 0]+

α ·gs,i

2
· [gs,i > 0]

Rmar
α,d,s(gS(i)) := [gs,i = 0]+α · [gs,i > 0]

Rmar
α,r,s(gS(i)) := [gs,i < 2]+α · [gs,i = 2],

where [true] := 1 and [false] := 0. For each SNP s ∈ S, at most one
marginal model can be included into M . Finally, the interaction models
Rint

α,m,S′ , Rint
α,e,S′ , Rint

α,d,S′ , and Rint
α,r,S′ model, respectively, multiplicative,

exponential, joint-dominant, and joint-recessive interaction. At most one
interaction model per SNP subset S′ ⊆ S can be included into M . The
interaction models are visualized in Fig. 2 and formally defined as follows:

Rint
α,m,S′ (gS(i)) := α∑s∈S′ gs,i

Rint
α,e,S′ (gS(i)) := α∏s∈S′ gs,i

Rint
α,d,S′ (gS(i)) :=

(
1−∏

s∈S′
[gs,i > 0]

)
+α ·∏

s∈S′
[gs,i > 0]

Rint
α,r,S′ (gS(i)) :=

(
1−∏

s∈S′
[gs,i = 2]

)
+α ·∏

s∈S′
[gs,i = 2]

Further interaction models can easily be implemented by the user. Detailed
instructions can be found in EpiGEN’s user guide.

Assume, for instance, that we want to generate dichotomous phenotypes
with baseline risk 0.25 and a joint-dominant interaction of the SNPs s1 and
s2 with intensity α = 6. Let i1 and i2 be individuals whose genotypes at
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Fig. 2. Available parametrized interaction models for the case |S′|= 2: (a) multiplicative,
(b) exponential, (c) joint-dominant, and (d) joint-recessive interaction.i
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Fig. 3. Runtime vs. number of individuals (a), SNPs (b), and simulated datasets (c).

S = {s1,s2} equal gS(i1) = (1,2) and gS(i2) = (2,2). Then i1’s and i2’s
overall risks are M (gS(i1)) = 0.25 and M (gS(i2)) = 1.5, and i1’s and i2’s
phenotypes are drawn from D1 = (0.8,0.2) and D2 = (0.4,0.6).

2.4 Subsampling the individuals

The final step is to subsample the individuals, i. e., to select the set I ⊆I ′

of individuals for which the geno- and phenotypes are returned, based on
(a) the number NI ≤ NI ′ of individuals to be sampled and optionally (b)
a target distribution D ∈D(P) modeling observation bias.

If no target distribution is provided, I is constructed by uniformly
sampling NI individuals from I ′. Otherwise, individuals are randomly
sampled such that the obtained phenotype distribution is expected to be
similar to D. For categorical phenotypes, this is achieved by defining
sampling probabilities p′i := (pyi · f (yi)

−1)/∑i′∈I ′ (pyi′ · f (yi′ )
−1) for all

i ∈I ′, where p := (pl)l∈P is the target distribution’s probability vector
and f (x) is the number individuals i ∈ I ′ with phenotypes yi = x. For
quantitative phenotypes, f (x) is the number of individuals i ∈I ′ whose
phenotypes yi fall into the same bin defined by the 1000-quantiles of D as x.
Sampling probabilities are then defined as p′i := f (yi)

−1/∑i′∈I ′ f (yi′ )
−1.

3 Scalability
Fig. 3 shows the runtime behavior of EpiGEN for varying numbers of
individuals, SNPs, and simulated datasets, when run from one of the pre-
computed genotype corpora shipped with EpiGEN. The tests were run
on a MacBook Pro 2019 with a 2.8 GHz quad-core Intel i7 processor and
16 GB of main memory running macOS Catalina. EpiGEN can generate
epistasis data with 105 SNPs and 104 individuals in around 12 minutes;
and increasing |I |, |S |, and the number of datasets slows down EpiGEN
only very moderately (note the logarithmic scale of the x-axes). Generating
the genotype corpora shipped with EpiGEN took 49 minutes, on average.

4 Conclusions
EpiGEN is a generic epistasis simulation pipeline that can generate
dichotomous, categorical, and quantitative phenotypes, can simulate
observation bias, and allows the user to select SNPs based on their MAFs.

Epistasis models can be provided via extensional definitions or be specified
in terms of parametrized risk models. In future work, we will use EpiGEN
for systematically evaluating new and existing epistasis detection tools.
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