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ABSTRACT This paper presents a dataset to support researchers in the validation process of solutions
such as Intrusion Detection Systems (IDS) based on artificial intelligence and machine learning techniques
for the detection and categorization of threats in Cyber Physical Systems (CPS). To this end, data have been
acquired from a hardware-in-the-loop Water Distribution Testbed (WDT) which emulates water flowing
between eight tanks via solenoid-valves, pumps, pressure and flow sensors. The testbed is composed of
a real subsystem which is virtually connected to a simulated one. The proposed dataset encompasses both
physical and network data in order to highlight the consequences of attacks in the physical process as well as
in network traffic behaviour. Simulations data are organized in four different acquisitions for a total duration
of 2 hours by considering normal scenario and multiple anomalies due to cyber and physical attacks.

INDEX TERMS artificial intelligence, cyber-physical systems, dataset, intrusion detection, machine
learning, water distribution, security, testbed, threat recognition

I. INTRODUCTION

INDUSTRIAL Control Systems (ICS) are composed of
physical and cyber components used to control industrial

processes such as in the case of manufacturing, production,
and distribution scenarios [1]. Those key elements are also
known as Cyber-Physical Systems (CPS), which enable the
connection between the operations of the industrial physical
plant and the computing and communication infrastructure
[2]. They have a crucial role in an ICS because they define
both the correct behaviour of the physical process and the
correct communication with the Supervisory Control and
Data Acquisition (SCADA) systems. CPSs are widely em-
ployed in different fields such as smart grids [3] [4], oil and
natural gas pipelines [5] and water treatment [6]. Because of
their critical role, physical faults, such as broken valves or
pumps and cyber attacks can lead to dangerous consequences
which can vary from simple modifications of network traffic
behaviour, such as scanning attacks, to catastrophic events
such as loss of service and kinetic effects with dangerous
consequences in terms of injury to people, environmental
pollution, and physical damage to equipment [4].
In particular, during the last years, cyber-security has become
a critical concern in ICSs due to the widespread usage of

wireless networks as well as the opening of industrial net-
works to the Internet. Despite the benefits of such strategies,
such as remote maintenance, simpler adjustment of machines
and a constant flow of information, the number of attacks
against ICS networks has significantly increased, as reported
by Kaspersky in its ICS-CERT annual report [7].
For these reasons, different types of testbeds are needed to
measure the effects of cyber and physical attacks on indus-
trial processes and to assess security countermeasures, as
witnessed by the results reported in recent scientific literature
[8], [9], [10].
Among the most widespread solutions to secure CPSs, we

can mention Intrusion Detection Systems (IDS) and Intru-
sion Prevention Systems (IPS) [13], for network monitoring
(NIDS) and host monitoring (HIDS). In particular, recent
scientific literature is addressing areas such as artificial in-
telligence and machine learning for IDSs and IPSs [14],
[15], which seem to be particularly effective in recognizing
unforeseen attacks [16], [17], [18]. A crucial point is the
evaluation of these systems in order to assess their ability to
detect attacks: to that aim, realistic and sufficiently complex
datasets are necessary.
Scientific literature provides some datasets such as KDD-
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Network data Physical dataDataset Available N° of samples N° of features Available N° of samples N° of features
[11] X X X X 66.893 7
[12] X ∼ 400 M 18 X ∼ 1 M 51

Our solution X ∼ 20 M 15 X 9206 41
Attack types Testbed

DoS attack MITM attack Scanning attack Physical attacks N° of PLC N° of sensors N° of tanks N° of actuators
[11] X X X X 1 5 2 2
[12] X X X X 6 24 3 27

Our solution X X X X 4 12 8 28

TABLE 1: Datasets comparison in terms of network data, physical data, attack types and testbed structure

99 [19] with its updated version NSL-KDD99 [20], UNSW-
NB15 [21] and CTU-13 dataset [22]; however, all of them
present Information Technology (IT) network traffic without
any reference to physical plants. Therefore, there is the
need for new datasets with traffic taken from Operational
Technology (OT) networks where hardware and software
are used to monitor and control physical processes, devices
and infrastructure [23]. Moreover, in addition to the network
traffic, data taken from Programmable Logic Controllers
(PLC) are necessary in order to inquire the effects of cyber
and physical attacks against the physical plant [24].
In [11], the authors provide a CPS dataset composed of two
tanks, two pumps, one ultrasound sensor, four liquid level
sensors and one PLC. Data consist of PLC register values
which are reported in 15 csv different files. Each of these
refers to normal traffic and different types of attacks both
physical, such as a person hitting a tank and cyber such
as Denial of Service (DoS). The excessive simplicity and
the lack of network traffic make this dataset insufficient to
guarantee a realistic evaluation of IDSs or IPSs.
On the other hand, the dataset described in [12] is more com-
plex and sophisticated: it is provided by iTrust, the Centre for
Research in Cyber Security at the Singapore University. The
dataset refers to a Secure Water Treatment (SWAT) testbed
consisting of six different stages each of which characterized
by a particular physical process controlled by one PLC. Data
are reported in csv files: one refers to the physical variables
read from PLCs while other 784 files report MODBUS-only
network traffic. Attacks are launched against the physical ele-
ments such as pumps or valves or against the communication
network between sensors, actuators and PLCs in order to
corrupt exchanged information. Thus, there is no reference
to different types of cyber attack such as DoS and scanning
attacks which are typically launched against ICS networks,
as described in [25] and in [26]. Moreover, the authors do not
consider attacks against the communication network between
the SCADA, which acquires the data, and the PLCs. Another
possible issue of this dataset is the size; specifically, authors
provide about 1 million samples for the physical dataset and a
total of about 400 million samples for the network one. This
characteristic leads researchers to adopt small and random
subsets of the dataset causing serious difficulty in comparing
results of different research works, as happened in [27] and
explained in [20].
This paper aims to overcome these limitations by providing
a hardware-in-the-loop cyber-physical dataset obtained from

a Water Distribution Testbed (WDT) [28]. The testbed is
partially simulated thanks to the minicps tool in order to
represent a more complex scenario by increasing the number
of tanks and PLCs connected to the ICS network [29]. Data
are both physical measurements taken from PLCs and net-
work traffic presenting normal and malicious packets under
different types of attacks. Moreover, the limited number of
samples makes it affordable to test different IDS solutions on
the complete set without the need to select a small random
partition. In fact, even if the complexity of a dataset is
important in order to faithfully emulate a real industrial plant,
a too large dataset is not properly managed by machine learn-
ing algorithms reducing its usability [30]. Thus, evaluation
results of different papers could be effectively compared in
order to identify the best algorithms without any influence
from the selected random data partitions.
Therefore, the main contributions are as follows:
• An ICS dataset which provides both physical and net-

work data in order to highlight the relations between
cyber and physical aspects of the system.

• A balanced complex dataset which can provide a higher
number of cyber and physical attack types and more
realistic scenarios by keeping, at the same time, a small
number of samples. In this way, we provide a reduced
sized dataset which ensures a good trade-off between
complexity and usability.

Table 1 summarizes the key features of our dataset in
relation to those described in [11] and [12].

The remainder of the paper is organised as follows. Section
2 describes the water distribution testbed and network topol-
ogy. Section 3 describes the data acquisition and the attacks
launched against the testbed. Section 4 describes the orga-
nization of the dataset. Section 5 provides some preliminary
results by applying four machine learning algorithms; while
Section 6 concludes the paper.

II. WATER DISTRIBUTION TESTBED
A. PHYSICAL CHARACTERISTICS
The WDT is composed of two main subsystems: a real one
and a simulated one. As illustrated in Figure 1, the real
subsystem consists of 5 tanks (T r

1 . . . T r
5 ), 20 solenoid valves

(V r
1 . . . V r

20), 4 pumps (P r
1 . . . P r

4 ) and 5 pressure sensors
(Sr

1 . . . Sr
5 ) under each tank. In addition, 8 manual valves

are provided in order to simulate water leaks from tanks or
pipes. Specifically, tanks are made of polyurethane and are
characterized by the following dimensions:
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FIGURE 1: Real subsystem of the WDT

• Sr
3 and Sr

4 : height = 36cm, circumference = 70cm
• Sr

1 and Sr
2 : height = 45cm, circumference = 90cm

• Sr
5 : height = 40cm, circumference = 100cm

Solenoid valves are Evian©Series 263-Model D263DVP
powered at 24V. Each tank has a multiple number of outlet
valves in order to modulate the output flow. Specifically, as
shown in Figure 2, T r

1 is equipped with outlet valves V r
1 , V r

2 ,
V r
3 and V r

4 ; T r
2 with V r

5 , V r
6 , V r

7 and V r
8 ; T r

3 with V r
10, V r

11

and V r
12; T r

4 with V r
13, V r

14 and V r
15 and T r

5 with V r
19 and V r

20.
Pressure sensors are WIKA©S-11, with a measurement
range of 0 . . . 0.1 bar.
Pumps P r

1 , P r
2 and P r

3 are Mini-Type Pipe Pump 151410
with a maximum flow of 20l/min while P r

4 is a EK-DCP
2.2 with a maximum flow of 6l/min.
Tanks are connected by pipes in cross-linked multi-layer
polyurethane (PE-Xb) with an external diameter of 7/8′′.

The simulated subsystem has been implemented by using
the minicps tool, a lightweight simulator for accurate network
traffic in industrial control systems, with basic support for
physical layer interaction. It was installed in an Ubuntu
machine with the following characteristics: Intel® Xeon®
CPU E5-2620 v2 @ 2.10 GHz with a RAM of 16 GB.
As illustrated in Figure 2, the simulated environment adds
complexity to the real testbed with the addition of 3 tanks
(T s

6 . . . T s
8 ), 2 pumps (P s

5 , P s
6 ), 4 flow sensors (F s

1 . . . F s
4 ),

2 solenoid valves (V s
21, V s

22) and 3 pressure sensors (Ss
6 . . .

Ss
8) for each tank. Specifically, tanks are modelled with a

circumference of 100cm and a height of 40cm. Pipes are
modeled with an external diameter of 7/8′′ while pumps are
characterized by a flow of 4l/min.
The two subsystems form a water distribution testbed in a
hardware-in-the-loop fashion where water flow goes from the
real subsystem to the simulated one and vice versa.

B. PROCESS DETAILS

For the sake of clarity, we now describe the details about the
nominal behaviour of the process. According to the scheme
represented in Figure 3, the process consists of four stages
each of which is controlled by a specific PLC. The first stage
S1, which is controlled by the real PLC, PLCr

1 , begins by
pumping the water from the reservoir towards two different
paths:

• Path 1: The water is pumped by P r
1 towards T r

2 . Then,
thanks to V r

17, it starts to fill up T r
3 . When the water

level reaches a specific threshold, V r
10, V r

11 and V r
12 are

activated in order to get water back to the reservoir.
• Path 2: The water is pumped by P r

2 towards T r
1 . Then,

P r
4 is activated in order to fill up T r

5 . When the water
level reaches a specific threshold, P r

4 is deactivated. As
a result, the remaining water in T r

1 is drained towards
T r
4 thanks to the opening of V r

18 and then through valves
V r
13, V r

14 and V r
15 towards the reservoir.

The second stage S2 starts when water level in T r
5 reaches

the predefined threshold. PLCs
2 , simulated in minicps, opens

solenoid valve V r
20 and starts to fill up T s

6 : its water level
increases as much as water level in T r

5 decreases. Thus, even
if V r

20 drains the water towards the reservoir, it is virtually
deviated towards T s

6 in order to start the simulated physical
process in minicps. The water then reaches stage S3 thanks to
P s
5 controlled by PLCs

3 : T s
7 starts to fill up while F s

1 records
water flow downstream of the pump.
The last stage S4 is controlled by PLCs

4 which defines water
flowing from T s

7 towards T s
8 thanks to P s

6 . Also in this case
the water flow is measured by F s

2 . When the water level in
T s
8 reaches a specific threshold, PLCs

4 opens solenoid valve
V s
22 in order to drain virtually the water towards the reservoir.

C. NETWORK ARCHITECTURE

Network architecture is consistent with the typical three-layer
SCADA architecture defined in [31] and shown in Figure 4.
The adopted communication protocol is MODBUS TCP/IP
which is the de-facto standard used in industrial networks
[32].

The first layer is the Field Instrumentation Control Layer
which consists of sensors and actuators connected to the
PLCs via wired links. All of them are connected to the I/O
analog or digital module of the PLCs with the exception of
flow sensors F s

1 and F s
2 which are MODBUS TCP/IP sensors

with their own IP addresses.
The second layer is the Process Control Layer which consists
of the four PLCs. In particular, the real one is a Modicon
M340 equipped with BMX P342020 processors, DDM16025
discrete I/O and AMM0600 mixed analog I/O modules.
The third and last layer is the Process Control Layer which
consists of the Supervisory Control and Data Acquisition
system Movicon 11.6 installed in a Windows Server 2012
machine with the following characteristics: Intel® Xeon®
CPU E5-2620 v2 @ 2.10 GHz with a RAM of 16 GB. The
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FIGURE 2: WDT schematic: the left red rectangle represents the real subsystem while the right blue rectangle the simulated
subsystem of the water testbed. Blue rows represent virtual water flowing between the two subsystems.

FIGURE 3: WDT physical process divided into 4 stages: the first is controlled by the real PLC, PLCr
1 , while the remaining

ones are controlled by the simulated PLCs, PLCs
2 , PLCs

3 and PLCs
4

FIGURE 4: SCADA architecture FIGURE 5: SCADA network
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Type Class Subclass Description
Cyber Man-In-The-Middle (MITM)

attack
ARP poisoning Attack against MODBUS communication

protocol with the intention to modify packets
data payload

Cyber
Denial of
Service (DoS)
attack

TCP flood Attack against single hosts
with the intention to
saturate their resources and
to disconnect them from
the network

ICMP flood
Land attack

Cyber Scanning
attack

SYN scan Attack against hosts with
the intention to gather
network information about
these devices

FIN scan
Null scan
XMAS scan

Physical Water leak Opening of manual valves Attack consisting in opening manual valves in
order to generate water leaks from tanks

Physical Sensors and pumps break-
down

Attack consisting in blocking sensors and
pumps

TABLE 2: Cyber and physical attacks

First acquisition attack_1.csv, phy_att_1.csv
# scenario Start time End time Type of attack Effects on

physical
process

Effects on net-
work traffic

Elapsed time Cycle

1.1 09/04/2021 18:25:48 09/04/2021 18:28:14 Cyber: MITM attack against PLCs
2 and

PLCs
3 . Affected sensor value: Ss

6 .
X X 2’20” I

1.2 09/04/2021 18:30:08 09/04/2021 18:31:14 Physical: water leak from T r
2 towards

T r
3 and from T r

2 towards reservoir
X X 1’21” II

1.3 09/04/2021 18:34:11 09/04/2021 18:35:38 Cyber: MITM attack against PLCr
1 and

PLCs
2 . Affected sensor value: Sr

5 .
X X 1’14” III

1.4 09/04/2021 18:38:38 09/04/2021 18:39:50 Physical: P r
2 breakdown and water leak

from T r
1 towards T r

4

X X 12” IV

1.5 09/04/2021 18:43:52 09/04/2021 18:45:54 Cyber: MITM attack against PLCs
3 and

PLCs
4 . Affected sensor value: Ss

7 .
X X 5’26” IV

1.6 09/04/2021 18:49:02 09/04/2021 18:51:18 Physical: water leak from T r
2 towards

T r
3

X X 14” VI

1.7 09/04/2021 18:58:05 09/04/2021 18:59:32 Cyber: MITM attack against F s
1 and

PLCs
3 . Affected sensor value: F s

1 .
X X 3’59” VII

1.8 09/04/2021 19:00:40 09/04/2021 19:02:07 Cyber:MITM attack against F s
2 and

PLCs
3 . Affected sensor value: F s

2 .
X X 1’49” VIII

Second acquisition attack_2.csv, phy_att_2.csv
# scenario Start time End time Type of attack Effects on

physical
process

Effects on net-
work traffic

Elapsed time Cycle

2.1 19/04/2021 15:38:52 19/04/2021 15:38:52 Cyber: SYN scan against PLCr
1 X X 1’40” I

2.2 19/04/2021 15:40:09 19/04/2021 15:40:09 Cyber: FIN scan against PLCs
2 X X 2’57” I

2.3 19/04/2021 15:41:10 19/04/2021 15:41:10 Cyber: XMAS scan against PLCs
3 X X 3’58” I

2.4 19/04/2021 15:42:03 19/04/2021 15:42:03 Cyber: Null scan against PLCs
4 X X 0’0” II

2.5 19/04/2021 15:43:46 19/04/2021 15:44:22 Cyber: ICMP flood attack against
PLCr

1 from spoofed HMI IP address
X X 1’42” II

2.6 19/04/2021 15:48:15 19/04/2021 15:48:56 Physical: breakdown of P r
4 X X 1’2” III

2.7 19/04/2021 15:51:16 19/04/2021 15:51:16 Cyber: Null scan against PLCs
3 X X 4’3” III

2.8 19/04/2021 15:54:39 19/04/2021 15:55:59 Physical: breakdown of V r
20 X X 1’58” IV

2.9 19/04/2021 15:58:40 19/04/2021 15:58:40 Cyber: SYN scan against PLCr
1 X X 5’59” IV

2.10 19/04/2021 15:59:57 19/04/2021 16:00:10 Cyber: ICMP flood against PLCr
1 X X 1’12” V

2.11 19/04/2021 16:04:39 19/04/2021 16:04:39 Cyber: FIN scan against PLCs
2 X X 1’40” VI

2.12 19/04/2021 16:08:26 19/04/2021 16:10:01 Cyber: MITM attack against PLCs
3 and

PLCs
4 . Affected sensor value: Ss

7 .
X X 4’27” VI

2.13 19/04/2021 16:11:46 19/04/2021 16:12:14 Cyber: TCP flood against PLCr
1 from

spoofed PLCs
2 IP address

X X 2’58” VII

Third acquisition attack_3.csv, phy_att_3.csv
# scenario Start time End time Type of attack Effects on

physical
process

Effects on net-
work traffic

Elapsed time Cycle

3.1 09/04/2021 19:43:17 09/04/2021 19:44:08 Physical: breakdown of P r
4 X X 1’5” I

3.2 09/04/2021 19:45:52 09/04/2021 19:46:21 Cyber: ICMP flood against HMI from its
spoofed IP address

X X 3’40” I

3.3 09/04/2021 19:49:54 09/04/2021 19:50:48 Physical: breakdown of V r
20 X X 2’1” II

3.4 09/04/2021 19:54:00 09/04/2021 19:54:45 Physical: breakdown of P r
2 X X 28” III

3.5 09/04/2021 19:55:29 09/04/2021 19:56:15 Cyber: ICMP flood against PLCr
1 with

huge payloads
X X 1’58” III

3.6 09/04/2021 19:58:02 09/04/2021 19:59:09 Cyber: MITM attack against PLCs
3 and

PLCs
4 . Affected sensor value: Ss

7 .
X X 4’30” III

3.7 09/04/2021 20:01:18 09/04/2021 20:02:03 Cyber: MITM attack against PLCs
3 and

PLCs
4 . Affected sensor value: Ss

7 .
X X 2’20” IV

TABLE 3: Attack scenarios per each acquisition
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SCADA includes the Human Machine Interface (HMI) and a
Historian which reads and stores data from PLCs.

As shown in Figure 5, the communication network consists
of four PLCs, 2 MODBUS TCP/IP flow sensors, the SCADA
workstation and an additional host, a Kali Linux machine,
which was used to launch cyber attacks, described in detail
in Section III.

III. ATTACKS AGAINST THE TESTBED
As mentioned in Section I, in this work, we considered two
different types of attack:
• Physical attacks: they are defined as attacks against the

physical elements such as sensors and actuators. Some
examples are leaks from tanks and pipes, sensors or
actuators breakdown.

• Cyber attacks: they are defined as attacks against hosts
(SCADA, PLC, and flow sensor) or communication
links. Some examples are Denial of Service (DoS) at-
tacks, scanning attacks and MITM attacks.

(a)

(b)

FIGURE 6: Effect of a MITM attack against PLCs
2 and

PLCs
3 on physical process (Scenario 1.1). The attack

changes the water level value of T s
6 requested by PLCs

3 to
PLCs

2 . (a) shows the normal scenario while (b) the attack
effect. Black lines indicate the start and the end of the MITM
attack.

According to the ontology provided in [25] and [26], each
type of attack is classified and described in Table 2. Attacks
can be divided into five different classes and, for each of
them, we considered specific subclasses such as SYN scan
and FIN scan for scanning attacks [26]. All the attacks are
launched against both real and simulated subsystems of the
WDT. In particular, cyber attacks are carried out thanks to a
Kali Linux machine with the following hardware configura-

(a)

(b)

FIGURE 7: Effect of a DoS attack against PLCr
1 on physical

process (Scenario 3.5). The attack causes the disconnection
of PLCr

1 from the network causing a delay in the filling of
T s
6 . (a) shows the normal scenario while (b) the attack effect.

Black lines indicate the start and the end of the DoS attack.

(a)

(b)

FIGURE 8: Effects of a physical attack against P r
4 on the

physical process (Scenario 2.6). The attack causes the break-
down of P r

4 , which stops water flow towards T r
5 . (a) shows

the normal scenario, while (b) the effect of the attack. Black
lines indicate the start and the end of the physical attack.

tion: Intel R, Core(TM) i7-8750H CPU @2.20GHz (1CPU),
4GB RAM.
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A. ATTACK SCENARIOS
Considering the different attacks described in Table 2, we
have defined 28 attack scenarios by varying the start time
and the specific target. As summarized in Table 3, the effects
of such attacks scenarios are collected into three of the four
different acquisitions which will be described in-depth in
Section IV-A. Table 3 shows the scenarios specifying if a
particular attack has an impact on the physical process or on
the network traffic. In particular, as we expected, physical
attacks have no effect on the network traffic because they
are only focused on the testbed physical components. On
the other hand, all cyber attacks have effects against the
network traffic but not necessarily on the physical process.
This behaviour depends on three factors: the time when a
specific attack is launched, the current process state, and the
specific target. In this view, notice that despite Scenario 3.6
and Scenario 3.7 are characterized by the same attack type
(MITM), only the first one has an impact on the physical
process. Specifically, in our dataset, a MITM attack fixes the
requested sensor value at the last value read by the victim
before the attack. Thus, in these two scenarios, the attack
fixes the water level of T s

7 at the last not impaired value
requested by PLCs

4 to PLCs
3 .

The presence or absence of attack effects against both phys-
ical and network behaviour makes the classification task of
machine learning algorithms more complex and challenging,
as we will described in Section V-D.

Figures 6, 7 and 8 show three different attack scenarios
against the physical process; specifically, they refer respec-
tively to Scenario 1.1, Scenario 3.5 and Scenario 2.6.
Figure 6 shows the effects of a MITM attack against PLCs

2

and PLCs
3 . The attacker fixes the water level of T s

6 at the
last value requested by PLCs

3 to PLCs
2 before the attack. In

this way, PLCs
3 will receive always the same compromised

value for the entire duration of the attack. Thus, PLCs
3 does

not activate P s
5 causing an anomalous water level increase in

T s
6 while T s

7 remains empty until the attack ends.
Figure 7 shows the effects of a DoS attack against PLCr

1 .
The attack causes the disconnection of PLCr

1 from the
network while T r

5 is still filling up. As a result, PLCs
2 is not

able to read the actual value of water level in T r
5 delaying the

filling of T s
6 .

Figure 8 shows the effects of a physical attack against P r
4 .

The attack causes the breakdown of P r
4 which stops water

flow towards T r
5 .

IV. DATASET ANALYSIS
A. DATA ACQUISITION
With the aim to reduce the total size of the dataset, we
provide four different acquisitions characterised by an overall
duration of about 2 hours. Each acquisition consists of a
certain number of cycles of the physical process in order to
guarantee a sufficient knowledge about the normal operation
and to define the 28 attack scenarios described in Section III.
Specifically, the first acquisition lasts 1 hour and shows a total
of 12 process cycles: it refers to the WDT while working in

normal conditions without any attack. On the contrary, the
remaining three acquisitions, which last 60 minutes, provide
respectively 8, 7 and 4 process cycles. They report data about
the attacks described in Section III which cause different
effects on the physical process or on the network behaviour.
Such effects depend on the type of attack, the time at which
the attack was launched and on the particular target. Consec-
utive attacks were avoided if both of them caused significant
variations in the physical process or network traffic: in these
cases, the time between two attacks is at least equal to that
necessary to get WDT back in a safe and normal condition.
As shown in Table 2, attack scenarios are distributed along
the different cycles and are temporally separated in order to
reduce the mutual influence. Specifically, the column Cycle
defines the specific physical cycle which is affected by the
attack scenario; while, the column Elapsed time defines the
time elapsed since the beginning of the same cycle.
The acquisitions started with all tanks empty.

For each acquisition, we provide two different datasets:
a physical one, which reports the physical measurements
of sensors, solenoid valves and pumps taken from PLCs
and saved by the historical data recorder (Historian), and a
network one, which reports packets features about the traffic
exchanged in the SCADA network.
In Figures 9 and 10, the total number of samples for network
and physical datasets are reported.

FIGURE 9: Number of samples for physical dataset reported
for each acquisition

FIGURE 10: Number of samples for network dataset re-
ported for each acquisition
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B. PHYSICAL DATASET

The Historian logged the physical data every second in a
csv file. Thus, each record represents sensors, pumps and
solenoid valves states taken from the four PLCs at a particular
time. Samples are defined by 41 features which are reported
in Table 4.

C. NETWORK DATASET

Network traffic of all network segments was captured thanks
to Wireshark software. Features were extracted from the
outgoing pcap file by using Python. Specifically, features
were selected by considering that ICS networks are more
deterministic and static than IT networks where, on the
contrary, changes in terms of network topology and network
traffic are more frequent, as described in [33]. Taking this into
account, features were selected according to [34] where the
authors studied which attributes best differentiate between
anomalous and normal behaviour in ICS networks. We con-
sidered packet-based features, which assist the examination
of packets payload in addition to the headers. This choice is
justified by the presence of attacks which affect exclusively
packets payload such as the MITM attack [35], [36]. Specif-
ically, we analyzed the effectiveness and the applicability of
the following features:

• Src IP address: Source IP address. In ICS networks, IP
addresses are assigned statically; moreover, the number
of hosts is static and well-defined. Thus, the appearance
of new devices has to trigger an event.

• Dst address: Destination IP address. As for the source,
also destinations in ICS networks are fixed and well
known.

• Src MAC address: Source MAC address. Changes in
MAC to IP mapping is very infrequent. Thus, the use of
ARP messages to resolve MAC addresses of unknown
IP addresses has to be notified. Changes in this feature
could be the consequence of malfunctions or of ARP-
poisoning MITM attack.

• Dst MAC address: Destination MAC address. As for
the source, also the destinations are well-defined. Any
unknown and additional MAC address indicates the
presence of malicious hosts connected to the network.

• Src Port: Source port. In ICS networks, ports are stan-
dard and related to the configuration of hosts and to the
adopted protocols.

• Dst Port: Destination port. As for the source, also the
destination ports are static and well-defined. Unknown
ports could indicate the use of protocols which are not
allowed in the specific ICS network.

• Proto: Protocol. Protocols in ICS networks are limited
and well-defined. Thus, the appearance of new protocols
has to be reported as a network modification.

• TCP flags. In general, TCP flags are used to indicate a
specific state of a TCP connection. An attacker can vary
these protocol settings in order to gather information
about the networked devices such as in the case of

scanning attacks.
• Payload size. Packets exchanged in an ICS network

are well-defined and without extra buffering in order to
provide real-time requirements. Thus, anomalous packet
size could be the consequence of malfunctions or mali-
cious activity.

• MODBUS code: MODBUS function code. In MODBUS
protocol, the code specifies the type of PLC memory
address which is requested. Unusual read requests have
to be notified as a consequence of unauthorised PLC
access.

• MODBUS value. Abnormal payload data could be the
sign of misconfiguration or malicious actions such as
MITM attacks. Changes in MODBUS values could
cause a significant impact on the physical process.

• num_pkts_src: number of packets of the same source
address in the last 2 seconds. In ICS networks, the
number of connections between hosts is quite always
static and constant. Any variation of this value can be
the consequence of malfunctions and DoS or DDoS
attacks. This feature captures an anomalous number of
connections from one specific host.

• num_pkts_dst: number of packets of the same destina-
tion address in the last 2 seconds. This feature captures
an anomalous number of connections towards one spe-
cific target.

Table 5 summarizes the list of network features we consid-
ered in our dataset. In addition to those already described, all
the samples are identified by the datetime of acquisition.

D. LABELLING
To label the samples for each acquisition, we used attack logs
focusing in particular on the starting time, the ending time
and the type of attack. Each record is characterized by two
different labels: the first one defines the type of attack while
the second one is either 0 if the record is normal and 1 if the
record is attack. Figure 11 shows the total number of samples
divided into normal and malicious.

FIGURE 11: Total number of samples divided into normal
and malicious

E. FINAL SHAPE OF DATASETS
We provide the two datasets in 8 different csv files. In
particular, attack_1, attack_2 and attack_3 refer to normal
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№ Features Description № Features Description
1 Time Datetime of acquisition 22 Valv_3 State of solenoid valve 3
2 Tank_1 Pressure sensor value of tank 1 23 Valv_4 State of solenoid valve 4
3 Tank_2 Pressure sensor value of tank 2 24 Valv_5 State of solenoid valve 5
4 Tank_3 Pressure sensor value of tank 3 25 Valv_6 State of solenoid valve 6
5 Tank_4 Pressure sensor value of tank 4 26 Valv_7 State of solenoid valve 7
6 Tank_5 Pressure sensor value of tank 5 27 Valv_8 State of solenoid valve 8
7 Tank_6 Pressure sensor value of tank 6 28 Valv_9 State of solenoid valve 9
8 Tank_7 Pressure sensor value of tank 7 29 Valv_10 State of solenoid valve 10
9 Tank_8 Pressure sensor value of tank 8 30 Valv_11 State of solenoid valve 11
10 Pump_1 State of pump 1 31 Valv_12 State of solenoid valve 12
11 Pump_2 State of pump 2 32 Valv_13 State of solenoid valve 13
12 Pump_3 State of pump 3 33 Valv_14 State of solenoid valve 14
13 Pump_4 State of pump 4 34 Valv_15 State of solenoid valve 15
14 Pump_5 State of pump 5 35 Valv_16 State of solenoid valve 16
15 Pump_6 State of pump 6 36 Valv_17 State of solenoid valve 17
16 Flow_sensor_1 Flow sensor value 1 37 Valv_18 State of solenoid valve 18
17 Flow_sensor_2 Flow sensor value 2 38 Valv_19 State of solenoid valve 19
18 Flow_sensor_3 Flow sensor value 3 39 Valv_20 State of solenoid valve 20
19 Flow_sensor_4 Flow sensor value 4 40 Valv_21 State of solenoid valve 21
20 Valv_1 State of solenoid valve 1 41 Valv_22 State of solenoid valve 22
21 Valv_2 State of solenoid valve 2

TABLE 4: Features of physical dataset

№ Features Description
1 Time Datetime of acquisition
2 Src IP address Source IP address
3 Dst IP address Destination IP address
4 Src MAC address Source MAC address
5 Dst MAC address Destination MAC address
6 Src Port Source port
7 Dst port Destination port
8 Proto Protocol
9 TCP flags CWR | ECN | URG | ACK | PSH | RST | SYN | FIN flags
10 Payload size Size of packet payload
11 MODBUS code MODBUS function code
12 MODBUS value MODBUS response value
13 num_pkts_src Number of packets of the same source address in the last 2 seconds
14 num_pkts_dst Number of packets of the same destination address in the last 2 seconds

TABLE 5: Features of network dataset

and malicious network traffic while phy_att_1, phy_att_2 and
phy_att_3 refer to the corresponding physical values of the
WDT. Files normal and phy_norm refer to legitimate network
and physical data.
Moreover, we provide raw network traffic packets in four
pcap files: attack_1.pcap, attack_2.pcap, attack_3.pcap and
normal.pcap).
The list of the events is defined in the file README.xslx.

F. USE OF THE WDT DATASET
The WDT dataset is available at the link1 and can be used
free of charge for research and study applications (non-
commercial activities) as long as it is reported in the bibli-
ography with reference to this article.

V. MACHINE LEARNING PERFORMANCE EVALUATION
As described in Section I, our dataset wants to support
researchers in the validation of artificial intelligence and
machine learning algorithms. In this section, we show some
preliminary results by applying four different supervised ma-
chine learning algorithms to network and physical datasets.

1https://ieee-dataport.org/open-access/hardware-loop-water-distribution-
testbed-wdt-dataset-cyber-physical-security-testing

A. CLASSIFICATION TECHNIQUES

We adopted the following machine learning algorithms: K-
Nearest-Neighbor (KNN), Naïve Bayes (NB), Support Vec-
tor Machine (SVM) and Random Forest (RF).
KNN is one of the simplest classifiers [37]. It is based on the
distribution of training samples in the so-called feature space;
a test sample is classified with the most represented class by
the k-nearest training samples.
NB is a class of probabilistic classifiers based on the Bayes’
theorem which requires the strong assumption of indepen-
dence between the features. It computes the a-posteriori prob-
ability of samples to belong to one of the different classes
knowing the likelihood of the features [38].
SVM is one of the best classifier algorithms [39]. It computes
a separating hyperplane which divides samples belonging to
the two classes in the best way.
RF is an ensemble learning classifier algorithm [40]. It com-
putes a predefined number of decision trees at training time;
then it returns the most represented class by computing the
mode of the classes for each individual tree.

B. EVALUATION SETUP

Considering both network and physical data, samples from
all four acquisitions were joined in order to obtain only two
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Algorithm Performance metric Physical dataset Network dataset
Accuracy 0.98 0.77
Recall 0.95 0.44
Precision 0.95 0.68KNN

F1 score 0.95 0.53
Accuracy 0.99 0.75
Recall 0.98 0.53
Precision 0.95 0.56RF

F1 score 0.97 0.54
Accuracy 0.93 0.69
Recall 0.92 0.99
Precision 0.64 0.10SVM

F1 score 0.75 0.20
Accuracy 0.93 0.75
Recall 0.92 0.15
Precision 0.66 0.90NB

F1 score 0.77 0.27

TABLE 6: Machine learning evaluation results

different datasets: one for network traffic and one for PLC
data.
Before applying machine learning classifiers, we proceeded
with the standardization and the removal of identical records.
Specifically, we scaled all features by removing the mean and
the variance in order to make data normally distributed. Then,
we removed identical records in order to reduce possible
biases towards the more representative classes. Datasets were
divided into training and test sets using a K-Folds cross-
validation. Feature standardization was performed on train-
ing set and, subsequently, the mean and variance of training
data were used to normalize the test set.
Hyperparameters of classifiers were set as follows: k=10
for the KNN and 100 trees for RF. SVM was applied with
a Radial basis function kernel and, for Naïve Bayes, the
Gaussian version was used.
In order to implement KNN, RF, SVM and NB, we used the
Python Scikit-learn library [41].

C. PERFORMANCE METRICS
Performance of machine learning algorithms were computed
with the following metrics:
• Accuracy: is the fraction of samples correctly classified

Accuracy =
Number of correct predictions
Total number of predictions

(1)

• Recall: is the fraction of actual positive samples cor-
rectly identified

Recall =
TP

TP + FN
(2)

where, TP = True Positive and FN = False Negative. In
particular, we considered attack samples as positive and
normal samples as negative.

• Precision: is the fraction of positive identifications cor-
rectly predicted.

Precision =
TP

TP + FP
(3)

where, FP = False Positive.
• F1-score: is the harmonic mean of precision and recall.

Precision =
2

1
precision + 1

recall

(4)

D. EVALUATION RESULTS
Table 6 summarizes results in terms of Accuracy, Recall, Pre-
cision and F1-score for both physical and network datasets.
Regarding the physical dataset, we obtained performance
close to 100% for both RF and KNN; while NB and SVM
returned lower performance for Precision and Recall.
On the other hand, machine learning applied to network
dataset shows worse results. RF and KNN have better per-
formance than those provided by SVM and NB; but, in all
cases, the accuracy does not exceed 75%. Moreover, NB
shows a poor ability to correctly detect true positive samples,
as reported by the recall value which is less than 20%. On the
contrary, SVM is prone to assign as anomalous the majority
of samples, as reported by recall which is close to 100% and
by precision which is just 10%.
Finally, we can conclude that machine learning algorithms
singularly applied to network dataset are not sufficient in
order to separate malicious and normal samples acquired
from an ICS network. This behaviour is linked to the intrinsic
inability of network data to report the current state of physical
process which is essential in order to identify deviations from
the correct dynamics. Thus, taking into account physical data
from PLCs is necessary in order to properly recognize cyber
attacks which have an impact against the physical process.
Moreover, as explained in Section III, our dataset provides
some attack scenarios which have not any influence on net-
work traffic, as in the case of physical attacks. During these
scenarios, network data have not any information about the
attack in progress resulting in the inability to recognize such
attack.
On the other hand, we considered some cyber attacks, such
as scanning attacks, which have effects only on network
traffic. In these cases, physical data do not provide any
discriminative features causing performance penalty.
Thus, in order to get better performance and in order to
recognize all types of attacks, considering both network and
physical data in the classification task is necessary.

VI. CONCLUSIONS
In this paper, we provided a new hardware-in-the-loop cyber-
physical dataset obtained from a water distribution testbed.
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The testbed is composed of a real subsystem and a simulated
one, which was used in order to add complexity by increasing
the number of tanks, valves, pumps and PLCs for the control.
The dataset consists of both physical measurements and
network traffic in order to overcome well-known limitations
of the existing datasets by providing enough complexity and
a more realistic network traffic with modern attack scenarios.
Physical data was extracted by using a Historian machine,
while network traffic was captured thanks to the Wireshark
software. Such attacks were implemented in 28 different
attack scenarios which consider both cyber and physical
attacks. Their effects against physical and network dynamics
can vary depending on the time, the attack type, the specific
target and the current physical process. There are 41 features
for the physical dataset and 14 features for the network one;
in the latter, Python was used to extract and select features
which best differentiate between normal and anomalous net-
work packets.
Finally, we evaluated four machine learning algorithms,
KNN, RF, NB and SVM, which were applied to both net-
work and physical datasets. Results showed that classification
algorithms cannot detect all the attacks types if they are
applied separately on physical and network datasets. Thus,
in order to get better performance, considering both network
and physical data is necessary.
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