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ABSTRACT In the proposed work, hidden Markov model (HMM) has been deployed to improve the
learner’s performance or grades on the basis of their psychological and environmental factors like con-
nect/gather isolation, pleasure/comfort, depression, trust, anxiety, proper guidance, improper guidance,
entertainment, and stress. The categorization of psychological and environmental factors has been done
on the basis of two factors as positive and negative. The responsibility of the positive factor is to boost up
learner’s performance or grades, whereas negative factors reduce learning performance respectively. Finally,
this paper addresses the application of HMM to determine the optimal sequence of states for different states
as grades A, B, and C for different emission observations. The states identification leads to training the
HMM model where optimal value of individual states computed using different observation sequences which
determines the probability of state sequences. The probability of achieved optimal states is shown in different
logical combinations where best state is searched among available different states using different search
techniques. The computational results obtained after training are encouraging and useful.

INDEX TERMS Hidden Markov model, psychological, environmental, negative, positive, validation.

I. INTRODUCTION

E-learning, a term introduced in 1999 during CBT system
seminar is a way to learn and access emerging technolo-
gies through online interface and provides interactive or per-
sonalized training with the help of electronic media and
widgets [19], [42]. Lara et al. [33] demonstrated that
E-learning is one of the means to use internet by learners
to learn specific information and content in personalized
manner. In the recent years, many researchers are working on

The associate editor coordinating the review of this manuscript and
approving it for publication was Victor Hugo Albuquerque.

certain e-learning based problems [2], [3], [31]. The prime
intent of e-learning is to deliver rigorous dynamic content to
learners based on their preferences, learning abilities, skills
and interests etc. also known as adaptive learning [37], [49].
Variety of multifarious researchers focused their work on per-
sonalized content delivery and different attributes or learner’s
characteristics such as: trust, motivation, comfort, back-
ground knowledge etc., but researchers concluded that these
demographic factors not only responsible for improving the
learning capability and performance of learners. There are
different important factors like: psychological (P) such as:
isolation, depression, anxiety and environmental (E) factors
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such as: stress and improper guidance also played crucial
role in enhancing capability of learner [1], [4], [5], [10], [21]
but till now none of any researcher utilized such factors in
improving the learner capability of learner.

The Psychological and Environmental factors have been
categorized into positive and negative factors. Positive factors
are responsible for improving or boost up the learner’s per-
formance and negative factors reduces the ability of learner.
If the consequences obtained through usage of negative fac-
tors will not be diagnosed at initial stages then learner’s
performance get affected. If in initial stages of learning com-
plimentary positive factors have been provided to mitigate the
effects of negative factors then overall performance of learner
could be improved to great extent.

Thus, in current proposed work we have considered Hid-
den Markov Model (HMM) for improvement in learner’s
performance with consideration of these psychological and
environmental factors and their complimentary factors vice
versa. The HMM differentiated other models as it focuses
mainly on prior probabilities (generative approach) whereas
Artificial Neural Network (ANN) and supervised classifier
Support Vector Machine (SVM) utilizes posterior probability
distribution (discriminative approach) [29], [32], [35], [38].

To evaluate the effectiveness of the proposed approach the
following research hypothesis has been proposed as: “If the
students learning performance is degraded by psychological
negative factor and environmental negative factor then their
learning capability can be improved by imparting psycholog-
ical and environmental positive factors to them”.

For validating the proposed hypothesis, our work focuses
on following aims or objectives to meet the desired criteria:

1. Identification of psychological and environmental fac-
tors and their impact observed on proposed Hidden
Markov Model for enhancement in learner’s
performance.

2. Deployment of Hidden Markov Model for improvement
of learner’s performance.

3. Mapping of individual negative Psychological and Envi-
ronmental factors with their complimentary factors to
determine optimal state sequence.

The remainder work of paper comprised of various sec-
tions which are outlined as follows related to e-learning
systems. Section 2 emphasized on detailing related
works. Section 3 discussed about complimentary posi-
tive and negative psychological and environmental factors.
Section 4 focused on involvement of HMM system, train-
ing, data collection and methodology for e-learning system.
Section 5 detailed on results, accuracy of proposed model and
experimental validation work. Finally, concluded the work
in Section 6.

Il. RELATED WORKS

Variety of emerging applications like virtual e-learning
content system, augmented reality education, recognition
of personalized sound involved variety of personalized and
adaptive statistical and machine learning techniques for
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prediction of future aspects of these applications [18], [20],
[24], [32]. Due to mathematical foundation of statistical and
probabilistic techniques they are gaining attention among
e-learners community [12], [13], [15], [16]. Earlier works
reported on the cognitive driven strategies adopted by human
agents or tutors for teaching students in various interdisci-
plinary domains. Hidden Markov model focuses on prior
probabilistic approach where hidden states being represented
over observed sequence values. Birney [6] utilized Markov
chain process for capturing the activity of students while
interacted with mathematical expert and tutoring system
and record their learning path sequences. Jiyong et al. [28]
observed behavior of students in teacher centric learning
environment where different hidden variables have been
considered for activity recognition related to state sequences.
Tseng et al. [48] preferred clustering and hidden variable
approach on solving queries reported by students in design-
oriented problem-solving sessions and discover the effec-
tiveness of sharing knowledge and interactions performed
with other peer learners. Boyer et al. [8] applied HMM to
identify tutorial strategies described in the sequence analysis
of dialogs proposed for different learning acts. They demon-
strated how HMM can be learned tutoring system of computer
science. Similarly, Boyer et al. [9] focus on meta cognitive
analysis and feedback received from correct tutorial strategy
to be followed by tutor which improves student self-efficacy
and corrective actions. Boyer ef al. [7] tried to establish
full duplex mode communication between tutor and learn-
ing and identified correlations between mode and outcome
achieved. Sun et al. [47] utilized type-2 fuzzy HMM model
for identification of text sequence using granular driven
learning. Li et al. [34] constructed HMM detectors for mul-
tivariate time series anomaly detection. They have compared
obtained results with fuzzy C-means and integral clustering
techniques. Dang et al. [14] proposed HMM framework for
learning efficient brain regions connectivity based on fMRI
signal. (Yang and Jiang [53] proposed HMM based effective
solution for initialization problems based on temporal data
clustering techniques. The proposed algorithm automatically
determines agglomerative clusters and outperforms other
benchmark techniques. Nikdelfaz and Jalili [36] proposed
HMM driven semantic similarity identification technique
between various genes using gene ontology and K-means.
Samanta et al. [43] proposed HMM based handwritten word
segmentation script based on gaussian mixture model. The
proposed HMM based classifier also used for recognition of
Bangla and English handwritten words. The effective candi-
date gene was predicted by HMM model. Saini et al. [41]
utilized global and segmentation driven HMM method to
classify the trajectory wusing genetic algorithm.
Yang et al. [52] proposed high order dynamic prediction
of financial trading strategies using Hidden Markov Mod-
els. Fuzzy expert system is used to design hierarchical
software usability model [54], [55] to foresee live auction
portal [56], [57] and software development life cycle
models [58]. Live auction and SDLC datasets has been
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FIGURE 1. Psychological and Environmental Set (Positve & Negative
factors).

discoursed in [59]. The prediction of disease can be syn-
chronized [60] and uniquely identified [61]. The literature
review conducted is summarized into Tabular format which is
categorized using different techniques, their specific features
and applications.

Ill. PSYCHOLOGICAL AND ENVIRONMENTAL SETS
Psychological factors comprised of Positive (P) and
Negative (N) factors as shown in Fig. 1.
1. Nis set of negative factors i.e. N = {Xj: Xj is a negative
factor}
2. P is set of positive factors i.e. P = {Y;: Y; is a positive
factor}
3. PNN: X: <Xj, Yi> where Xje P, Yie N and Xj is
complimentary factor of Y;
The learning capability of student having all personality psy-
chological factor lying in N (LCy) is less than the learning
capability of student lying in PNN (LCpnn). The learning
capability of (LCpnn) is less than learning capability of the
student in P (LCp) as shown in equation 1.

LCN < LCPQN < LCP (1)

Therefore, from equation 1 it is clear that, If the student
personality-psychological factor lying in N then by coun-
seling (or by imparting any positive factor belongs to P)
the performance of the student can reach to balanced level
i.e. PNN. In this region (PNN) we only provide the positive
factor which is complimentary to the negative factors with
which students are suffering. Further when student reached
at balanced level, we provide some more positive factors
belongs to P to enhance the student performance.

Similarly, Environmental factors also comprised of
Positive (PE) and Negative (NE) factors as shown in Fig. 1.

NE is set of negative factors i.e. NE = { Xj: Xy is a negative
factor}.

PE is set of positive factors i.e. PE = { Yi: Y is a positive
factor}.

PENNE: X: <Xk, Yx> where Xye PE, Yixe NE and X is
complimentary factor of Yy

Xk is complimentary factor of Yy if the negative effect of
Xk attribute is neutralized or reduced by the positive effect
of Yy

The learning capability of student having all environmental
factor lying in NE (LCng) is less than the learning capability

VOLUME 7, 2019

of student lying in PENNE (LCpgnnNg). The learning capabil-
ity of (LCpgnnNE) is less than learning capability of the student
in PE (LCpg) as shown in equation 2.

LCng < LCpenne < LCpg ()

Therefore, from equation 2 it is clear that, if the student
environmental factor lying in NE then by counseling (or by
imparting any positive factor belongs to PE) the performance
of the student can reach to balanced level i.e. PENNE. In this
region (PENNE) we only provide the positive factor which
is complimentary to the negative factors with which students
are suffering. Further when student reached at balanced level,
we provide some more positive factors belong to PE to
enhance the student performance.

We have considered pairs of complimentary negative
and positive attributes for improving learner’s performance.
The Positive Psychological factors are Connect/Gather(C/G),
Pleasure/Comfort(P/C) and Trust (T) and the correspond-
ing complementary negative Psychological factors are
Isolation (I), Depression (D) and Anxiety (A) respectively.
The pairs formation will be <C/G, I>, <E, S> etc. Similarly,
the Positive Environmental factors are Proper Guidance (PG)
and Entertainment (E) NEF are their complementary factors
such as Improper Guidance (IG) and Stress(S) respectively.

IV. HIDDEN MARKOV MODEL

A. DATA COLLECTION

The subject of this study included 40 students of under grad-
uate school pursuing three-year courses in Northern India.
The data collected will be represented in terms of Positive
and Negative factors as demonstrated in previous section. The
data was collected using survey containing 30 MCQ based
questions, out of which five questions for each factor. The
answer of MCQ comprised of negative and positive factor and
the participant will select either of positive or negative. In this
study the HMM consists of four grades A, B, C and D. Each
state represents the year of the degree i.e. 12" or previous
degree, 1%, 2" and 3" year respectively. In each year the
set of factors varies for each participant i.e. factor set of
each participant is temporal. We used same questionnaire to
collect the data at each state. The partial dataset collected
from 10 students is shown in Table 2. For ease of compu-
tation, we have considered only observation sequence length
of 6 factors in HMM model which may increase depending
upon the requirement.

Hidden Markov Model (HMM) is also known as dynamic
Bayesian network which demonstrated Markov chain pro-
cess with involvement of hidden states or variable through
statistical analysis. Markov model output depends only on
state itself but in HMM it focuses on probability of state
represented as distinguished output. The transitions from
one state to another stated is determined by transition
probabilities and from one state to observations is called
emission probabilities. The states captured through hidden
variables are hidden; hence it is called Hidden Markov
Model [48], [50], [51].
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TABLE 1. Comparative view of HMM and other techniques.

Authors Methods or Technique Specific features Application areas
Chen etal.[15] HMM Adaptive content delivery of English Language learning
learning materials according to system
requirement
Huang et al. [25] Bi-Weighted HMM

Computation of learning oath Java Programming system

consistency and predict future

learning action of learners
Hsia, Shie, and Chan [27]

Mining techniques Prediction of future learning Foreign language learning system

predicted paths of learners for

continuing education and

preferences.

Norwawi et al. [37] Decision tree and K-means Improvement in learners Web based system

clustering programming skills using VARK

style and recommend suitable

learning object

Hassan and Nath Adaptive HMM

Identification and forecasting of
[22]

Business Analytics
stock prices

Cooper et al. [11] Multimedia and Logistic methods Modeling of learners learning Multimedia based systems
trajectory through usage of
multimedia usages and prediction
of their future action and

performance.

Birney [6] Hidden Markov Model Semi structured sequence Genetic systems

identification of plants for
prediction of DNA and RNA

protein coding.

Homsi et al. [23] HMM Adaptive English language web

English language learning system
based system used for navigation
and prediction of successive

concepts visited by students.

Hsieh et al. [27] Genetic Algorithms and HMM Suitable learning object has been Web based system

referred and improved learning
path is generated based on their

skills and preference.

Yang et al. [52] Multi criteria decision making Multi-Dimensional Adaptive web based system

approach Personalization Criteria System
(AMDPC) focuses on
demographic students attributes
using Silverman and cognitive
traits
Seters et al. [44] ANN, HMM and Decision tree

Measure motivation and prior Programming language system

knowledge of learners and predict
next path for learner on basis of

their characteristics or features
Wang and Liao [49]

Data mining Predict the student performance English language system

based on gender, anxiety and

personality level
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TABLE 1. Comparative view of HMM and other techniques.

Gilbert and Han [17] Case based reasoning

New learner assigned to group Web based system
depending on prior learning
experience and preferences
provided with personalized

material

Pandey et al. [30] Case based Reasoning

Delivery of personalized and C Programming system
adaptive dynamic content of
learner based on their

characteristics and preferences.

Sun et al. [47] Fuzzy and HMM

To fuse labeled data and
unlabeled observation HMM

Text sequence recognition

utilized to fulfill granular
information in sequence

recognition.

Lictal. [34] HMM

Multivariate time series Anomaly detection
prediction performed using HMM

detectors.

Dang et al. [17] HMM and CNN

Brain MRI signals utilized to Signal processing and Human

identify activity recognition and Computer Interaction.

connectivity taken inside brain.

Yang and Jiang [53] HMM

Utilized initialization problems Clustering

for data clustering.

Nikdelfaz and Jalili [36] HMM and Ontology

HMM driven semantic similarity Similarity keyword identification
identification technique used for

genes identification.

Samanta et al. [43] HMM

Handwritten word segmentation Handwritten word recognition
script based on gaussian mixture
model. The proposed HMM
based classifier also used for
recognition of Bangla and

English handwritten words

Saini et al. [41] HMM and Genetic algorithm

Global and segmentation driven Trajectory classification
HMM method to classify the
trajectory using genetic

algorithm.

Wang et al. [52] HMM

High order dynamic prediction of Stock market prediction
financial trading strategies using

Hidden Markov Models

HMM consists of three parameters as: HMM A = (A B )
where A = Transition matrix, a;; = P (state Sj at t + 1 | state
qgi at t); B = N * M Emission matrix where N = number of
states in model and M = number of observation symbols.

bj(k) = P(observation k at t| state g; at t) where A and B
are row stochastic in the sense that sum of elements in a row
is one and 7 = initial states.

HMM addresses three fundamental problems as:

o Given the model and observation sequences, by =
bor bo2bos....... bon, the objective is to determine
P(O|A) efficiently i.e. the probability of the observation
sequences for the given model A.

VOLUME 7, 2019

o To determine the optimal sequences of states for given
model, A and observation sequences, O;. This is solved
efficiently by Viterbi algorithm.

o Estimation: It is to get the maximum P(O|)) by esti-
mating the parameters of model A. This is solved by
Baum-Welch Algorithm.

B. HMM TRAINING

OPTIMAL VALUE OF STATE

For a generic state sequence of length n, the state equation is
given by (3):

X = (X0X1X2X3ueernnn.. Xn—1Xn) 3)

21563



IEEE Access

A. Khamparia et al.: Investigating the Importance of Psychological and Environmental Factors

TABLE 2. Partial Data set description.

Students <C/G,I> | <P/C, <T,A> | <PG, <E, S>
D> 1G>
S1 C/G D T PG S
S2 1 P/C A 1G F
S3 1 D T PG S
S4 C/G P/C T PG F
S5 C/IG P/C A 1G F
S6 C/IG P/C A 1G S
S7 1 D A PG S
S8 C/IG D T 1G F
S9 1 D T PG S
S10 C/IG P/C A 1G F

And corresponding observation of length m is given
by (4):

O = (00010203. ....... Om—10m) “4)
The probability of state sequence X is given by

P(X) = mxobxp(0p)axp,x1bx;(01)axixa
bxs(02)ax>x3bx3(03). ....aXn_1Xp_2bxp(0n)  (5)

For three states and six observations, we have A as 3*3 and
B (positive) as 3*5 matrix and B; (negative) as 3*5 matrix
respectively. The initial state is a vector 1*3. The matrix A,
B1, B2 and initial state vector is represented as:

0.2 0.3

1 =1[0.4 0.3 0.2]

We take three states in form of grades as A, B and C.
Similarly, five observations [2 6 8 4 3] for different emission
probabilities as 2 = pleasure, 3 = Trust, 4 = Proper guidance,
8 = Anxiety, and 6 = Isolation respectively that logically
produces 243 combinations as shown in Table 3. We calculate
the probabilities of optimal states as shown in line of the
different logical combinations.
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C. PROPOSED ALGORITHM

As shown in Table 3 A, B and C represent different states
in form of grades which are obtained by student respec-
tively [62]-[65]. The numerical value in the even columns
i.e. product of states corresponding to their respective logical
combinations in odd column is calculated by (3). For example
in Table 1, the various values in numerical form in the first
row of columns 2, 4, 6, 8, 10 as 0.000012441, 0.000003456,
0.00000162, 0.000000864 and 0.00000144 respectively cor-
respond to the logical combinations, given in the same row
in the columns 1, 3, 5, 7, 9 as AAAAA, ABCBA, BABCA,
BCBAA and CBABA.

Table 4 shows the sum of A (grades) states, where A is in
the first, second, third, fourth and fifth places in Table 3. Sim-
ilarly, the second row shows the sum of B in the increasing
order of places in Table 3. From each of the column we select
the highest value which is 0.0001461 in the first place in first
column corresponding to observation (2) i.e. pleasure out of
given observations. Similarly, for second observation (6) i.e.
Isolation the highest value is 0.00013105 as shown in second
column. The detailed description of Table 4 is given below.

V. RESULTS COMPUTATION

The order of probability of occurrence of a particular state
depends on the observation of a particular set of emissions
in a time sequence. In our case, the observation [2 6 8 4 3]
is for the time sequence, starting from ty as present and tp,
t, t3, t4, t5 for the consecutive past times, corresponding to
observation 2 6 8 4 3 respectively. Table 2 is obtained by the
calculation of the sum of probabilities, when the states A, B
and C are in the first, second, third, fourth and fifth positions
in the 243 logical combinations of states as shown in Table 1.
The interpretation of Table 4 is as follows:

For the 2 as P (Pleasure) observation at time t; the value of
state P(A) is 0.0001461, for state B it is 0.000054854 and for
the state C it is 0.000036717 in the first column of Table 4.
It means that state A is more active than the state B and C.
Similarly, it is observed that for the observations at other
consecutive past time sequences i.e. Working at time t for 6
as I (Isolation), P(A):0.00013105 > P(B):0.000077539 >
P(C):0.000029082; for 8 as A (Anxiety) P(A):0.00011799 >
P(B):0.000075354 > P(C):0.000044323; P(B):0.00009179
> P(A):0.000085686 > P(C):0.000060194 for observation
instance 4 as PG (Proper guidance); for instance 3 as
T (Trust) P(A):0.00014029 > P(B):0.000085113 > P (C):
0.000012271.

‘We obtain the optimal sequence of states AAABA for the
observation sequence [2 6 8 4 3] i.e. PI A PG T taking into
account the greater value from each column of Table 4.

The computation of product of states for the observation
sequence (2 6 8 4 3) and the states logical combination
AAABA is done in following steps:

Step 1: The initial value for state A is taken as wxq is 0.4
and bxg (0g) and its value from the emission table B in the
first row for A is P (0.2) and their product is 0.08.
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Algorithm 1

1.

PN B LD

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.

33

34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.

Start
Read number of states, numstate from user.
Read number of observations, numobs from user
Read state symbols, vec[1, numstate] from user.
Read initial probability of states, p[1, numstate] from user
for 1 = 1 to numstate
Read positive emission matrix, emis_pos [1,:] from the user for Ith state
Read negative emission matrix, emis_neg[l,:] from the user for Ith state
end for
for 1 = 1 to numstate
Read transition matrix, trans[l,:] from user
end for
Totalposs = numstate”numobs

D = totalposs/numstate
Create state combination table using following algo
for k = 1 to numobs
qg=1lz=1
for 1 =1 to totalposs
if(z <=d)
a(l,k) = vec(l,q);
z=z+1
ifz==d+ 1)
q=q+1
z=1
end if
if(q == (numstate + 1))
q=1
end if
end if
end for
d = d/numstate
end for

. Read observation sequence, veco[ 1,numobs] from user
repeat 35 to 60 for all state combinations
initial_bit_test = 0
previous_state = 1
product_of_state = 1
for k = 1 to numobs
t =a(l,k)
Repeat 41 to 60 for all State Symbols
Read position of state symbol in vec matrix,pos
if( initial_bit_test == 0)
if(veco(1,k) < ((numobs)) + 1)

else
hg = veco(1,k)-(numobs)

end if
initial_test = 1
previous_state = pos

else
if(veco(1,k) < ((numobs)) + 1)

else
hg = veco(1,k)-(numobs)

product_of_state = product_of_state* (p(1,pos)*EMIS(pos,veco(1,k)))

product_of_state = product_of_state * (p(1,pos)*((EMIS1(pos,hg))))

product_of_state = product_of_state*(TRANS(prevstate,pos)*EMIS(pos,veco(1,k)))

voLu

ME 7, 2019
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Algorithm 1 (Continued.)

56. product_of_state = product_of_state™(TRANS(prevstate,pos)*((EMIS1(pos,hg))))
57. end if

58. previous_state = pos

59. end if

60. end for

61. repeat 62 to 69 for all states
62. forl =1 to totalposs

63. for s = 1 to numobs

64. if(statecombination(l,s) == vec[1,1]

65. sumofbitswise_of_state(i)[1,s] == product_of_state
66. end if

67. end for

68. end for

69.i=1+1

70. repeat 71 and 72 for all bits of observations

71. find maximum of ith bit from sumofbitswise_of _state of all states

72. Dbeststate[1,i] = state with maximum bit sum

73. search beststate among state combinations using any search technique

74. find corresponding product of state
75. End

Step 2: Write the transition from state A to A from the state
transition matrix A which is 0.6 and the value of observation
variable from the matrix B, as I (0.2) and their product
is 0.12.

Step 3: Repeat the step 2 to obtain the transitions A-A, A-B
and B-A as 0.6, 0.3 and 0.5 respectively to obtain the product
of logical combination of states A A A B A as 0.000010368 as
shown in Table 3.

A. EMPIRICAL EXPERIMENT VALIDATION

The demographic study has been performed on learners of
sample size 40 to check the feasibility and effectiveness
of opted HMM system. The categorization of distinguished
learners performed into experimental group (G1) and control
group (G2) where each comprised of 20 learners. In addi-
tion to test and verify the homogeneity between the control
group and the experimental group, both groups took a pre-
test in which both learners group solved the same type of
questionnaire for assessment at individual level. Based on
the grades scored by learners, their Mean (M) and Standard
deviation (SD) have been computed. The pre-test results
showed that M and SD of the experimental group (G1) was
35.40, 7.06 respectively. For the control group (G2), M was
36.71 and SD was 8.75. The obtained t- test result deprived
that there was no significant difference (t = —0.521, df =
38, p-value = 0.605) among two different learner’s groups as
depicted in Fig. 5.

To evaluate student performance after learning program-
ming course, student from both groups were compared in
the post-test. In post-test, the experimental group adopted the
HMM based system whereas control group preferred Non-
HMM based system [39], [40], [45], [46]. In HMM based
system, an observation had been captured from student and
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FIGURE 2. Proposed HMM Model.

replace negative factors from observations by providing its
complimentary factors to move for next better state. Whereas
in Non-HMM system, an observation had been captured but
it will not change the negative factors from observations and
move to next state.

If Student in state 1 (ql) is having grade variable C and
capture observation [Py, Py, P3, E1, E», E3] from student
which comprised of three psychological and three environ-
mental factors. Factor P; and P, are +ve except P; which
is —ve, Similarly factor E; and E; are 4-ve except E3 as shown
in Fig. 3.

In HMM model we provide observation sequence O =
[Pi(+), Pa(+), P3(+), Ei(+), Ea(+), E3(—)] which is
obtained by replacing P3 by its complimentary positive (P3+)
which cause to move to a next better state q2 i.e. CB.
Similarly, at state (q2) student captures new observation in
which all psychological factors are +ve and only E3 is —ve.
So In HMM again observation sequence Oy = [P{(+),
P2(+4), P3(+), E1(+4), Ea(+), Ez(+)] is provided which is
obtained by replacing E3 by its complimentary negative
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TABLE 3. States computation.

Logical Product of Logical Product of Logical Product of Logical Product of Logical Product of

Combination states Combination states Combination states Combination states Combination states
AAAAA 0.000012441 ABCBA 0.000003456 BABCA 0.00000162 BCBAA 0.000000864 CBABA 0.00000144
AAAAB 0.00000622 ABCBB 0.000002073 BABCB 0.000001296 BCBAB 0.000000432 CBABB 0.000000864
AAAAC 0.000000691 ABCBC 0.00000046 BABCC 0.000000108 BCBAC 0.000000048 CBABC 0.000000192
AAABA 0.000010368 ABCCA 0.000001296 BACAA 0.00000081 BCBBA 0.000000864 CBACA 0.00000072
AAABB 0.00000622 ABCCB 0.000001036 BACAB 0.000000405 BCBBB 0.000000518 CBACB 0.000000576
AAABC 0.000001382 ABCCC 0.000000086 BACAC 0.000000045 BCBBC 0.000000115 CBACC 0.000000048
AAACA 0.000005184 ACAAA 0.000001728 BACBA 0.00000108 BCBCA 0.000000864 CBBAA 0.000000864
AAACB 0.000004147 ACAAB 0.000000864 BACBB 0.000000648 BCBCB 0.000000691 CBBAB 0.000000432
AAACC 0.000000345 ACAAC 9.6E-08 BACBC 0.000000144 BCBCC 0.000000057 CBBAC 0.000000048
AABAA 0.000005184 ACABA 0.00000144 BACCA 0.000000405 BCCAA 0.000000324 CBBBA 0.000000864
AABAB 0.000002592 ACABB 0.000000864 BACCB 0.000000324 BCCAB 0.000000162 CBBBB 0.000000518
AABAC 0.000000288 ACABC 0.000000192 BACCC 0.000000027 BCCAC 0.000000018 CBBBC 0.000000115
AABBA 0.000005184 ACACA 0.00000072 BBAAA 0.000001944 BCCBA 0.000000432 CBBCA 0.000000864
AABBB 0.00000311 ACACB 0.000000576 BBAAB 0.000000972 BCCBB 0.000000259 CBBCB 0.000000691
AABBC 0.000000691 ACACC 0.000000048 BBAAC 0.000000108 BCCBC 0.000000057 CBBCC 0.000000057
AABCA 0.000005184 ACBAA 0.000001152 BBABA 0.00000162 BCCCA 0.000000162 CBCAA 0.000000864
AABCB 0.000004147 ACBAB 0.000000576 BBABB 0.000000972 BCCCB 0.000000129 CBCAB 0.000000432
AABCC 0.000000345 ACBAC 6.4E-08 BBABC 0.000000216 BCCCC 0.00000001 CBCAC 0.000000048
AACAA 0.000002592 ACBBA 0.000001152 BBACA 0.00000081 CAAAA 0.000002592 CBCBA 0.000001152
AACAB 0.000001296 ACBBB 0.000000691 BBACB 0.000000648 CAAAB 0.000001296 CBCBB 0.000000691
AACAC 0.000000144 ACBBC 0.000000153 BBACC 0.000000054 CAAAC 0.000000144 CBCBC 0.000000153
AACBA 0.000003456 ACBCA 0.000001152 BBBAA 0.000000972 CAABA 0.00000216 CBCCA 0.000000432
AACBB 0.000002073 ACBCB 9.216E-07 BBBAB 0.000000486 CAABB 0.000001296 CBCCB 0.000000345
AACBC 0.00000046 ACBCC 7.68E-08 BBBAC 0.000000054 CAABC 0.000000288 CBCCC 0.000000028
AACCA 0.000001296 ACCAA 0.000000432 BBBBA 0.000000972 CAACA 0.00000108 CCAAA 0.000000432
AACCB 0.000001036 ACCAB 0.000000216 BBBBB 0.000000583 CAACB 0.000000864 CCAAB 0.000000216
AACCC 0.000000086 ACCAC 0.000000024 BBBBC 0.000000129 CAACC 0.000000072 CCAAC 0.000000024
ABAAA 0.000005184 ACCBA 0.000000576 BBBCA 0.000000972 CABAA 0.00000108 CCABA 0.00000036
ABAAB 0.000002592 ACCBB 0.000000345 BBBCB 0.000000777 CABAB 0.00000054 CCABB 0.000000216
ABAAC 0.000000288 ACCBC 7.68E-08 BBBCC 0.000000064 CABAC 0.00000006 CCABC 0.000000048
ABABA 0.00000432 ACCCA 0.000000216 BBCAA 0.000000972 CABBA 0.00000108 CCACA 0.00000018
ABABB 0.000002592 ACCCB 0.000000172 BBCAB 0.000000486 CABBB 0.000000648 CCACB 0.000000144
ABABC 0.000000576 ACCCC 0.000000014 BBCAC 0.000000054 CABBC 0.000000144 CCACC 0.000000012
ABACA 0.00000216 BAAAA 0.000003888 BBCBA 0.000001296 CABCA 0.00000108 CCBAA 0.000000288
ABACB 0.000001728 BAAAB 0.000001944 BBCBB 0.000000777 CABCB 0.000000864 CCBAB 0.000000144
ABACC 0.000000144 BAAAC 0.000000216 BBCBC 0.000000172 CABCC 0.000000072 CCBAC 0.000000016
ABBAA 0.000002592 BAABA 0.00000324 BBCCA 0.000000486 CACAA 0.00000054 CCBBA 0.000000288
ABBAB 0.000001296 BAABB 0.000001944 BBCCB 0.000000388 CACAB 0.00000027 CCBBB 0.000000172
ABBAC 0.000000144 BAABC 0.000000432 BBCCC 0.000000032 CACAC 0.00000003 CCBBC 0.000000038
ABBBA 0.000002592 BAACA 0.00000162 BCAAA 0.000001296 CACBA 0.00000072 CCBCA 0.000000288
ABBBB 0.000001555 BAACB 0.000001296 BCAAB 0.000000648 CACBB 0.000000432 CCBCB 0.00000023
ABBBC 0.000000345 BAACC 0.000000108 BCAAC 0.000000072 CACBC 9.6E-08 CCBCC 0.000000019
ABBCA 0.000002592 BABAA 0.00000162 BCABA 0.00000108 CACCA 0.00000027 CCCAA 0.000000108
ABBCB 0.000002073 BABAB 0.00000081 BCABB 0.000000648 CACCB 0.000000216 CCCAB 0.000000054
ABBCC 0.000000172 BABAC 0.00000009 BCABC 0.000000144 CACCC 0.000000018 CCCAC 0.000000006
ABCAA 0.000002592 BABBA 0.00000162 BCACA 0.00000054 CBAAA 0.000001728 CCCBA 0.000000144
ABCAB 0.000001296 BABBB 0.000000972 BCACB 0.000000432 CBAAB 0.000000864 CCCBB 8.64E-08
ABCAC 0.000000144 BABBC 0.000000216 BCACC 0.000000036 CBAAC 9.6E-08 CCCBC 0.000000019
CCCCA 0.000000054 CCccceB 0.000000043 Cccccc 0.000000003

TABLE 4. Sum of states.

1 2 3 4 5
A 0.0001461 0.00013105 0.00011799 0.000085686 0.00014029
B 0.000054854 0.000077539 0.000075354 0.00009179 0.000085113
C 0.000036717 0.000029082 0.000044323 0.000060194 0.000012271
(E3+) which cause it to move to a next better state q3 If Student in state 1 (ql) is having grade variable C
i.e. CBA. Similarly, the process has been carried out for next and capture observation [P;, P, P3, Ei, E», E3] from
state. student which comprised of three psychological and three
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FIGURE 5. Pre-test and Post-test analysis.

environmental factors. Factor Py and P, are 4ve except P3
which is —ve, Similarly factor E; and E, are +ve except E3
as shown in Fig. 3.

In Non-HMM model the observation captured from student
directly passed to next state q2 i.e. CD without providing any
complimentary factor to observations. Similarly, at state (q2)
student captures new observation which forwarded to next
state g3 i.e. CDD. Similarly, the process has been carried out
for next state as shown in Fig. 4.

The post-test results indicated that for experimental groups
(G1) who have adopted HMM based system their M and SD
was 43.96 and 3.24 respectively. For control group (G2) who
used Non-HMM based system their M and SD was 40.39 and
6.22 respectively. The achieved t-test result showed a signif-
icant difference (t = 2.27, df = 38, p-value = 0.028) among
two groups as depicted in Fig. 5. The achieved consequences
demonstrated that Group Gl learners, who adapted HMM
based approach, they scored better and higher than Group
G1 learners who adapted Non-HMM based method.
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VI. CONCLUSION

In this study, a statistical HMM has been utilized in improve-
ment of learner’s grades and related performance with the
involvement of psychological and environmental related
factors. To compute the observable sequence of states,
HMM requires training where transition (A), emission or
observation (B; and B») and initial state (;r) has to be ini-
tialized for model training. For verification and feasibility
improvements in implementation of HMM model, different
logical combinations of states being considered in which best
state would validate the suitability of particular observation
sequence. The schematic performance of HMM proved that
it could be effectively utilized in emerging areas related to
e-learning or computer-based system which enhance learner’s
performance. With the help of HMM model the total number
of computations is reduced at great extent and with help of it
we predict the grade at intermediatary stage also which is not
possible by any other prediction models.
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