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Phonon-assisted optical absorption in germanium
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A comprehensive experimental and theoretical study of indirect gap optical absorption in bulk Ge is presented.
While this topic has been the subject of intense studies from the early days of semiconductor physics, the
resonant aspect of the absorption received very little attention until now. This is a unique property of Ge related
to the proximity of the direct and indirect gaps. The absorption coefficient was measured over the entire spectral
range between the two gaps for comparison with theory. It is shown that the standard textbook expressions,
obtained by assuming intermediate states with constant energy, are in very poor agreement with experiment. A
theory first proposed by Hartman [R. L. Hartman, Phys. Rev. 127, 765 (1962)], which takes into account the
energy dependence of the intermediate states, provides a much better account of the photon-energy dependence
of the absorption, but the prediction of the experimental absorption strength requires the incorporation of
excitonic effects. The latter, however, have only been considered by Elliott [R. J. Elliott, Phys. Rev. 108, 1384
(1957)] in the limit of constant intermediate state energy. A generalization to the case of energy-dependent
intermediate states, consistent with Hartman’s theory, is presented here. The basic qualitative difference with the
classical Elliott theory is that the excitonic character of the intermediate states affects the computed absorption,
generating an additional resonant enhancement that is confirmed by the experimental data. The generalized
theory presented here agrees very well with the experimental absorption using independently determined band
structure parameters.
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I. INTRODUCTION

The absorption coefficient of indirect gap
semiconductors—including its spectral dependence—has
recently become the subject of intense theoretical efforts,
following advances that make it possible to attempt its
calculation from first principles [1–3]. In the case of Si,
the energy range between the indirect and direct gaps is of
foremost practical interest, since it overlaps with the visible
optical absorption that underpins its photovoltaic applications.
Germanium, on the other hand, represents a formidable
theoretical challenge because the indirect gap energy is
only ∼0.1 eV below the lowest direct optical transitions.
These transitions appear as intermediate states in perturbation
theory expansions of the absorption coefficient, and therefore
realistic ab initio predictions require the ability to reproduce
band dispersions with meV accuracy, a difficult task even
for state-of-the-art band structure calculation methods [4].
The unique resonant character of indirect absorption in Ge
was recognized as early as 1962 by Hartman, who computed
the absorption coefficient without relying on the standard
textbook assumption of constant intermediate state energy
[5]. However, Hartman did not compare his expressions with
experimental data. Furthermore, the available experimental
results are not fully satisfactory when it comes to this compar-
ison, since the classic papers [6–8] reporting indirect absorp-
tion in Ge made a number of ad hoc assumptions regarding the
energy dependence of the reflectivity which do not apply to
the entire spectral range between the indirect and direct gaps.

Recently identified optoelectronic applications of Ge and
related GeSn alloys [9–12] add a new urgency to the need of

addressing the poorly understood aspects of indirect absorp-
tion in Ge. In a recent Rapid Communication, we presented
experimental absorption data for this material and compared
with theoretical expressions [13]. A major finding of this
work, hereafter referred to as I, is that excitonic effects
must be included in the comparison between theory and
experiment. For this, an alternative theoretical model was
introduced, since the standard theory of excitonic enhance-
ments due to Elliott [14] breaks down when intermediate
states cannot be assumed to have a constant energy. In this
associated article we present an extended set of experimental
reflectivity and absorption data for Ge, further validating the
experimental results in I. We also provide full details on the
resonant excitonic enhancement model needed to describe the
experimental data.

The excitonic structure of band edge absorption in Ge
has been studied with exquisite detail [15,16], and theoretical
models that take into account the complexities of the conduc-
tion and valence bands have been shown to be in remarkable
agreement with experimental data [17,18]. However, these
models are limited to the band edge, as their extension to the
entire spectral range between the indirect and direct edges
is not straightforward. Excitonic effects can be computed
ab initio using the Bethe-Salpeter formalism [19], but this
approach does not usually lend itself to implementation in
fitting routines running on personal computers. In addition,
as indicated above, the accuracy needed for the underlying
band structure is difficult to attain. The Elliott model men-
tioned above makes the drastic approximation of considering
isotropic parabolic bands [14]. This leads to simple theoretical
expressions, which could be used to correct the absorption
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calculated with the Hartman model. However, such approach
would be inconsistent, since it would include the energy
dependence of the intermediate states at the free electron-hole
pair level but neglect it in computing excitonic effects. By
contrast, our resonant exciton model treats the intermediate
states at the same level as in the Hartman model, while mak-
ing the same approximations as Elliott [14] regarding band
dispersions. This refinement leads to unique physics that is
discussed in detail below. The absorption expressions derived
here are, as expected, more complex than in the Elliott case,
but the calculations can be carried on personal computers,
thereby lending themselves to fits of experimental data. As
already shown in I, excellent agreement between theory and
experiment is obtained at intermediate energies between the
indirect and the direct gaps using the deformation potential
that couples the two lowest conduction band valleys as the
only adjustable parameter. The fit value is found to be in
excellent agreement with other independent measurements of
this quantity. In this article we also investigate how the ap-
proximations made affect the modeling at the absorption edge.

The remainder of the paper is organized as follows. In
Sec. II we describe the theory of resonant excitonic indirect
absorption. Since a key aspect of the comparison between
theory and experiment is the use of absolute values of the
absorption, special care is devoted to the definition of all
parameters and prefactors needed for the calculation, which
are not always used consistently in the literature. Explicit
expressions for the absorption coefficient are derived that
allow a direct comparison with experiment, and a detailed
discussion of the approximations involved is provided. We
also show how the Elliott excitonic model and the absorption
expressions that ignore the excitonic interaction are obtained
as appropriate limits of our model. In Sec. III we discuss our
experimental method and present absorption and reflectivity
data for samples with different thicknesses. This allows us to
investigate not only the most resonant energy range between
the indirect and direct gaps, as in I, but also to study the onset
of absorption very close to the indirect gap. In Sec. IV we
compare theory and experiment, and in Sec. V we discuss our
findings and outline future challenges.

II. THEORY

A. Basic absorption expressions

Figure 1 shows schematically the band structure of Ge.
The top of the valence band, where we choose the zero of
energy, consists of light and heavy holes that are degenerate
at the � point of the Brillouin zone (BZ). The spin-degenerate
conduction band has a local minimum at the � point with
an energy E0 above the top of the valence band. The �-
point conduction band states have s-like character and can be
denoted as

|Sσ 〉; σ =↑,↓, (1)

where σ indicates the spin degree of freedom. The absolute
minimum of the conduction band, at an energy Eind (the
indirect gap) is a spin-degenerate state at the L point of the BZ.
The valence band wave functions at the � point are p-like.
Their sixfold degeneracy is lifted by the spin-orbit interaction.
We ignore the split-off band here because the spin-orbit

FIG. 1. Band structure of Ge showing important transition en-
ergies and splittings (in red) and indirect absorption mechanisms.
The sequence 1/2 is the dominant contribution to resonant indirect
absorption because the intermediate and final states have similar
energies. The sequence 1′/2′ is far less resonant because the inter-
mediate state energy is much larger.

splitting is �0 ∼ 0.3 eV, so this band is not involved in the
resonant indirect absorption processes that are the focus of
this paper. Choosing Cartesian axes, the remaining states can
be written as [20]

|1〉 = |HH1〉 =
∣∣∣∣32 ;

3

2

〉
= − (|X ↑〉 + i|Y ↑〉)√

2
,

|2〉 = |LH1〉 =
∣∣∣∣32 ;

1

2

〉
= − (|X ↓〉 + i|Y ↓〉)√

6
+

√
2|Z ↑〉√

3
,

(2)

|3〉 = |HH2〉 =
∣∣∣∣32 ; −3

2

〉
= (|X ↓〉 − i|Y ↓〉)√

2
,

|4〉 = |LH2〉 =
∣∣∣∣32 ; −1

2

〉
= (|X ↑〉 − i|Y ↑〉)√

6
+

√
2|Z ↓〉√

3
,

where the X, Y, Z transform as the coordinates and the wave
vector k is along the z direction. In both Eqs. (1) and (2)
the spin direction corresponds to the z axis. The bands are
assumed to have parabolic dispersion with effective masses
mν (ν = 1, 2, 3, 4) with m1 = m3 = mhh (heavy hole) and
m2 = m4 = mlh (light hole). Corrections for band warping
are incorporated into the definition of the effective masses,
as discussed in Appendix B. Nonparabolicity is ignored.

Optical absorption across the indirect gap requires the com-
bined interaction of the electron system, light, and phonons.
The electron-radiation interaction is given by the A · p term
in the expansion of the Hamiltonian of an electron in the
presence of a field characterized by a vector potential A
[21]. Using a second-quantization formalism and assuming an
incident photon of angular frequency ω and polarization μ, we
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can write this term as

HeR = MR√
V

∑
k,σ,ν

(êμ · Pσ k,νk )c†σ kvνk(a†
μ + aμ);

MR =
( e

m

)( 4π

n2
op

)1/2(
h̄

2ω

)1/2

. (3)

Here c
†
σ k(cσ k ) is the creation (annihilation) operator for a

conduction band electron with wave vector k and spin σ ;
v
†
νk(vνk ) the creation (annihilation) operator for a valence

band electron with wave vector k in band ν = 1, 2, 3, 4, as in
Eq. (2); and a†

μ(aμ) is the creation (annihilation) operator for
the photon. This Hamiltonian can only induce vertical tran-
sitions between bands because we are neglecting the photon
wave vector, a standard approximation at optical frequencies.
The electron-light coupling is characterized by a momentum
matrix element êμ · Pσ k,vk where êμ is a unit light polarization
vector. In the prefactor MR, nop is the material’s index of
refraction at frequency ω; e is free electron charge; m the
free electron mass; and h̄ the reduced Planck’s constant. The
normalization volume V is taken as the macroscopic sample
volume.

For states near the � point of the BZ, the momentum matrix
elements can be written in terms of the k·p-theory parameter
P, defined as [20]

P = −i〈S ↑|Px |X ↑〉 = −i〈S ↑|Py |Y ↑〉
= −i〈S ↑|Pz|Z ↑〉 = −i〈S ↓|Px |X ↓〉
= −i〈S ↓|Py |Y ↓〉 = −i〈S ↓|Pz|Z ↓〉. (4)

With this definition, the effective mass of electrons in the �

valley, me� , is given by

1

me�

= 1

m
+ 2

3

(
P

m

)2[ 2

E0
+ 1

E0 + �0

]
, (5)

where m is the free electron mass. For the momentum ma-
trix elements êμ · Pσ k,νk we neglect, as usual, their depen-
dence on the wave-vector magnitude k, but we must consider
the relative orientation between k and the polarization vec-
tor eμ. However, since we eventually perform integrations
over k, we can use angular averages Pσν such that P 2

σν =
lim
k→0

|eμ · P k,σ ;k,ν |2, as discussed in Ref. [22]. We then obtain

P 2
↑1 = P 2

↓3 = P 2

3
,

P 2
↑2 = P 2

↓4 = 2P 2

9
, (6)

P 2
↑4 = P 2

↓2 = P 2

9
,

all other couplings being zero. Using these angular averages
in Eq. (3), the electron-radiation coupling is characterized by
a single parameter P.

Since HeR can only effect vertical transitions, absorption
across the indirect gap requires the additional momentum pro-
vided by a phonon. The electron-phonon Hamiltonian relevant
for resonant indirect absorption couples the conduction band
states at � and L via LA phonons [15]. The corresponding

Hamiltonian [23,24] is given in second-quantization notation
by

HeP = MP D�L√
V

∑
kqσ

c+
σ kcσ,k−q[bq,LA − b

†
−q,LA];

MP =
√

h̄

2ρ�LA
, (7)

where ρ is the material’s density, �LA is the LA phonon
angular frequency, and D�L is the so-called deformation
potential (with units of energy/distance). In this expression we
are neglecting the wave-vector dependence of the deformation
potential and phonon frequency, so that their values should
be viewed as an average. This makes it possible to character-
ize the electron-phonon interaction with a single parameter,
similarly to our approximations for the electron-radiation
Hamiltonian.

As we will see later, the value of D�L is critical for
the assessment of any theory of indirect optical absorption.
From time-resolved transmission experiments, Zhou et al.
[25] find D�L = (4.2 ± 0.2) × 108 eV/cm. By studying
the pressure dependence of the direct gap exciton at low
temperature, Li and co-workers [26] obtained an upper limit
D�L < 4.5 × 108 eV/cm, which is consistent with Zhou’s
measurements. Theoretical predictions are in good agreement
with the experimental data. Krishnamurthy and Cardona [27]
find D�L = 3.9 × 108 eV/cm using an ab initio tight-binding
method and a frozen-phonon calculation. From electronic
structure calculations within the local-density approximation
(LDA) to density-functional theory, combined with density-
functional perturbation theory for phonons, Tyuterev et al. ob-
tained D�L = 4.0 × 108 eV/cm [28]. Using instead a frozen-
phonon approach, Murphy-Armando and Fahy [29] found
D�L = 4.1 × 108 eV/cm. In our fits of experimental data to
be discussed below, D�L will be taken as an adjustable param-
eter, and the agreement with these well-established values will
be an important criterion to decide on the absorption model
validity. The remaining Ge parameters will not be adjusted but
taken from the literature [23,25,30–36]. They are summarized
in Table I. Some of these parameters were computed from
available data at low temperature as described in Appendix B.

Using Eqs. (3) and (7), optical absorption can be calculated
as an exercise in second-order perturbation theory. For this, we
note that intermediate as well as final states contain one elec-
tron in the conduction band and one hole in the valence band,
so it is convenient to introduce an excitonic representation by
defining the operators [37]:

d
†
λK ,σν = 1√

N

∑
Rk

UλK ,σν (R)e−ik·Rc
†
σ kvν,k−K . (8)

Here N is the number of unit cells in the crystal, K is the
electron-hole pair’s (exciton’s) center of mass wave vector,
and λ is an index that represents the internal degrees of
freedom of the exciton. The indices σ and ν [from Eqs. (1) and
(2)] identify the conduction and valence bands involved, and R
is a relative lattice vector that represents the electron-hole sep-
aration. The function UλK ,σν (R) depends on the electron-hole
interaction. For Wannier-like excitons with large electron-hole
separations, the variable R can be taken as continuous, and one
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TABLE I. Material parameters at the experimental temperature of 301 K used for the calculation of the absorption coefficient of Ge. The
columns that lack a direct reference were computed from available experimental data as discussed in Appendix B. In the case of nop and ε0,
they were taken from our own ellipsometric measurements.

me�/m m⊥/m m||/m mlh/m mhh/m P 2/m (eV) h̄�LA (meV) h̄�O (meV) ρ (g/cm3) D�L(eV/cm) d0(eV) nop ε0 a0(Å)

0.0338 0.0784 1.58a–c 0.0385 0.352 12.61 27d 37.2e 5.323f 4.2 × 108g 41h 4.13 16.2 5.6574

aReference [30]; bReference [31]; cReference [32]; dReference [33]; eReference [35]; fReference [36]; gReference [25]; hReference [34].

can obtain UλK ,σν (R) from the solution of Schrödinger-like
differential equations.

For the purpose of calculating resonant indirect absorption
we need to consider two types of exciton. When both the
electron and hole states are near the � point of the BZ,
we define a function FλK ,σν (R) = v

−1/2
c e−ise�ν K ·RUλK ,σν (R),

where vc is the volume of the unit cell, and se�ν = me�/M�ν ,
with M�ν = me� + mν . In the limit in which R can be
taken as a continuum variable, FλK ,σν (R) satisfies a hydro-
genic Schrödinger equation with bound eigenvalues, EλKν ≡
EnKν = E0 + h̄2K2/2M�ν − Ry�ν/n

2, n = 1, 2, 3 · · · . Here
the excitonic Rydberg is Ry�ν = μ�νe

4/2h̄2ε2
0, where μ−1

�ν =
m−1

e� + m−1
ν , and ε0 is the static dielectric constant. The second

type of exciton we will consider involves the same hole
states as the previous one but electrons near the L-point
minimum of the CB. Since the conduction band effective mass
is very anisotropic at this point, the resulting Schrödinger-like
equation does not have simple analytical solutions. We will
therefore follow Elliott and make the drastic approximation
that the band dispersion is spherically symmetric around L:
Ec(k) = Eind + h̄2(k − kL)/2mL with kL = π

a0
(1, 1, 1) with

a0 being the cubic lattice parameter. The validity of this
spherical approximation will be discussed below. Under this
assumption we recover a hydrogenlike Schrödinger exciton
equation for FλK ,σν (R) = v

−1/2
c e−i(seLν K+shLν kL )·RUλK ,σν (R),

where seLν = mL/MLν , shLν = mν/MLν , and MLν = mL +
mν . The corresponding bound eigenvalues are given by
EλKν ≡ EnKν = Eind + h̄2(K − kL)2/2MLν − RyLν/n

2, n =
1, 2, 3 · · · with RyLν = μLνe

4/2h̄2ε2
0 and μ−1

Lν = m−1
L + m−1

ν .

Notice that our description of the excitons assumes sepa-
rate excitonic states for each valence band involved. This is,
strictly speaking, never the case, since light and heavy holes
are degenerate at the � point. However, within the spherical
approximations to be discussed in Sec. II C, the problem
does reduce to the sum of two separate two-band excitonic
contributions, albeit with excitons calculated using different
effective masses. The expressions derived next contain a
sum over the two types of hole, which in Sec. II C will be
replaced by a factor of 2 times the contribution of a “hybrid”
light-/heavy-hole state.

The intensity of radiation traveling a distance dx in a
medium is attenuated as dI/I = −αdx, where α is the ab-
sorption coefficient. If the transition rate for the process
is Ri→f , then α = Ri→f nop/c, where c is the speed of
light in vacuum. For typical experimental conditions kBT �
Eind, where kB is Boltzmann’s constant. In this limit it is
an excellent approximation to assume that the initial state
|i〉 consists of an electronic system in its ground state, a
phonon bath, and an incident photon with fixed polariza-
tion μ. We indicate this initial state as a†

μ|G〉. The final
state |f 〉 consists of an exciton and one additional (creation)
or one less (annihilation) phonon. It is given in bra form
as [nqLA + 1]−1/2〈G|bqLAdλK ,σν or (nqLA)−1/2〈G|b†qLAdλK ,σν ,
respectively, where the prefactors containing the Bose-
Einstein phonon population nqLA insure proper normaliza-
tion. The intermediate states consist of excitons of the form
d
†
λK ,σν |G〉. Therefore, the dominant contributions to the tran-

sition rate are, from Fermi’s “golden rule,”

R±
i→f = 2π

h̄

∑
q,λK ,σν

∣∣∣∣∣∣
(

nqLA + 1

2
± 1

2

)−1/2 ∑
λ′ K ′,σ ′ν ′

〈G|bqLAdλK ,σνHeLd
†
λ′ K ′,σ ′ν ′ |G〉〈G|dλ′ K ′,σ ′ν ′HeRa†

μ|G〉
h̄ω − Eλ′ K ′,σ ′ν ′

∣∣∣∣∣∣
2

× δ(EλK ,σν ± h̄�LA − h̄ω). (9)

Here the upper “+” sign corresponds to phonon creation
and the lower “−” sign to phonon annihilation. Equation (9)
omits a contribution from terms in which HeL and HeR appear
in reverse order. These are zero under our assumptions that the
electronic system is initially in its ground state and that HeL

does not couple the valence band with the conduction band.
The matrix elements in Eq. (9) can be easily computed

from the definitions in Eqs. (3), (7), and (8), combined with
well-known theorems for lattice sums. First we observe that
if the final state contains a conduction band (CB) electron
at the L point, this state can be reached via a direct optical

transition at � followed by an electron-phonon “transfer” of
the electron from � to L, as shown in Fig. 1 as processes 1 and
2. Alternatively, it is possible to have a direct optical transition
at L (across the so-called E1 and E1 + �1 gaps) followed by
an electron-phonon “transfer” of the hole from L to �. This
is indicated as processes 1′ and 2′ in Fig. 1. However, the
first process, with intermediate energies Eλ′ K ′,σ ′ν ′ ∼ 0.8 eV,
is far more resonant than the latter, with Eλ′ K ′,σ ′ν ′ ∼ 2 eV.
Accordingly, we will neglect the contribution from the E1 and
E1 + �1 transitions. In this case, the exciton created by the
HeR element is a �-point exciton, whereas HeL converts this
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�-point exciton into an indirect exciton with the electron near L and the hole near �. The matrix elements become

〈G|dλ′ K ′,σ ′ν ′HeRa†
μ|G〉 = δK ′,0MRPσ ′ν ′F ∗

λ′0,σ ′ν ′ (0), (10)

and

〈G|bqLAdλK ,σνHeLd
†
λ′0,σ ′ν ′ |G〉 = −MP D�L√

V
vc[nLA + 1]δνν ′δσσ ′δ−q,K

∑
R

F ∗
λK ,σν (R)Fλ0,σν (R)eishLν (K−kL )·R,

〈G|b†qLAdλK ,σνHeLd
†
λ′0,σ ′ν ′ |G〉 = MLD�L√

V
vc[nLA]δνν ′δσσ ′δq,K

∑
R

F ∗
λK ,σν (R)Fλ0,σν (R)eishLν (K−kL )·R. (11)

Inserting (10) and (11) into Eq. (9), we obtain

R±
i→f = 2π

h̄

M2
P M2

R

V
D2

�Lv2
c

[
nLA + 1

2
± 1

2

] ∑
λK ,σν

|Pσν |2
∣∣∣∣∣
∑

R

F ∗
λK ,σν (R)eishLν (K−kL )·R∑

λ′

Fλ′0,σν (R)F ∗
λ′0,σν (0)

h̄ω − Eλ′0,σν

∣∣∣∣∣
2

× δ(EλK ,σν ± h̄�LA − h̄ω). (12)

Upon substitution of the expressions for the momentum matrix elements in Eq. (6), we obtain:

R±
i→f = 2π

h̄

M2
P M2

R

V

(
2P 2

3

)
D2

�Lv2
c [nLA + 1]

∑
λKh

∣∣∣∣∣
∑

R

F ∗
λK ,h(R)eishL(K−kL )·R∑

λ′

Fλ′0,h(R)F ∗
λ′0,h(0)

h̄ω − Eλ′0,h

∣∣∣∣∣
2

× δ(EλK ,h ± h̄�LA − h̄ω), (13)

where the index h now runs over light and heavy holes. Since
all sums over the index ν are “collapsed” into a sum over the
two types of holes, we will from now replace the subscript
“ν” in all previously defined symbols with “h,” except that
shLh and sh�h are simplified as shL and sh� .

Equation (13) transparently displays the alternative
physics required to describe indirect excitons in Ge. If
the energy denominator h̄ω − Eλ′0,h is independent of λ′,
i.e., if all intermediate states are assumed to have the
same energy, we are left with the completeness relation∑

λ′ Fλ′0,h(R)F ∗
λ′0,h(0) = δ(R), and the transition rate be-

comes proportional to |FλK ,h(0)|2. This is the result obtained
by Elliott [14]. It is similar to the expression for direct
excitonic absorption in that it depends on the final state
excitonic wave function at position R = 0. Furthermore, since
the completeness relation is independent of the strength of the
electron-hole interaction, the final result is identical whether
we treat the intermediate states as free electron-hole pairs or
as excitons. In the case of Ge, however, the approximation
of extracting the denominator from the sum over λ′ is very
poor. This implies that in a realistic theory the nature of the
intermediate states will affect the transition rate. Furthermore,
the transition rate will depend not only on the final state
excitonic wave function at R = 0 but at all values of R. It
is therefore inconsistent to calculate the indirect absorption
using the Hartman model and then attempt to correct for
excitonic effects using the Elliott approximations.

B. Green’s function theory

The computation of Eq. (13) is greatly facilitated by noting
that

Gh
h̄ω(R, 0) =

∑
λ

F ∗
λ0,h(0)Fλ0,h(R)

h̄ω − Eλ0,h

(14)

is the Green’s function for the excitonic Schrödinger equation
[38]. For the �-point excitons relevant to our calculation this
Green’s function has a particularly simple form [39–41] in the
limit in which R can be considered a continuum variable. In
this case the Green’s function depends only on the magnitude
R ≡ |R| according to

Gh
h̄ω(R, 0) =

(
1

4πR

)(
2μ�h

h̄2

)
�(1 − κ�h)Wκ�h,1/2(ρ),

(15)

with

κ�h =
√(

Ry�h

E0 − h̄ω

)
; Reκ�h � 0, Imκ�h � 0,

ρ = 2R

κaB�h

; aB�h = h̄√
2μ�hRy�h

. (16)

Here �(z) is the Gamma function (not to be confused with
the � point in the BZ), and Wκ,n(z) a Whittaker function of
the first kind.

Using the Green’s function, and converting the sum over R
in Eq. (13) into an integral, we obtain

R±
i→f = 2π

h̄

M2
P M2

R

V

(
2P 2

3

)
D2

�L

[
nLA + 1

2
± 1

2

]

×
∑
λKh

∣∣∣∣
∫

V

d RF ∗
λK ,h(R)eishL(K−kL )·RGh

h̄ω(R, 0)

∣∣∣∣
2

× δ(EλK ,h ± h̄�LA − h̄ω). (17)

To evaluate this transition rate we need the final state
excitonic wave function FλK ,h(R). For bound states, the
generic index λ can be identified with the hydrogenic quantum
numbers n, l, m. In the Elliott exciton limit the absorption
is proportional to |FλK ,h(0)|2, as discussed above, which is
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nonzero only for the s-like l = 0 excitons. While this is
not the case in Eq. (17), the contribution from the l �= 0
states will be necessarily small because each excitonic state
contributes a term roughly proportional to n−3. Accordingly,
the contribution from the 2p state will not exceed 10% and
will probably be even less, since it vanishes in the limit of
constant denominators. Furthermore, we will find below that
the excitonic continuum states make a much larger contribu-
tion to the absorption, so that we will neglect any l �= 0 bound
state. Under this approximation FλK ,h(R) depends only on the
magnitude R and the principal quantum number n according
to

FλK ,h(R) ≡ FnK ,h(R) = 1√
π (naBLh)3/2

1

n
e−ρ/2L1

n−1(ρ);

ρ = 2R

κLhaBLh

; aBLh = h̄√
2μLhRyLh

, (18)

where L1
n(ρ) is an associated Laguerre polynomial of order n.

Here, in analogy with Eq. (16),

κLh =
√(

RyLh

E0 − h̄ω

)
; ReκLh � 0, ImκLh � 0,

ρ = 2R

κaBLh

; aBLh = h̄√
2μLhRyLh

. (19)

For the continuum limit the index λ becomes a wave
vector k, and the corresponding energy is EkKh ≡ EnKν =
Eind + h̄2(K − kL)2/2MLh+h̄2k2/2μLh, with k = |k|. The
wave function can be written as [42]

FλK ,h(R) ≡ FkK ,h(R)

= 1√
V

�(1 + iνLh)eπνLh/2

× eik·R
1F1(−iνLh, 1,−ikR − ik · R), (20)

with

νLh =
√

RyLh

h̄2k2/2μLh

. (21)

Here 1F1(a, b, z) is a confluent hypergeometric function
of the first kind. It is interesting to point out that Elliott [14]
writes his final state wave function as a partial wave expansion
into spherical harmonics (see Eq. 2.10 in Ref. [14]). Such a
form is convenient given the l = 0 selection rule of the Elliott
model, but Eq. (20) is far more compact for our purposes.
Furthermore, in the limit of vanishing Coulomb interaction,
νLh → 0, and Eq. (20) reduces to a plane wave, which makes
it very simple to compute the nonexcitonic absorption limit.

1. Bound exciton calculation

Even after the considerable simplifications discussed
above, the transition rate in Eq. (17) cannot be computed
analytically. For bound excitons, however, our approximated
final state wave function as well as the Green’s function
that appears in the integral over R is spherically symmetric.
This makes it possible to carry out the angular part of the
integration analytically by placing the vector K − kL along

the z axis. We then find

R±
i→f = 2π

h̄

M2
P M2

R

V

(
2P 2

3

)
D2

�L

[
nLA + 1

2
± 1

2

]

×
∑
nKh

1

n5
|HLnh(|K − kL|)|2

× δ

[
Eind + h̄2(K −kL)2

2MLh

− RyLh

n2
± h̄�LA − h̄ω

]
,

(22)

where

HLnh(k) = RyLh

shLk

∫ ∞

0
dRR sin(shLkR)Gh

h̄ω(R, 0)

× e
− R

naBLh L1
n−1

(
2R

naBLh

)
. (23)

Performing a change of variables k′ = K − kL and con-
verting the sum over k′ into an integral over the variable ε′ =
h̄2k′2/2MLh, we finally obtain, after some straightforward
manipulations,

α±
bound

= 512nop

3h̄7c
M2

RM2
P P 2D2

�L

(
nLA + 1

2
± 1

2

)

×
∑

h

∑
n

(mLmh)3/2
R

−1/2
yLh

n5

×
(

h̄ω − Eind + RyLh

n2
∓ h̄�LA

)1/2

×
∣∣∣∣∣HLhn

[√
2MLh

h̄

(
h̄ω − Eind + RyLh

n2
∓ h̄�LA

)1/2
]∣∣∣∣∣

2

,

(24)

FIG. 2. Calculated absorption coefficient of Ge using parameters
from Table I. The dotted line shows the bound exciton contribution,
from Eq. (24), and the solid line corresponds to the continuum
exciton contribution, Eq. (29). In both cases we use effective masses
from Eq. (47).
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where we have multiplied the expression obtained from
Eq. (22) by a factor of 8/2 = 4 to take into account the valley
degeneracy along the different 〈111〉 directions in Ge. We
have also used the identity MLhμLh = mLmh. The function
HLhn is computed by numerical integration. The calculated
absorption coefficient from Eq. (24) is shown in Fig. 2. Notice
the well-known result that bound excitons contribute to the
absorption above and below the indirect band gap. This is
in contrast with the direct gap absorption case, in which
bound excitons only contribute to below-band-gap absorption.
Therefore, we must take bound exciton absorption into ac-
count, even though our primary focus is on the more resonant
energy range between the indirect and direct gaps. However,
as seen in Fig. 2 and derived below, the continuum exciton
absorption is one order of magnitude stronger in this range.

2. Continuum exciton calculation

For the continuum case, the presence of the argument k · R
in Eq. (20) means that the integral over R in Eq. (17) involves

a nontrivial angular integration. In addition, the final result
of this R integration depends on the relative angle between k
and K , which implies that the complete evaluation of Eq. (17)
requires a quadruple integral at each photon energy. This is
computationally too costly if we want to run the calculations
on personal computers and eventually fit experimental data.
The calculation can be made more manageable if we introduce
the approximation

1F1(−iν, 1,−ikR − ik · R) � 1F1(−iν, 1,−ikR). (25)

This approximation will be justified below. Qualitatively,
this simplification is consistent with our neglect of mass
anisotropy in the underlying Schrödinger equation. Inserting
Eq. (25) into (17), and using again the change of variable
k′ = K − kL, we obtain

R±
i→f = 2π

h̄

M2
P M2

R

V 2

(
2P 2

3

)
D2

�L

[
nLA + 1

2
± 1

2

]∑
kk′h

∣∣∣∣�(1 + iνLh)eπνLh/2
∫

V

d R1F
∗
1 (−iν, 1,−ikR)eikh·RGh

h̄ω(R, 0)

∣∣∣∣
2

× δ

(
Eind + h̄2k′2

2MLh

+ h̄2k2

2μLh

± h̄�LA − h̄ω

)
, (26)

with kh = shL(K − kL) − k = shLk′ − k. If the integral over R is carried out in spherical coordinates, the angular integrations
can be done analytically, and we obtain

R±
i→f = 8π

h̄

M2
P M2

R

V 2

(
2P 2

3

)
D2

�L

[
nLA + 1

2
± 1

2

](
4π

RyLh

)2∑
kk′h

|JLh(k, k′, θ )|2δ
(

Eind + h̄2k′2

2MLh

+ h̄2k2

2μLh

± h̄�LA − h̄ω

)
,

(27)

where we have again multiplied the expression by a factor of 4 to account for valley degeneracy. The function JLh(k, k′, θ ) is
defined as

JLh(k, k′, θ ) = RyLh�(1 + iνLh)eπνLh/2

kh

∫ ∞

0
dRRGh̄ω(R, 0)1F

∗
1 (−iνLh, 1,−ikR) sin khR, (28)

where θ is the angle between k and k′ such that k2
h = s2

hLk′2 + k2 − 2shLkk′ cos θ . Next we convert the sums over k and k′ into
integrals and introduce the variables ε = h̄2k2/2μLh and ε′ = h̄2k′2/2MLh, so that we finally obtain

α±
continuum = 64nop

3h̄7πc
M2

P M2
RP 2D2

�L

[
nLA + 1

2
± 1

2

]∑
h

(
1

RyLh

)2

m
3/2
L m

3/2
h

∫ π

0
dθ sin θ

×
∫ h̄ω∓h̄�LA

0
dε|J [k(ε), k′(h̄ω − ε ∓ h̄�LA), θ ]|2

√
h̄ω − ε ∓ h̄�LA

√
ε. (29)

Equation (29) is evaluated numerically as a triple integral over the position R, the angle θ , and the energy ε.

3. Free electron-hole pair limit

In the limit of vanishing electron-hole interaction, κ�h → 0 in Eq. (16), and since W0,1/2(ρ) = e−ρ/2 and �(1) = 1, we obtain

lim
κ�h→0

Gh
h̄ω(R, 0) =

(
1

4πR

)(
2μ�h

h̄2

)
eik0R, (30)
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with k0 = √
2μ�h(h̄ω − E0). Also, since νLh → 0 and 1F1(0, b, z) = 1, Eq. (20) reduces to a plane wave, FkK ,h(R) =

eik·R/
√

V . Inserting these limit expressions into Eq. (17), we find

R±
i→f = 2π

h̄

M2
P M2

R

V

(
2P 2

3

)
D2

�L

[
nLA + 1

2
± 1

2

]
1

V

(
2μ�h

4πh̄2

)2∑
kKh

∣∣∣∣
∫

V

d Re−ik·ReishL(K−kL )·R eik0R

R

∣∣∣∣
2

× δ

[
h̄2k2

2μLh

+ h̄2(K − kL)2

2MLh

± h̄�LA − h̄ω

]
. (31)

We now change variables to

kh = shL(K − kL) − k, ke = seLh(K − kL) + k, (32)

so that

h̄2k2

2μLh

+ h̄2(K − kL)2

2μLh

= h̄2k2
e

2mL

+ h̄2k2
h

2mh

. (33)

Therefore

R±
i→f = 2π

h̄

M2
P M2

R

V

(
2P 2

3

)
D2

�L

[
nLA + 1

2
± 1

2

]
1

V

(
2μ�h

h̄2

)2 ∑
ke khh

∣∣∣∣ 1

k2
h − k2

0

∣∣∣∣
2

δ

(
Eind + h̄2k2

e

2mL

+ h̄2k2
h

2mh

± h̄�LA − h̄ω

)
, (34)

where we have used
∫∞

0 dReik0R sin khR = kh/(k2
h − k2

0 ); Imk0 > 0.
Converting the sums over ke and kh into integrals and changing variables by defining ε = h̄2k2

e /2mL and ε′ = h̄2k2
h/2mh, we

finally obtain, after some straightforward manipulations,

R±
i→f = 8

3h̄7π3
M2

P M2
RP 2D2

�L

[
nLA + 1

2
± 1

2

]
1

(h̄ω − E0)2

×
∑

h

m
3/2
h m

3/2
L

∫ h̄ω−Eind∓h̄�LA

0
dε

√
ε
√

h̄ω − Eind ∓ h̄�LA − ε[
1 + h̄ω−Eind∓h̄�LA−ε

se�h(E0−h̄ω)

]2 . (35)

This expression includes an additional factor of 4 to account for valley degeneracy. The integral can be performed analytically,
and we finally obtain for the absorption coefficient

α±
free = 4nop

3h̄7cπ2
M2

LM2
RP 2D2

�L

[
nLA + 1

2
± 1

2

]∑
h

s2
e�hm

3/2
h m

3/2
L

{
1√

(E0 − h̄ω)

[
2(E0 − h̄ω) + (h̄ω − Eind ∓ h̄�)/se�h√

(E0 − h̄ω) + (h̄ω − Eind ∓ h̄�)/se�h

]
− 2

}
.

(36)

This is exactly equivalent to Hartman’s result, except that in a calculation that fully accounts for the mass anisotropy of the L
valley in the conduction band, one must use m

3/2
L = m⊥m

1/2
‖ . If we now define the dimensionless variable

y = E0 − h̄ω

E0 − Eind ∓ h̄�LA
, (37)

it is apparent that the nonresonant limit obtains for y → 1. Expanding Eq. (36) to second order in η = (1 − y)/y, one obtains
the textbook result [24]:

α±
free = nop

3h̄7cπ2
M2

P M2
RP 2D2

�L

[
nLA + 1

2
± 1

2

]∑
h

m
3/2
h m

3/2
L η2

= 4nop

3h̄7cπ2
M2

P M2
RP 2D2

�L

[
nLA + 1

2
± 1

2

]∑
h

m
3/2
h m

3/2
L

(h̄ω − Eind ∓ h̄�LA)2

(E0 − h̄ω)2 . (38)

4. Elliott limit

The indirect excitonic absorption proposed by Elliott is obtained, as indicated above, in the limit of constant denominators in
Eq. (13). In this limit we have

lim
E0/h̄ω→∞

Gh
h̄ω(R, 0) = δ(R)

E0 − h̄ω
, (39)
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and inserting this back into Eq. (17) we obtain

R±
i→f = 2π

h̄

M2
P M2

R

V

(
2P 2

3

)
D2

�L

[
nLA + 1

2
± 1

2

]
1

(E0 − h̄ω)2

∑
λKh

|F ∗
λK ,h(0)|2δ(EλK ,h ± h̄�LA − h̄ω). (40)

For the case of bound excitons, using L1
n−1(0) = n in Eq. (18),

FλK ,h(0) ≡ FnK ,h(0) = 1√
π (naBLh)3/2 , (41)

whereas for the continuum excitons we have from Eq. (20)

FλK ,h(0) ≡ FkK ,h(0) = 1√
V

�(1 + iνLh)eπνLh/2, (42)

where we have used 1F1(a, b, 0) = 1. Inserting Eq. (41) or (42) into (40) and performing the changes of variables k′ = K − kL,
we obtain, after several straightforward steps that mimic our derivation of the resonant case,

α±
bound = 8

√
2nop

3πch̄4 M2
P M2

RP 2D2
�L

[
nLA + 1

2
± 1

2

]
1

(E0 − h̄ω)2

∑
nh

M
3/2
Lh

(naBLh)3

√
h̄ω − Eind ∓ h̄�LA + RyLh

n2
. (43)

For the case of the continuum solution, we find

R±
i→f = 2π

h̄

M2
P M2

R

V

(
2P 2

3

)
D2

�L

[
nLA + 1

2
± 1

2

]
1

(E0 − h̄ω)2

×
∑
kk′h

1√
V

|�(1 + iνLh)|2eπνLhδ

(
Eind + h̄2k′2

2MLh

+ h̄2k2

2μLh

± h̄�LA − h̄ω

)
, (44)

from which we obtain, using the properties of the Gamma function and converting the sums over wave vector to integrations
over energy,

α±
continuum = 8nop

3h̄7cπ3
M2

P M2
RP 2D2

�L

[
nLA + 1

2
± 1

2

]
1

(E0 − h̄ω)2

×
∑

h

m
3/2
h m

3/2
L

∫ h̄ω−Eind∓h̄�LA

0
dεS(ε)

√
ε
√

h̄ω − Eind − ε ∓ h̄�LA. (45)

Here

S(ε) = πνLhe
πνLh

sinh(πνLh)
= π

√
RyLh/εe

π
√

RyLh/ε

sinh(π
√

RyLh/ε)
(46)

is the Sommerfeld enhancement factor. In the limit of vanish-
ing electron-hole interaction, RyLh → 0 and S(ε) → 1, and
Eq. (45) becomes Eq. (38).

C. Sphericalization approximation

1. Effective masses

Our model of indirect excitons in Ge is based on assuming
that the conduction band around the L point of the BZ has an
isotropic parabolic dispersion with effective mass mL. This is
a very poor approximation, since the L valley is characterized
by a longitudinal mass m‖ = 1.58m and a transverse mass
m⊥ = 0.078m, as shown in Table I. However, as indicated
above, in the noninteracting limit we recover the same ab-
sorption expression as in the anisotropic case if we use m

3/2
L =

m⊥m
1/2
‖ . This suggests that we use this expression as our value

of mL in all calculations. Unfortunately, this simple approach
is questionable because the indirect exciton Rydberg energies
calculated with this mass are ∼7 meV for heavy holes and

∼2 meV for light holes. Experimentally, one sees a single
1s exciton level split into upper and lower components with
binding energies of 3 and 4 meV, respectively [16]. Given
our choice of an isotropic mass for the L valley, we do not
expect to capture the fine structure of the excitons, but the
significant differences in binding energies suggest that we
may be introducing large errors in our calculation of excitonic
enhancements. Thus a more systematic derivation of our
spherical excitonic Hamiltonian is needed. This derivation has
been provided by Altarelli and Lipari [17,18], who expanded
the full anisotropic excitonic Hamiltonian as a series in which
the first term is spherically symmetric. The effective masses
corresponding to this spherically symmetric term are, using
our notation,

mL = 3m⊥m‖
2m‖ + m⊥

; mh = 2mhhmlh

mhh + mlh

, (47)

and therefore these are the most appropriate masses to treat
excitons in Ge using a spherical dispersion model. The corre-
sponding binding energy is RyLh = 2.3 meV. Since there are
two “sphericalized” hole bands, the sums over heavy and light
holes are taken into account by simply multiplying times 2
the result obtained with Eq. (47). On the other hand, using the
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FIG. 3. Excitonic enhancement S computed as a ratio of the con-
tinuum contribution to the absorption and the absorption calculated
for free electron-hole pairs. The “+” sign in the horizontal axis
label applies to the case of phonon annihilation; the “–” sign to
phonon creation. The solid line corresponds to the resonant excitonic
model introduced here, the dotted line to Elliott’s model. Note the
difference of the two models as the direct gap is approached. This is
because the resonant model is affected by the excitonic character of
the intermediate states, whereas Elliott’s model is independent of the
character of these states.

definitions in Eq. (47) we find that

RF ≡ m⊥m
1/2
‖ m

3/2
hh + m⊥m

1/2
‖ m

3/2
lh

2(mLmh)3/2 = 15.0, (48)

which means that in the noninteracting limit of Eq. (29), the
choice of effective masses from Eq. (47) leads to an absorption
coefficient that is more than one order of magnitude weaker
than expected from a free electron calculation. It is then
apparent that a rigorously derived spherical exciton model
is inconsistent with the noninteracting limit in Ge. We must
then resort to an ad hoc correction inspired by the continuum
excitonic expression in the Elliott limit, in which the excitonic
effects appear as an enhancement factor S(ε). The idea is to
write the absorption coefficient as

α(h̄ω) = αbound(h̄ω) + S(h̄ω)αfree(h̄ω), (49)

where αfree is given by Eq. (36) with m
3/2
L = m⊥m

1/2
‖ , and

S(h̄ω) is the ratio of Eqs. (29) and (36) using in both cases
the masses in Eq. (47). These enhancement factors are shown
in Fig. 3, where we also show for comparison the same
enhancement factors calculated for the Elliott model. As ex-
pected, the two theories make drastically different predictions

as the resonant direct gap is approached. In the resonant
excitonic theory presented here, the excitonic nature of the
intermediate states leads to a dramatic enhancement as E0

is approached. In the Elliott model, as indicated above, the
excitonic nature of the intermediate states is irrelevant. For
αbound, since Eq. (24) is proportional to

∑
h m

3/2
L m

3/2
h and we

want consistency between bound and continuum expressions,
we compute Eq. (24) with the masses in (47) and then multiply
times RF given by Eq. (48). This approach, which by design
gives the correct noninteracting limit, is used below for all
comparisons with experiment.

It is interesting to discuss here why a comparable cor-
rection is far less important when computing the excitonic
enhancement of direct transitions in Ge [43]. If we define
a sphericalized reduced mass μ−1 = m−1

e� + m−1
h , with mh

given by Eq. (47), we find that(
μ

3/2
lh + μ

3/2
hh

)/
(2μ3/2) = 1.14. (50)

If instead we set the above equation equal to unity, and use
it to compute μ, we obtain the exact noninteracting limit while
paying the price of a small 14% error in the excitonic binding
energy.

2. Final state wave functions

In the calculation of the continuum contribution to indirect
exciton absorption, we reduced the number of numerical
integrations by approximating the confluent hypergeometric
function of the first kind as in Eq. (25). To examine the validity
of this approximation, we choose the z axis along the k vector
and define the angular average:

1F 1(−iν, 1,−ikR − ik · R)

= 1

2

∫ π

0
dθ sin θ1F1[−iν, 1,−ikR(1 + cos θ )]

= 1

2

∫ 1

−1
du1F1[−iν, 1,−ikR(1 + u)]. (51)

Figure 4 compares the average function defined in (51)
with the approximated expression in Eq. (25). We see that
the agreement is very good. This means that our approxima-
tion is consistent with the use of an angular average of the
exact excitonic wave function, and since the wave function
is integrated over the angles in Eq. (17), the error incurred
must be small when using an angular average of the wave
function rather than the wave function itself. Furthermore,
since the wave function in Eq. (20) is the solution of the
Schrödinger equation with sphericalized effective masses, any
small differences observed in calculations using the “exact”
wave function on the left side of Eq. (25) or the approximation
on the right-hand side may be physically meaningless.

We have also verified that the use of the Eq. (25) ap-
proximation has a negligible effect on the wave function
normalization.

III. EXPERIMENT

Optical transmittance and reflectance measurements were
carried out on six Ge specimens. Three of these samples
were commercial optical windows from ISP Optics [44] with
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FIG. 4. Comparison of the approximate continuum exciton wave
function proposed in Eq. (25) (solid line) with the angular average of
the exact wave function, as in Eq. (51) (dashed line). The comparison
is made for three values of the parameter νLh covering the full range
of excitonic energies.

thicknesses d = 1.04, 2.13, and 3.04 mm, respectively. The
three remaining samples were double-sided, polished (rough-
ness <1 nm RMS), commercial epiready Ge substrates from
Umicore [45], with d = 0.175 mm. The Umicore substrates
have an extremely low impurity concentration below 2 ×
1010cm−3, corresponding to a resistivity higher than 57 �

cm. We used a PerkinElmer Lambda 1050 spectrophotometer
equipped with an InGaAs sphere detector to measure the
regular transmittance T under normal incidence. The specular
reflectance R was measured at near-normal incidence (8.0◦ ±
0.25◦ incidence) using a PerkinElmer Lambda 900 spec-
trophotometer equipped with a VW directional reflectance
accessory (PE L6310200) and a PbS sphere detector. The
use of sphere-based detectors for these optical measurements

reduces uncertainties due to detector nonlinearity, nonuni-
formity, and inter-reflection effects. The measurements were
performed at an average temperature T = 301 K, as recorded
using a calibrated digital thermometer (Fluke Model 1529-R)
with an uncertainty of ±0.0025 ◦C at 25 ◦C. The thermometer
was mounted inside the sample compartment. The temper-
ature drift during any individual measurement was 3 K or
less. The regular transmittance measurements are traceable
to the well-characterized NRC Reference Spectrophotometer
[46]. The absolute VW (Strong method) specular reflectance
measurements were confirmed by comparison with a high
reflectance dielectric laser mirror optimized for 2037 nm [47].

For all wavelengths probed, d � λ, so that R and T can
be obtained by adding incoherently the contributions from the
two air-sample interfaces. We then obtain

R = R + T exp(−αd )R exp(−αd )T

+ T 2R3 exp(−4αd ) + · · ·

= R[1 + (1 − 2R) exp(−2αd )]

1 − R2 exp(−2αd )
, (52)

where R and T are the reflectance and transmittance at a
single air-sample interface and α is the absorption coefficient.
Similarly, the sample’s absorptance A = 1 − R − T is given
by

A = T [1 − exp(−αd )][1 + R exp(−αd )

+R2 exp(−2αd ) + · · · ]

= (1 − R)[1 − exp(−αd )]

1 − R exp(−αd )
. (53)

The desired absorption coefficient can be obtained from the
experimental R and A. We define

z ≡ exp(−αd ), (54)

so that Eqs. (53) and (52) can be rewritten as

z = A − 1 + R

AR − 1 + R
, (55)

(2 − R)z2R2 − (1 + z2)R + R = 0. (56)

This system can be easily solved by iteration. We can first
assume R = R—which corresponds to the high-absorption
limit of Eq. (52)—and calculate z from Eq. (55). Next we
insert this z into Eq. (56) and solve for R, which is then
inserted back into Eq. (55) to continue the iterative process.
Alternatively, we can start the iteration process by taking
the low-absorption limit of Eq. (52), R = R/(2 − R). For
typical values of the experimental quantities, virtually perfect
convergence is reached in as few as three iterations starting
from either limit. Results are shown in Fig. 5, where we
include only one of the d = 0.175 mm samples, as the others
give a virtually identical absorption coefficient. As expected,
we see from Fig. 5(a) that the d = 0.175 mm sample and even
the d = 1.04 mm sample are too thin for accurate measure-
ments near the absorption edge, where the results converge
for d > 2 mm. At the other end of the spectrum, we observe
that only the d = 0.175 mm samples can be used to reach the
direct gap, so that the samples with this thickness are crucial
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FIG. 5. (a) Absorption coefficient α extracted from the experimental data by solving Eqs. (55) and (56) iteratively. (a) Corresponding
air-germanium interface reflectance obtained by the same procedure, after smoothing as described in the text.

to study the resonant indirect absorption. At intermediate
energies, the absorption coefficients from all samples are in
excellent agreement, indicating that errors are very small and
that the method used to extract the absorption is robust. The
corresponding reflectances are shown in Fig. 5(b). Smooth-
ing has been applied to the reflectance curves to eliminate
instrumentally induced noise that appears between 0.65 and
0.70 eV. The observed noise in R can be traced back not only
to noise in the raw R data but also to residual fluctuations in
the transmittance, which has the steepest slope in this spectral
range. The reflectance curves are also in excellent agreement
with each other, with the largest discrepancies not exceeding
0.5%. The local maxima near 0.80 eV are associated with
the direct gap E0. Fluctuations in the position of these local
maxima, within a range of about 10 meV, are apparent in
the data. Energy shifts of this magnitude are too large to be
due to thermal drift, since a temperature change �T = 3 K
corresponds to �E0 = −1.3 meV [48]. More likely, the shifts
are due to residual doping levels. For example, a doping level
of 1016cm−3 corresponds to a band gap renormalization of
−5 meV [49]. This interpretation is consistent with the fact
that in the high-resistivity d = 0.175 mm samples the E0 peak
is sharper and appears at the highest energy.

Figure 6 compares our measured absorption with data in
the literature. Macfarlane et al. [7] computed the absorption
coefficient from transmission measurements on three Ge
specimens. The reflectance was not measured independently.
Instead, its value below the absorption edge was deduced from
transmission measurements assuming no residual absorption,
and taken as independent of energy. Pankove and Aigrain [8]
used a similar approach, setting R = 0.36. We see that the
Macfarlane curve agrees very well with our data except for
a shift to higher energy by about 5 meV. This corresponds
to a temperature difference �T = −11 K, in very good
agreement with the actual difference �T = −10 K between
the two data sets. The dispersion of the indirect absorption
as the direct gap is approached is slightly different in the

Pankove-Aigrain data. This is not due to their assumption
of constant reflectivity, but rather to differences in the
experimental transmittances. We note, however, that the
assumption of constant reflectance must be dropped if the
absorption coefficient is to be determined with a small
fractional error over the entire spectral range between the
indirect and direct gaps—as done here. For example, if
we were to process our data using the Pankove-Aigrain

FIG. 6. The solid line shows the measured absorption in pure
Ge at 301 K. For E < 0.7 eV we use data from the d = 3.04 mm
sample, and for E � 0.7 we use data from a d = 0.175 mm sample.
The dotted line corresponds to measurements by Macfarlane et al.
(Ref. [7]) at 291 K, and the dash-dotted line is from Pankove and
Aigrain (Ref. [8]).
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assumption R = 0.36, the difference would be negligible near
the direct gap, but more than a factor of 2 near the onset of
absorption at the indirect gap. In other words, simultaneous
measurements of transmittance and reflectance, as presented
here, are critical to obtain reliable values of the absorption
coefficient over the entire spectral range.

IV. COMPARISON OF THEORY AND EXPERIMENT

A. Issues in the extreme resonant regime

The absorption data just described can be compared with
the theoretical predictions using Eq. (49). However, in the
extreme resonant limit very close to E0 the analysis is com-
plicated by a number of effects not included in the theory
developed in Sec. II. At an energy h̄�O ∼ 36 meV below E0,
an additional absorption channel becomes possible, namely,
optical-phonon-assisted direct transitions. Attempts to ob-
serve laser-induced cooling in direct gap semiconductors are
based on this mechanism [50]. Phonon-assisted direct transi-
tions are allowed because the optical phonons couple the light-
and heavy-hole bands via the electron-phonon interaction.
The calculation of this process is quite similar to the indirect
absorption theory described in Sec. II, and it is sketched in
Appendix A. As seen in Fig. 9, the expected phonon-induced
direct gap absorption is weak compared to indirect absorption,
but for completeness it will be added to our theoretical model.

An additional issue in the extreme resonant limit is that the
contribution from first-order direct gap absorption can only be
ignored at very low temperatures, but at room temperature the
direct absorption edge is broadened, and its low-energy tail
will overlap with the indirect absorption. Since a tail from a
first-order process might be comparable in strength with the
second-order indirect absorption, care must be exercised in
analyzing data in this energy range. A possible way to extract
the “true” indirect absorption would be to fit the direct gap
absorption with a theoretical expression and subtract the fit
curve from the experimental absorption below the direct gap.
The difference should correspond to the bona fide indirect
absorption. However, our theoretical expressions for indirect
absorption are not adequate for analyzing the resulting data
because they do not include lifetime effects. Since �-point
excitons are the final states in direct gap absorption and the
intermediate states in indirect gap absorption, consistency
requires that the same lifetime broadening effects be included
in our theoretical account of direct and indirect absorption.
Furthermore, lifetime effects in �-point excitons are actually
more important for indirect absorption, because our expres-
sions [see, for example, Eq. (36)] diverge for h̄ω → E0. Ac-
cordingly, broadening affects not only the line shape but also
the strength of the resonant indirect absorption. Second-order
perturbation theory becomes inadequate in this limit, and a
rigorous theoretical approach requires a treatment beyond the
scope of this paper. We then adopt a more modest approach
that consists in estimating a threshold energy below E0 at
which broadening effects become small, and excluding from
the analysis all photon energy above this threshold.

B. Direct absorption and lifetime effects

The threshold energy below which it is “safe” to use the
theory of Sec. II, which does not incorporate lifetime effects,

FIG. 7. Theoretical fit of the room-temperature direct gap in Ge
with the theory described in Ref. [42]. The only adjustable parame-
ters are the band gap energy and the magnitude of the broadening.

can be estimated from a theoretical analysis of direct gap
absorption. Figure 7 shows room-temperature experimental
data from Ref. [43], and a fit with a theoretical expression
discussed in Refs. [43,51]. The theoretical calculation is based
on the Elliott analysis for direct transitions [14,20]. The
effect of broadening is accounted for by simply convoluting
the calculated imaginary part of the dielectric function with
a normalized Gaussian or Lorentzian. The only adjustable
parameters are the temperature, which determines the exact
value of E0 [48], and the broadening. Notice that there is
no ad hoc “amplitude” parameter, so that the strength of the
absorption is predicted by theory. It is apparent from Fig. 7
that Gaussian broadening leads to remarkable agreement with
experiment. The fit values in this case are 0.015 meV for
the broadening [full width at half maximum (FWHM) of the
Gaussian] and a temperature T = 300 K. Lorentzian broaden-
ing, on the other hand, fails to reproduce the experimental line
shape. The deviation between theory and experiment at higher
energy is due to band nonparabolicity, which is not included
in the model. Note that the agreement between theory and
experiment is good for absorption values as high as α =
5000 cm−1. This insures that the fit is completely dominated
by the direct absorption.

Based on the fit of the direct absorption edge in Fig. 7, we
define the threshold energy for neglecting broadening effects
as the energy at which the tail of the direct absorption fit
accounts for less than 2% of the experimental absorption at
this energy. We find that this condition is satisfied 24 meV
below E0.

C. Indirect absorption fits

The above considerations suggest that the theory developed
in the previous sections should be valid at least up to an energy
h̄ω ∼ 0.78 eV. For actual fits, however, we need to consider
the fact that the absorption near this energy is a rapidly
increasing function of photon energy, so that the fit will be
dominated by the highest energy values unless we introduce
some data-point weight factors that depend on energy. To
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FIG. 8. (a) Circles: experimental absorption coefficient of Ge in the spectral range between the indirect and direct band gaps. Only one-fifth
of the experimental points are shown to improve visualization. Solid blue line: fit with the theory described in this paper, with D�L as the sole
adjustable parameter. Dotted blue line: same as the solid blue line but using RF from Eq. (48) as an additional adjustable parameter. Dash-dotted
green line: fit with full Elliott model that neglects the energy dependence of the intermediate states. Dash-double-dotted purple line: fit with a
hybrid model that combines Hartman’s theory with Elliott’s excitonic enhancement model. In all cases the fit value of the deformation potential
is indicated in the legend. (b) Same as (a) but showing the detail at the onset of absorption. The inset shows the calculated solid blue line of
the main panel convoluted with a Gaussian with a FWHM of 0.015 eV to simulate lifetime broadening.

avoid this complication we simply fit the theoretical models to
the experimental absorption data for energies h̄ω < 0.75 eV.
Therefore, the agreement between theory and experiment
beyond this energy will depend on the quality of the predicted
line shapes. In particular, this approach will allow us to verify
if the resonant excitonic enhancement predicted by our model
(Fig. 3) can be observed experimentally. Furthermore, since
the absorption is very small as the low-energy end of the
spectral range is approached, its values near this limit do not
affect the fit in any substantial way, so that the agreement
between the fit and the experimental curve near the onset
of absorption is also a test of the quality of the predicted
photon-energy dependence of the absorption coefficient.

The fit with our full model is shown as a solid blue line in
Fig. 8(a). The curve is computed using Eq. (49) and we obtain
a fit value D�L = (4.2 ± 0.1) × 108 eV/cm. This is, within
error, the same as the value D�L = (4.3 ± 0.1) × 108 eV/cm
obtained in I using a slightly different energy range for the
fit. The onset of absorption at the lowest energies is shown
on a different scale in Fig. 8(b). The lowest-energy threshold
corresponds to phonon-annihilation processes, and the kink at
0.685 eV marks the onset of phonon-creation absorption. The
kink is not obvious in the experimental data, most likely as a
result of lifetime broadening. To confirm this explanation we
show in the inset the calculated absorption after convolution
with a Gaussian with a FWHM = 0.015 eV, the broadening
used above for direct gap absorption. We see that the resulting
curve shows a line shape very similar to the experimental
data. A second fit with our theoretical model was performed
using the factor RF in Eq. (48) as an additional adjustable

parameter. This is motivated by the fact that the correction of
the bound exciton contribution by this factor is arguably the
least justified assumption in our model.

We show two additional theoretical fits in Fig. 8 to help
understand the physics involved. In all cases, the fit parameter
value is shown in the legend. The dash-dotted green line was
computed using the Elliott model following Eq. (49), i.e., tak-
ing αfree as the textbook expression in Eq. (38); computing the
excitonic enhancement S(h̄ω) using the Elliott exciton model,
Eq. (45); and adding the bound exciton contribution from
Eq. (43). The dash-double-dotted purple line corresponds to
a hybrid approach in which αfree is taken from the Hartman
model in Eq. (36), but using the excitonic enhancement S(h̄ω)
from Elliott’s model (dashed lines in Fig. 3). This is logically
inconsistent, as stressed above, but useful for understanding
the different contributions to the absorption.

V. DISCUSSION

The solid blue line in Figs. 8(a) and 8(b) is in very good
agreement with the experimental data over the entire spectral
range of the measurement, with a fit D�L that is equal to the
independently determined value of this parameter. In other
words, our theory makes it possible to predict indirect absorp-
tion quantitatively without using any adjustable parameter. It
is quite remarkable that the relative error of the theoretical
prediction is small over two orders of magnitude in the value
of the absorption. The largest discrepancy occurs near the
energy of the indirect band gap, close to the spectral region
where the excitonic effects at low temperature cannot be
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explained with the sphericalization approach used here
[15,16]. The small remaining discrepancy at higher energies
can be further reduced by considering the mass ratio RF in
Eq. (48) as an adjustable parameter. This factor is used to
correct the bound exciton absorption, and it is more difficult
to justify than the approximations used to deal with the
continuum contribution. This is because the latter must give
αfree in the limit of vanishing excitonic Coulomb interaction,
but the former simply approaches zero. The result of this
exercise is shown as a blue dotted line in Fig. 8. The fit
deformation potential D�L = 4.7 eV is still reasonable, but
the mass ratio RF = 5.5 has decreased by almost a factor of 3
relative to the ansatz in Eq. (48). It is unclear if one can assign
a definite physical meaning to this reduced value of RF . It
could be simply due to the fact that our theory neglects band
nonparabolicity, which would then by accommodated in an
effective way by adjusting RF . However, caution is needed in
embracing this or any other interpretation because the bound
exciton contribution is small, and a very large change in RF

only induces modest changes in the predicted absorption, as
seen in Fig. 8.

The green dash-dotted line corresponding to Elliott’s
model, the “standard” approach prior to our work, is clearly in
very poor agreement with experiment. The fit D�L = 1.1 eV
is too small but probably meaningless in view of the dramatic
difference in line shape between theory and experiment. Since
the absorption is dominated by the continuum contribution,
which is written in Eq. (49) as S(h̄ω)αfree(h̄ω), it is instructive
to investigate how these two factors combine to improve the
agreement with theory as we move from the Elliott model
to the resonant theory developed here. For this purpose, we
show as a dash-double-dotted purple line a hybrid fit con-
sisting of using the Hartman model in Eq. (36) for αfree(h̄ω)
together with the excitonic enhancement S(h̄ω) calculated
within Elliott’s model. We see that the fit is vastly improved
relative to the dash-dotted green line, indicating that a correct
resonant theory for αfree(h̄ω) is the main factor contributing to
the agreement between theory and experiment. The Hartman
theory in Eq. (36), with its 1/

√
E0 − h̄ω resonant prefactor

for αfree(h̄ω), is far superior to the textbook expression in
Eq. (38), which features a 1/(E0 − h̄ω) resonant prefactor. On
the other hand, we notice that the dash-dotted green line devi-
ates from the experimental absorption at high energies. This is
precisely the energy range where the excitonic enhancement
S(h̄ω) calculated with a resonant excitonic theory departs
from Elliott’s model the most, as seen in Fig. 3. The latter
is not affected by the excitonic character of the intermediate
states, whereas the former shows a pronounced resonance as
a result of this character. Therefore, our data confirm that a
consistent model of indirect absorption in Ge, which considers
the energy dependence of the intermediate states both in the
calculation of αfree(h̄ω) and S(h̄ω), is needed for an accurate
account of the experimental results.

VI. CONCLUSION

In summary, we have presented experimental results for
the optical absorption in Ge covering the entire spectral range
between the indirect and direct gap and we have introduced
a theory of resonant indirect optical absorption to explain the

result. The main ingredient of the theoretical approach is a
realistic account of the energy dependence of the intermediate
states, which in Ge, unlike the case of Si, cannot be neglected.
The resulting theory is in excellent agreement with experiment
using independently determined parameters.

The theory presented here does not include lifetime broad-
ening. Near the onset of absorption this broadening can be
incorporated in a phenomenological way by convoluting the
calculated absorption with a suitable broadening function, as
done in the inset in Fig. 8(a). Near the resonant direct gap
E0, however, the lifetime broadening of E0 plays a more
critical role because the predicted absorption diverges at E0,
so that lifetime effects control not only the precise line shape
but also the absorption strength. The validity of second-order
perturbation theory is questionable in this limit, while a more
rigorous theory may be substantially more complicated. In
this context, we note that the lifetime broadening of E0 cannot
be accounted for by adding a small imaginary part to the
energy. This is equivalent to Lorentzian broadening, which, as
shown in our analysis of direct gap transitions, fails to account
for the experimental data. Even at a phenomenological level,
a more sophisticated theory of broadening increases the math-
ematical complexity considerably, even for direct transitions
[52]. We have circumvented this problem by avoiding the
spectral region where broadening effects are likely to be sig-
nificant. However, this approach will break down in the case of
Ge1−ySny alloys, for which the separation between the direct
and indirect gaps can be reduced and reversed [53]. In these
alloys, resonant indirect transitions may affect the optical
gain in laser structures and require further experimental and
theoretical work.

The absorption model presented here should be extensible
to indirect gap III-V semiconductors such as AlAs, GaP, and
related alloys [54]. While the Ge case is simpler, since a
single resonant channel can be isolated, III-Vs should display
stronger excitonic effects that may amplify the differences
between the conventional Elliott treatment and the more rig-
orous resonant exciton model. Finally, our absorption model
also provides the tools to calculate indirect gap emission in
all of these materials using van Roosbroeck-Schockley-type
expressions [55]. This is of particular interest in Ge and
Ge1−ySny alloys in which the relative strengths of direct and
indirect gap emission can be used to monitor the transition
from indirect to direct gap semiconductor [56].
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APPENDIX A: PHONON-ASSISTED
DIRECT GAP TRANSITION

The indirect absorption calculated in Sec. II is mediated
by LA phonons that couple conduction band states at � and
L. Optical phonons, on the other hand, couple the valence
band states, and therefore optical-phonon-assisted absorption
becomes possible just below the direct gap E0. This absorp-
tion is usually neglected because it is expected to be much
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FIG. 9. Calculated phonon-assisted direct absorption coefficient
of Ge using parameters from Table I. The dotted line shows the bound
exciton contribution, from Eq. (A10), and the solid line corresponds
to the continuum exciton contribution, Eq. (A15). In both cases we
use effective masses from Eq. (47).

weaker than the allowed direct gap absorption, although it has
played a role in laser cooling proposals [50]. The purpose
of this work, however, is to model indirect gap absorption
with emphasis on the resonant enhancement that occurs as
the incident photon energy approaches the direct gap, and
therefore it is important to compare the relative strength of the
LA-phonon-assisted indirect absorption with optical-phonon-
assisted direct absorption. The coupling of optical phonons
with the valence band can be described by the Hamiltonian

HeP = MO√
V

(
d0

a0

)∑
qs

∑
v′vk

v
†
k+q,ν ′vk,ν{b(qs) − b†(−qs)}

×
∑

α

Mν ′ν (α)ês (α); MO =
√

h̄

2ρ�O
, (A1)

where �O is the frequency of the optical phonons, d0 the
optical phonon deformation potential, and a0 the cubic lattice
parameter. Note that for historical reasons the deformation
“potential” in Eq. (7) is defined with units of eV/cm, but the
deformation “potential” in Eq. (A1) has units of eV. As in the
case of Eq. (7), we neglect the wave-vector dependence of
�O and d0. The index s represents the three optical phonon
branches degenerate at �, and ês (α) is the α-Cartesian com-
ponent of the unit phonon polarization vector. The sum over α

runs over the Cartesian coordinates, with the matrices M given
by

Mv′v (x) =

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 i

0 0 −i 0

⎞
⎟⎠;

Mv′v (z) =

⎛
⎜⎝

0 0 0 −i

0 0 −i 0
0 i 0 0
i 0 0 0

⎞
⎟⎠; (A2)

Mv′v (y) =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎠,

where ν = 1, 2, 3, 4 as in Eq. (2). It is easy to see by in-
spection of these matrices that the interaction only couples
light-hole with heavy-hole states, so that in a phonon-assisted
absorption process mediated by this interaction, a final state
with a hole in a heavy-hole state requires an optical transition
from a light-hole state to the conduction band, and vice versa.
We are interested mainly in phonon-annihilation processes
that enable optical absorption below the direct gap E0. For
this, the relevant electron-phonon matrix element becomes,
using Eq. (A1),

〈G|b†qL0dλK ,σνHeLd
†
λ′0,σ ′ν ′ |G〉 = −MO

(
d0

a0

)
[nO]vcδσσ ′δ−q,K

∑
R

F ∗
λK ,σν (R)Fλ′0,σν ′ (R)e−ise�ν K ·R∑

α

Mν ′ν (α)êO(α). (A3)

From Fermi’s golden rule we then obtain

R−
i→f = 2π

h̄

M2
OM2

R

V

(
d0

a0

)2

[nO]

×
∑

sq,λK ,σν

∣∣∣∣∣∣∣
∑
λ′,ν ′

δ−q,K vc

∑
β

F ∗
λK ,σν (R)Fλ′0,σν ′ (R)e−ise�ν K ·R∑

α

Mν ′ν (α)êO(α)Pσν ′F ∗
λ′0,σν ′ (0)

h̄ω − Eλ′0,σν ′

∣∣∣∣∣∣∣
2

δ(Eqs,λK ,σν − h̄ω). (A4)

We now observe that for the sum over s we can take êO = (1, 0, 0), êO = (0, 1, 0), and êO = (0, 0, 1). For either of these
three cases we find that for a given state ν corresponding to light or heavy holes, Eq. (A2) implies that the only nonzero matrix
elements occur when ν ′ corresponds to the opposite type of hole, and in that case |∑α Mν ′ν (α)êO(α)| = 1. Furthermore, when
we perform the sum over σ we find from Eq. (6) that each ν ↑ /ν ↓ pair contributes P 2/3, and since there are two heavy-hole
and two light-hole states giving exactly the same expression we can simply write (A4) as

R−
i→f = 6π

h̄

M2
OM2

R

V

(
d0

a0

)2(2P 2

3

)
[nO]

∑
λK ,h

∣∣∣∣∣
∑

R

F ∗
λK ,h(R)e−ise�h K ·R∑

λ′

F ∗
λ′0,h′ (0)Fλ′0,h′ (R)

h̄ω − Eλ′0,h′

∣∣∣∣∣
2

δ(EλKh + h̄�O − h̄ω), (A5)
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where h now acquires only two values: either heavy or light hole, and h′ is the opposite type of hole. We have also multiplied
times 3 because we obtain the same result for each of the threefold degenerate phonons at the � point. Using the Green’s function
definition in Eq. (14), this becomes

R−
i→f = 6π

h̄

M2
OM2

R

V

(
d0

a0

)2(2P 2

3

)
[nO]

∑
λK ,h

∣∣∣∣
∫

d RF ∗
λK ,h(R)e−ise�h K ·RGh′

h̄ω(R, 0)

∣∣∣∣
2

δ(EλKh + h̄�O − h̄ω). (A6)

To compute this expression we use for bound excitonic states, in analogy with Eq. (18),

FλK ,h(R) ≡ FnK ,h(R) = 1√
π (naB�h)3/2

1

n
e−ρ/2L1

n−1(ρ); ρ = 2R

κaB�h

; aBLh = h̄√
2μ�hRy�h

. (A7)

For continuum excitons we have, in analogy with Eq. (20) [42],

FλK ,h(R) ≡ FkK ,h(R) = 1√
V

�(1 + iν�h)eπν�h/2eik·R
1F1(−iν�h, 1,−ikR − ik · R), (A8)

with

ν�h =
√

Ry�h

h̄2k2/2μ�h

. (A9)

The bound exciton expression then becomes, following steps very similar to the corresponding calculation for indirect gap
absorption,

α
_
bound = 128nop

h̄7c
M2

OM2
RP 2

(
d0

a0

)2

[nO],

×
∑

h

m3/2
e m

3/2
h

∑
n

R
−1/2
y�h

n5

√
h̄ω − E0 + Ry�h

n2
+ h̄�O

∣∣∣∣∣∣H�nh

⎡
⎣
√

2M�h

(
h̄ω − E0 + Ry�h

n2 + h̄�O
)

h̄3

⎤
⎦
∣∣∣∣∣∣
2

, (A10)

where

H�nh(k) = Ry�h

se�hK

∫
dRR sin(se�hKR)Gh′

h̄ω(R, 0)e− R
naB�h L1

n−1

(
2R

naB�h

)
. (A11)

Figure 9 shows the calculated absorption, using the masses in Eq. (47). For the continuum component, we obtain

R+
i→f = 6π

h̄

M2
OM2

R

V

(
d0

a0

)2(2P 2

3

)
[nO]

1

V

∑
kK ,h

16π2

R2
y�h

|J (k,K, θ )|2δ
(

E0 + h̄2k2

2μ�h

+ h̄2K2

2M�h

+ h̄�O − h̄ω

)
, (A12)

where θ is the angle between the vectors k and K and we have defined the dimensionless quantity

J (k,K, θ ) = Ry�h�(1 + iν )eπν/2

ke

∫
dRRGh′

h̄ω(R, 0)1F
∗
1 (−iν, 1,−ikR) sin keR, (A13)

with

k2
e = k2 + s2

e�hK
2 + 2se�hkK cos θ. (A14)

Following steps very similar to the derivation of indirect gap absorption, we finally obtain

α−
continuum =

(
16

πh̄7

)
M2

OM2
R

(
d0

a0

)2

P 2[nO]
∑

h

m
3/2
e� m

3/2
h

R2
y�h

∫ h̄ω−E0+h̄�O

0
dε

√
ε
√

h̄ω − E0 + h̄�O − ε

×
∫ π

0
dθ sin θ |J (k(ε),K (h̄ω − E0 + h̄�O − ε), θ )|2. (A15)

In the limit of vanishing electron-hole interaction this expression becomes

α−
free = nop

h̄7cπ2
M2

RM2
OP 2

(
d0

a0

)2

[nO]
1√

(E0 − h̄ω)

∑
h

s2
e�h′ (mhme� )3/2

{
2(E0 − h̄ω) + (h̄ω − E0 − h̄�)/se�h′√

(E0 − h̄ω) + (h̄ω − E0 − h̄�)/se�h′
− 2

}
. (A16)
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APPENDIX B: CHOICE OF MATERIAL PARAMETERS

In this Appendix we discuss how we arrived at those mate-
rial parameters listed in Table I that could not be taken directly
from the literature, in most cases because they were measured
at low temperatures. We then explain how, starting with the
available data at low temperatures, one can estimate the cor-
responding values at our experimental temperature of 301 K.

1. Lattice parameter and band gaps

For the cubic lattice parameter we use an expression of the
form

a0(T ) = a0(0) + β

exp(T0/T ) − 1
, (B1)

where a0(0) = 5.6516 Å, β = 1.315 × 10−2 Å, and T0 =
355.14 K. We obtain these parameters by fitting Eq. (B1) to
the lattice constant calculated by using the value at room
temperature and an integral of the thermal expansion data
from Ma and Tse [57].

The temperature dependence of all needed band gaps in Ge
was assumed to follow the Varshni law [48]:

Et (T ) = Et (0) − αT 2

T0 + T
. (B2)

We used for the indirect gap Eind(0) = 0.742 eV, α =
4.8 × 10−4 eV/K2, and T0 = 235 K. For the direct gap,
we took E0(0) = 0.8911 eV, α = 5.82 × 10−4 eV/K2, and
T0 = 296 K. For the calculation of effective masses we also
need the E1 and E1 + �1 gaps, corresponding to vertical
transitions at the L point of the BZ, and the E′

0 gap, the
separation between the valence band and the p-antibonding
states. We took their temperature dependence from Viña
et al. [58]. The corresponding Varshni parameters for
E1 are E1(0) = 2.22 eV, α = 6.8 × 10−4 eV/K2, and T0 =
240 K. For E1 + �1, we use E1 + �1(0) = 2.42 eV, α =
6.8 × 10−4 eV/K2, and T0 = 240 K. Finally, for E′

0 we take
E′

0(0) = 3.159 eV, α = 3.6 × 10−4 eV/K2, and T0 = 344 K.

2. Effective masses and momentum matrix element

The conduction band effective mass was obtained by Roth
et al. [59] by analyzing magnetoabsorption experiments at

4.2 K. They find a value of me� = 0.037 eV. A very simi-
lar value, me� = 0.038 eV, was obtained by Aggarwal from
stress-modulated magnetoreflectance [60]. We insert the ex-
perimental effective mass into Eq. (5) to obtain the low-
temperature momentum matrix element P 2/m = 12.64 eV,
where we used �0 = 0.297 eV [60,61]. The momentum ma-
trix element is proportional to 1/a0 [20], so that we use

P 2(T )

m
= 12.64 eV × a2

0 (4.2 K)

a2
0 (T )

. (B3)

For the conduction band masses at the L minimum of the
conduction band we start with the classic work of Dressel-
haus, Kip, and Kittel (DKK) [30]. They report a transverse
mass m⊥ = 0.082m and a longitudinal mass m‖ = 1.58m at
4 K. We assume the longitudinal mass to be independent of
temperature. The transverse mass is written as [20]

1

m⊥
= 1

m
+
(

P̄

m

)2( 1

E1
+ 1

E1 + �1

)
. (B4)

By fitting the experimental value at 4 K, we find P̄ 2/m =
12.96 eV, so that P̄ is very similar to P 2, as expected on
theoretical grounds [20]. For the temperature dependence we
then use

P̄ 2(T )

m
= 12.96 eV × a2

0 (4 K)

a2
0 (T )

. (B5)

By combining Eq. (B5) with the temperature dependence
of E1 and E1 + �1, we can obtain the transverse mass in
Eq. (B4) at any temperature.

The valence bands display a significant level of warping.
Effective masses can be introduced as suitable angular aver-
ages. In spherical coordinates, the energy dispersion can be
written as [30,62]

Ev (k) =
(

h̄2k2

2m

)
{A ± [B2 + C2(sin4θsin2ϕcos2ϕ

+ sin2θcos2θ )]1/2}, (B6)

where the parameters A, B, and C were introduced by DKK
[30]. The masses that appear in the absorption coefficient
expressions are elevated to the 3/2 power, corresponding to the
density of states. Accordingly, we define the angular-averaged
effective masses as

m
3/2
h =

(
m

|A|
)3/2 1

4π

∫
�

d�

[1 ±
√

(B/A)2 + (C/A)2(sin4θsin2ϕcos2ϕ + cos2θsin2θ )]
3/2 , (B7)

where the minus sign leads to the heavy-hole mass mlh and the plus sign to the light-hole mass mlh. The DKK parameters that
best describe the 4 K data are A = −13.38, B = −8.48, and |C| = 13.14. To obtain values appropriate for room temperature,
we use the expressions [20]

A = 1 − 2

3

[
P 2

mE0
+ 2Q2

mE′
0

]
,

B = 2

3

[
− P 2

mE0
+ Q2

mE′
0

]
, (B8)

|C|2 = 16P 2Q2

3m2E0E
′
0

+ �,
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where the matrix element Q is defined in Ref. [20]. The equa-
tion for |C|2 in Ref. [20] lacks the additive term � that appears
in (B8). However, we find that this term is needed for an exact
match of the low-temperature A, B, C experimental values.
This is because the theory leading to Eq. (B8) relies on a
number of simplifying approximations. However, since we are
only interested in estimating the temperature dependence of
the DKK parameters, we expect this theory to provide a good
account of this dependence if we adjust the three parameters
P, Q, and � for an exact match of the low-temperature DKK

parameters. This leads to P 2/m = 13.964 eV [slightly differ-
ent from the value in Eq. (B5) that provides the best fit for
the conduction band effective mass], Q2/m = 9.287 eV, and
� = −73.1. We then assume that the temperature dependence
of P 2 and Q2 is given by Eq. (B5) and that the parameter �

is independent of temperature. These values are inserted into
Eq. (B8) (combined with the temperature dependence of E0

and E′
0) to obtain the DKK parameters at any temperature. At

301 K, our temperature of interest, we find A = −14.55, B =
−9.58, and |C| = 14.25.
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