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1  | INTRODUC TION

Determining the genetic make-up of populations (‘population struc-
ture’) is a major area of research in multiple disciplines of science 

(Habel et al., 2015; Helyar et al., 2011). Principal component analysis 
(PCA: Hotelling,  1933; Pearson,  1901) is a foundational analytical 
tool in evolutionary genetic research (Cavalli-Sforza & Piazza, 1975) 
and remains one of the most popular statistical methods for 
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Abstract
1.	 Principal component analysis (PCA) is a powerful tool for the analysis of popula-

tion structure, a genetic property that is essential to understand the evolutionary 
processes driving biological diversification and (pre)historical colonizations, mi-
grations and extinctions. In the current era of high-throughput sequencing tech-
nologies, population structure can be quantified from scores of genetic markers 
across hundreds to thousands of genomes. However, these big genomic datasets 
pose substantial computing and analytical challenges.

2.	 We present the r package smartsnp for fast and user-friendly computation of PCA 
on single-nucleotide polymorphism (SNP) data. Inspired by the current field-
standard software EIGENSOFT, smartsnp includes appropriate SNP scaling for ge-
netic drift and allows projection of ancient samples onto a modern genetic space 
while also providing permutation-based multivariate tests for population differ-
ences in genetic diversity (both location and dispersion).

3.	 Our extensive benchmarks show that smartsnp's PCA is 2–4 times faster than 
EIGENSOFT's SMARTPCA algorithm across a wide range of sample and SNP 
sizes. All four smartsnp functions (smart_pca, smart_permanova, smart_permdisp 
and smart_mva) process datasets with up to 100 samples and 1 million simulated 
SNPs in less than 30 s and accurately recreate previously published SMARTPCA 
of ancient-human and wolf genotypes.

4.	 The package smartsnp provides fast and robust multivariate ordination and hy-
pothesis testing for big genomic data that is also suitable for ancient and low-
coverage modern DNA. The simple implementation should appeal to biological 
conservation, evolutionary, ecological and (palaeo)genomic researchers, and be 
useful for phenotype, ancestry and lineage studies.
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summarizing population structure in the genomic era—essentially, 
because the underlying mathematical theory is conceptually sim-
ple (Fenderson et al., 2020) and PCA outputs have a clear genetic 
interpretation (François & Gain, 2021; McVean, 2009; Peter, 2021). 
However, the magnitude of genetic data generated by modern high-
throughput sequencing technologies poses substantial computing 
and analytical challenges for PCA and other genomics applications 
(Schork, 2018; Tripathi et al., 2016) that mandate the development 
of fast and robust programming pipelines in open-source platforms 
(e.g. Abraham & Inouye, 2014; Luu et al., 2017).

PCA is a fundamental step in the EIGENSOFT software suite—the 
current field standard for genetic research—which comprises two 
modules: (a) EIGENSTRAT (Price et al., 2006) accounts for ancestral 
relatedness in genome-wide disease studies contrasting affected 
individuals and controls and (b) POPGEN (Patterson et  al.,  2006) 
runs a PCA algorithm (SMARTPCA) that accounts for the expected 
allele-frequency dispersion caused by genetic drift in biallelic sin-
gle nucleotide polymorphisms (SNP). The wide utility of this soft-
ware is illustrated by >8,000 combined citations (Scopus; accessed 
November 2020) for the two seminal papers describing the func-
tionality of the software (Patterson et al., 2006; Price et al., 2006), 
and citing publications include major areas of modern research like 
animal domestication (e.g. Orlando et  al.,  2013; Qiu et  al.,  2015) 
and extinction risk (e.g. Frandsen et al., 2020; Liu et al., 2018), and 
human population (pre)history (e.g. Lazaridis et  al.,  2014; Tishkoff 
et  al.,  2009) and disease (Khera et  al.,  2016; Zhang et  al.,  2009). 
However, SMARTPCA is currently only available for use in Unix 
command-line environments and therefore limited to scientists who 
are familiar with this bioinformatic language.

Here we present the r package smartsnp for fast and user-friendly 
computation of PCA on large SNP datasets (Herrando-Pérez 
et  al.,  2021; Huber & Herrando-Pérez,  2021). Crucially, smartsnp 
incorporates two of the most commonly used functionalities of 
SMARTPCA: (a) appropriate scaling of SNP genotypes to control for 
allele-frequency dispersion caused by genetic drift and (b) projec-
tion of ancient samples onto a genetic space generated from modern 
samples. Additionally, smartsnp includes functionality that allows 
users to contrast a PCA ordination against permutational multivari-
ate ANOVA tests of population structure, which is currently unavail-
able in EIGENSOFT. The universality of the R language for scientific 
research (Tippmann, 2014), and the speed, simplicity and functional-
ity of smartsnp should be attractive properties for the growing com-
munity of scientists investigating modern and ancient population 
structure in humans and other taxa.

2  | PACK AGE OVERVIE W

The smartsnp package is compatible with R versions from 3.6.3 
(29/02/2020) upwards on Linux, Mac and Windows systems, and 
comprises four functions: smart_pca, smart_permanova, smart_per-
mdisp and smart_mva (see summary of arguments in Table 1). In the 
following subsections, we explain and benchmark those functions, 

and provide descriptions of currently implemented input-data for-
mats and SNP-scaling options.

2.1 | Functions

Functions smart_pca, smart_permanova and smart_permdisp im-
plement PCA, and permutational multivariate analysis of vari-
ance (PERMANOVA, Anderson,  2001) and dispersion (PERMDISP, 
Anderson, 2006), respectively. The smart_mva function is a wrapper 
that runs any combination of the three standalone functions. The 
mathematical rationale of these methods is expanded in Supporting 
Information S2. Briefly, PCA recalculates the geometric position of 
multivariate data (variables  ×  samples) by rigidly rotating a system 
of j orthogonal axes (variables) such that the dispersion of i points 
(samples) is maximized along the rotated axes. For genotype data, 
the SNPs are the variables and the genotyped individuals are the 
samples. PERMANOVA and PERMDISP are statistical tests for mul-
tivariate differences in the relative position (location) and spread 
(dispersion) of sample groups (populations) using permutations of a 
triangular matrix (sample × sample) containing pair-wise inter-sample 
proximities. Measuring inter-sample proximities as Euclidean dis-
tances allows global and pair-wise testing of the location and disper-
sion of sample groups within a PCA ordination via PERMANOVA and 
PERMDISP in the full j-multidimensional PCA space, or alternatively 
in a lower-dimensional PCA space (e.g. the first two or three prin-
cipal axes that are typically subjected to visual inspection and in-
ference). Importantly, appropriate application of PERMANOVA and 
PERMDISP tests requires that sample groups are defined a priori 
(before undertaking any analyses) using associated metadata and 
genetic theory, because a posteriori testing of sample groupings de-
rived from visual inspection of a PCA ordination is philosophically 
and statistically flawed.

2.2 | Analytical sequence

Function smart_pca runs in seven steps (Figure 1): (1) loading data, 
(2) indexing samples (group assignment, modern versus ancient) 
and SNPs that will be used or removed for downstream analysis, (3) 
removing invariant SNPs, (4) imputing missing values (coded either 
NA or 9), (5) scaling SNPs (unscaled, centred, scaled by z-scores or 
drift), (6) single value decomposition (SVD: canonical or truncated) 
and (7) optionally projecting ancient samples onto modern PCA 
space. In addition to steps (1)–(5), smart_permanova and smart_per-
mdisp (8) partition the genetic variance in an ANOVA framework 
and (9) estimate the probability (α) of group location or dispersion 
using permutations given the null hypothesis of no genetic differ-
ences between groups. Function smart_mva can compute any com-
bination of PCA, PERMANOVA and/or PERMDISP in a single run. 
All functions conclude their computations by extracting pertinent 
statistical results and storing them as named elements of a stand-
ard R list (Figure 1). This list can be assigned to an object within the 
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R environment, and each element of the list can be accessed by its 
name.

Examples of how to run the four functions are explained in the 
documentation of our package, with simulated genotypes (README 
file) and real data (vignette) examining the flyways of a cosmopolitan 
bird (Kraus et al., 2013).

2.3 | Input data formats

The standard genotype (g) data taken by smartsnp are biallelic 
SNPs with genotypes [0|1|2] from diploid organisms based on the 
number of copies of non-reference alleles. For instance, a SNP 
with reference allele G and variant allele T will have genotypes 
g(GG) = 0 (homozygous reference), g(GT) = 1 (heterozygous) and 
g(TT) = 2 (homozygous non-reference). Genotypes from haploid 

or polyploid organisms can be similarly defined and used with our 
package.

The smartsnp package accepts three data formats: (1) a ge-
neric text file without row (SNP) or column (sample) names, or an 
EIGENSOFT *.geno file in (2) uncompressed (EIGENSTRAT) or (3) 
compressed/binary (PACKEDANCESTRYMAP) format (https://reich.
hms.harva​rd.edu/software). For users who have their genotype data 
stored in VCF or PLINK formats (Chang et al., 2015; Zhang, 2016), 
step-by-step instructions for converting these formats into a flat file 
that can be handled by our package are provided in a vignette in the 
GitHub repository of the smartsnp package (https://chris​tianh​uber.
github.io/smart​snp/articles). Handling of missing values is achieved 
either by removal of SNPs with ≥1 missing value, or imputation with 
SNP means (Marchini & Howie, 2010). Users are required to provide 
a vector assigning samples to groups: for EIGENSOFT files, this vec-
tor can often be obtained from the 3rd column of the *.ind file, which 

Function Argument Description

(1–4) snp_data Name of input genotype data

(1–4) packed_data EIGENSOFT data type (compressed, 
uncompressed)

(1–4) sample_group Sample assignment to groups

(1–4) sample_remove Sample exclusion from analysis

(1–4) snp_remove SNP exclusion from analysis

(1–4) missing_value Value for missing genotype (9, NA)

(1–4) missing_impute Handling missing SNP (removal, mean 
imputation)

(1–4) scaling SNP scaling (none, covariance, correlation, 
genetic drift)

(1–4) program_svd SVD computation (truncated/RSpectra, 
canonical/bootSVD)

(1–4) pc_axes Number of computed PCA axes

(1,4) sample_project Samples assigned to ancient or modern

(1,4) pc_project PCA space for ancient projection

(2–4) program_distance Inter-sample proximity calculation (vegan, 
Rfast)

(2–4) sample_distance Inter-sample proximity metric (e.g., 
Euclidean)

(2–4) target_space Variance-partition space (multidimensional, 
PCA)

(2–4) pairwise Computation of pair-wise tests

(2–4) pairwise_method Correction for multiple pair-wise testing (e.g. 
Holm)

(2–4) permutation_n Number of permutations for α value 
computation

(2–4) permutation_seed Random generator of permutations

(3–4) dispersion_type Group dispersion estimate (centroid, median)

(3–4) samplesize_bias Dispersion correction for unequal group size

(4) pca PCA computation

(4) permanova PERMANOVA computation

(4) permdisp PERMDISP computation

Abbreviations: SNP, single nucleotide polymorphism; SVD, single value decomposition.

TA B L E  1   Brief description of the 
arguments from the four smartsnp 
package functions (1) smart_pca, (2) 
smart_permanova, (3) smart_permdisp and 
(4) smart_mva. Input data consist of SNPS 
(rows) by samples (columns) as a text or 
EIGENSOFT file, without row or column 
headings. Computational flow is shown in 
Figure 1, and command-line examples are 
presented in Table S1

https://reich.hms.harvard.edu/software
https://reich.hms.harvard.edu/software
https://christianhuber.github.io/smartsnp/articles
https://christianhuber.github.io/smartsnp/articles
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also includes alpha-numeric sample identifiers (1st column) and user-
predefined descriptors like sexes (2nd column).

EIGENSOFT was conceived for human genetics so the SMARTPCA 
suite accepts 22 (autosomal) chromosomes by default. If >22 chro-
mosomes are provided and the parameter numchrom (number of 
chromosomes) is unmodified, SMARTPCA subsets chromosomes 1–
22. Our package accepts any number of autosomes with/without the 
sex chromosomes, and can single out discrete sets of SNPs (by row 
number) or samples (by column number) to be excluded from PCA, 
PERMANOVA and/or PERMDISP. When projecting ancient samples 
onto modern PCA space, a vector specifying the column number of 
the ancient samples is required (Table 1).

2.4 | SNP scaling

Prior to SVD or ANOVA, the smartsnp package can scale SNPs in 
four different ways (command-line examples shown in Table  S1): 
(1) unscaled, (2) centred by their mean (covariance-based PCA), (3) 
standardized by z-scores (correlation-based PCA: SNPs have zero 
mean and unitary variance; Jolliffe & Cadima, 2016) and (4) scaled 
to control for genetic drift as in SMARTPCA (Patterson et al., 2006) 
following the formula:

where C(i, j) is the raw genotype value for SNP j in sample i, �(j) is the 
mean value for SNP j across samples, p(j) = �(j)∕2 estimates the un-
derlying allele frequency and M(i, j) is the scaled genotype value per 
data cell. This scaling accounts for the expected dispersion of allele 
frequencies due to genetic drift being proportional to 

√

p(j)
(

1 − p(j)
)

 
(Patterson et al., 2006)—effectively reweighting each SNP according to 
its heterozygosity (or, equivalently, penalising those alleles most prone 
to drift; that is, intermediate-frequency alleles).

3  | OPTIMIZ ATION AND BENCHMARKING

We expedited the runtime of smartsnp at the two key compu-
tational bottlenecks: data loading and SVD computation. For 
loading EIGENSOFT files, we use vroom::vroom_fwg (Hester & 
Wickham,  2020) for fast-conversion of fixed-width uncompressed 
files (EIGENSTRAT), and an internal C++ function customized to em-
ulate admixtools::read_packedancestrymap (Maier & Patterson, 2020) 
for compressed/binary files (PACKEDANCESTRYMAP). For loading 
text files, we use data.table::fread (Dowle & Srinivasan, 2019), which 
automatically detects file extension and column separators. To re-
duce data load in memory, SNPs with zero variance (same genotype 
across samples) are removed by default, as invariant SNPs make no 
contribution to SVD or variance partitioning. Users can further re-
duce runtime by applying truncated SVD (calculation of a predefined 
number of principal axes) using RSpectra::svds (Qiu & Mei,  2019), 
rather than canonical SVD (calculation of all principal axes) using 
bootSVD::fastSVD (Fisher, 2015). Computation of the truncated SVD 
is much faster than canonical SVD for big data (see benchmarking 
below), and the use of either option will depend on the number of 
dimensions subjected to investigation.

We benchmarked our package using R function microbench-
mark::microbenchmark (Mersmann, 2019) on 34 simulated datasets 
(described in Supporting Information S3) in two ways. We compared 
computing times taken by (1) the four functions run by smartsnp 
and (2) function smart_pca from smartsnp versus SMARTPCA from 
EIGENSOFT across different data sizes.

3.1 | Smartsnp functions

In Tables  S2 and S3, we report mean and standard errors (10 runs) 
of computing times of smartsnp's four functions. Runtime increased 
through smart_permdisp, smart_pca and smart_permanova, indicating 
that the two most resource-consuming calculations were α-value esti-
mation in PERMANOVA and SVD in PCA. Notable speed gains occurred 
with the wrapper function; so for any given dataset, smart_mva was 1–3 
orders of magnitude faster than running the three standalone functions 
separately, because the former only needs to load the data once.

On average, for a dataset with 100 samples (Table S2), the full 
computation of any function took ≤30 s for ≤1 million SNPs, and <1 
and <6 min for 5 and 10 million SNPs, respectively. For a dataset 
with 100,000 SNPs (Table S3), all functions took <2 min for ≤500 
samples, 50  s to 7  min for 1,000 samples and 2  min to <5  hr for 
5,000 samples. Truncated SVD was up to 3 and 19 times faster than 
canonical SVD across functions using an increasing number of SNPs 
(Table S2) and samples (Table S3), respectively.

3.2 | Smartsnp versus EIGENSOFT

In Figure S1 and Table S4, we report mean and standard errors of 
computing times of smartsnp::smart_pca against EIGENSOFT'S 

M(i, j) = C(i, j) − �(j)∕

√

p(j)
(

1 − p(j)
)

,

F I G U R E  1   Computational flow of package smartsnp 
when running principal component analysis (smart_pca), and 
permutational multivariate analysis of variance (smart_permanova) 
or dispersion (smart_permdisp). The wrapper function (smart_mva) 
can run any combination of these three primary analyses together. 
Function arguments described in Table 1
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SMARTPCA. When all PCA axes were computed (1 core), smart_pca 
was >4× faster than SMARTPCA; and when two PCA axes were 
computed, smart_pca was ~2× faster than SMARTPCA for the larg-
est data sizes. When using multithreading (4 cores), smart_pca was 
2× faster than SMARTPCA for 100 samples and varying amounts 
of SNPs, and both had similar speeds for 100,000 SNPs and vary-
ing sample sizes (Table S4). Runtime improvements come at a cost 
to memory efficiency, with smartsnp functions using more random-
access memory (RAM) than EIGENSOFT for equivalently sized data-
sets (though memory usage levels are not onerous given modern 
RAM specifications; see below).

4  | PROJEC TION OF ANCIENT SAMPLES

Palaeogenomics is a rapidly growing field (Brunson & Reich, 2019) 
that uses ancient DNA (aDNA) recovered from specimens over at least 
the last 500,000 years (Pääbo et al., 2004; Slatkin & Racimo, 2016) 
to investigate (pre)historical population structure and other evolu-
tionary questions. However, genetic degradation of aDNA results in 
abundant missing bases, challenging subsequent statistical analyses. 
Among the available approaches in PCA to handle missing data (re-
viewed by Ausmees,  2019; Günther & Jakobsson,  2019), function 
smart_pca implements the ‘Projection to Model Plane’ after Nelson 
et al. (1996)—the current standard method in the aDNA field, which 
is performed by SMARTPCA (Patterson et  al.,  2006). Briefly, PCA 
is computed using modern samples only, and ancient samples are 
projected onto the PCA space through linear regression. The pro-
jected coordinates of each ancient sample onto a particular subset 
of PCA axes equal the coefficient (slope) of a linear fit through the 
origin (Nelson et al., 1996), where the response is the vector of non-
missing genotypes for that ancient sample, and the predictor is the 
vector(s) of the principal coefficients (loadings) assigned to each of 
the non-missing genotypes across modern samples. For example, 
projection onto PCA axes 1 and 2 equates with a linear model with 
two predictors (or vectors) of principal coefficients defined by mod-
ern data, and projection onto PCA axes 1–3 equates with a linear 
model with three such predictors. Our package provides users with 
the choice of any number and combination of PCA axes, for example, 
PCA 1 × PCA 2, PCA 1 × PCA 2 × PCA 3 × PCA 4, PCA 1 × PCA 3, 
PCA 2 × PCA 6, etc.

4.1 | Demonstration with empirical data

We analysed two previously published SNP datasets examined 
through SMARTPCA by Lazaridis et al. (2016) for anatomically mod-
ern humans Homo sapiens and Pilot et al. (2019) for grey wolves Canis 
lupus. For each dataset, we scaled SNPs to control for genetic drift 
and quantified the match between the ordination of samples using 
SMARTPCA (in EIGENSOFT) versus smart_pca (in smartsnp) using 
three statistical metrics (see Legendre & Legendre, 2012 for details 
of those tests): the Spearman correlation (Spearman, 1904) between 

the ranked sample positions along (1) PCA axis 1 and (2) PCA axis 
2 from both analyses and (3) a Mantel test (Mantel, 1967) between 
pair-wise inter-sample Euclidean distances (sample  ×  sample trian-
gular matrix) in PCA 1 × PCA 2 space from both analyses based on 
Spearman correlations and α values obtained from 999 permuta-
tions. For the human dataset, we replicated Lazaridis et al.'s (2016) 
SMARTPCA by projecting ancient samples onto the modern genetic 
space (more details are provided in a GitHub vignette: https://chris​
tianh​uber.github.io/smart​snp/articles). Additionally, for the wolf 
dataset, we formally tested whether the population structure re-
ported by Pilot et  al.  (2019) was supported by PERMANOVA and 
PERMDISP analyses. The α values computed during the Mantel, 
PERMANOVA and PERMDISP analyses quantify the number of per-
muted datasets resulting in a test statistic equal to or larger than 
the observed statistic from the empirical data, with lower α values 
indicating lower probabilities that the observed statistic is due to 
chance.

Lazaridis et  al.  (2016) investigated the origin of farming using 
>500 thousand SNPs from 1,152 individuals sampled across West 
Eurasia—of which 278 were ancient hunter-gatherers (spanning 
12,000–1,400  years BC). Our smart_pca ordination (Figure  2) mir-
rored the SMARTPCA ordination (figure 1b in Lazaridis et al., 2016), 
capturing the genetic gradient from European (left) to Near East 
(right) ancient groups in PCA 1, and the genetic gradients within these 
two groups in PCA 2. For modern samples, the Spearman correlation 
of sample positions along PCA 1 and 2 between both analyses were 
0.999; while the Mantel correlation for inter-sample distances be-
tween smart_pca and SMARTPCA in PCA 1 × PCA 2 space was 0.969 
(α = 0.001). We found the same magnitude of agreement between 
the ordination of ancient samples using smart_pca and SMARTPCA, 
with Spearman correlations of 0.999 (for both PCA 1 and PCA 2), 
and a Mantel correlation of 0.974 with α  =  0.001 (PCA 1  ×  PCA 
2) between both analyses. Such high correlations support a near-
perfect match between the ordination of samples obtained by the 
two software packages. Function smart_pca used seven times more 
RAM memory and was three times faster than SMARTPCA (RAM 
allocation = 4,079 vs. 580 MB, and computation times = 2.0 min vs. 
6.2 min, respectively).

Pilot et  al.  (2019) investigated phylogeographical patterns of 
grey wolves using 42,320 SNPs from 306 individuals (8 populations) 
sampled from Eurasia and North America. Among other predictions, 
they hypothesized that linkage disequilibrium (non-random associa-
tion of alleles across loci) in East Eurasian populations increased pro-
portionately with distance from West Eurasian and North American 
populations. Our smart_pca ordination (Figure  3) again mirrored 
the SMARTPCA ordination (see figure 3d in Pilot et al., 2019). PCA 
1 recapitulated a genetic gradient from European (left) to North 
American wolves (right), with East Asian individuals and a single 
Pleistocene (~35,000 years BP) Taimyr wolf lying between these two 
population clusters, and PCA 2 separating Mexican wolves (bottom) 
from all other individuals (Figure 3). The Spearman ranked correla-
tions of sample positions along PCA 1 and 2 were 0.999, respec-
tively; while Mantel correlations between inter-sample distances in 

https://christianhuber.github.io/smartsnp/articles
https://christianhuber.github.io/smartsnp/articles


6  |    Methods in Ecology and Evolu
on HERRANDO-PÉREZ et al.

PCA 1 × PCA 2 space between both analyses was 0.999 (α = 0.001). 
For this relatively small dataset, runtimes for smarp_pca (2  s) and 
SMARTPCA (4  s) were comparable, and smart_pca used 15 times 
more RAM memory than SMARTPCA (442 vs. 29 MB).

Based on the original SMARTPCA results and related analy-
ses, Pilot et al.  (2019) surmised that the Taimyr wolf is a sister lin-
eage of modern Eurasian wolves but its relationship with North 
American wolves remains uncertain. After excluding the Taimyr 
wolf, PERMANOVA and PERMDISP global tests supported that SNP 
genetic diversity differed in both location and dispersion in PCA 
1 × PCA 2 space among the other seven wolf populations (α = 0.0001 
for PERMANOVA and PERMDISP global tests; Table 2). The proba-
bility of the differences in group location given the null hypothesis 
of groups having the same location was α  =  0.0021 (with correc-
tion for multiple testing) for all pair-wise PERMANOVA comparisons 
(Table  2), and a total of 16 (no multiple-testing correction) and 9 
(multiple-testing correction) of 21 PERMDISP pair-wise comparisons 
had α  <  0.1 (Table  2). The median dispersion of samples to group 
spatial medians was lowest for Minnesota and West Asian wolves 
and highest for Mexican and North American wolves, with European 
and East Asian populations exhibiting intermediate dispersions 

(Figure S2). Increased genetic heterogeneity in North American wolfs 
might indicate the wider geographical range of the selected individ-
uals compared to the other study populations while the Mexican 
wolfs form a reintroduced population that have experienced genetic 
bottlenecks and strong genetic drift, which should magnify to the 
variability of SNP composition among populations (Małgorzata Pilot, 
pers. comm., May 2021). Runtimes for PERMANOVA and PERMDISP 
tests totalled 28 and 23 s, respectively.

Differences in genetic heterogeneity between populations at 
neutral markers reflect differences in demographic history and 
geographical structure (Charlesworth et al., 2003), and can be used 
to detect processes that decrease (e.g. bottlenecks) or increase 
(e.g. admixture) genetic variation. More generally, in ecology, 
multivariate dispersion in species composition is interpreted as a 
measure of beta diversity (Anderson et al., 2006) that quantifies 
species turnover across different assemblages, and also serves as a 
measure of stress (Warwick & Clarke, 1993) where increased vari-
ability in species composition signals the impact of environmental 
perturbations. Both interpretations have analogous applications in 
population genetics. For instance, increased genetic heterogeneity 
in the PCA space is interpreted as increased genetic diversity when 

F I G U R E  2   Population structure 
of ancient West Eurasian farmers 
and hunter-gatherers using principal 
component analysis in r package smartsnp. 
Data comprise 874 modern West 
Eurasians (grey circles), 278 projected 
ancient individuals (26 populations, 
coloured symbols) and 548,749 single 
nucleotide polymorphisms scaled to 
control for genetic drift (Lazaridis 
et al., 2016). The ordination explains 
1.2% in genetic diversity across 
individuals (PCA 1 = 0.8%; PCA 2 = 0.4%). 
Population acronyms: ChL = Chalcolithic, 
BA = Bronze Age, E = Early, HG = Hunter-
Gatherer, IA = Iron Age, L = Late, 
M = Middle, N = Neolithic
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the most variable loci have the strongest effects on the pheno-
type of certain ethnic groups (Fadhlaoui-Zid et al., 2015; Solovieff 
et al., 2010; Yu et al., 2020), and this property has also been used 
as an indicator of disease profiles and their ancestral origin (Horne 
et al., 2016; Ioannidis et al., 2004; Manichaikul et al., 2012; Turajlic 
et al., 2019).

4.2 | Conclusions

Our r package smartsnp can be used to conduct exploratory analyses 
and confirm hypotheses about population structure in large genomic 
SNP datasets. It can be applied to all living systems for which hap-
loid, diploid or polyploid genotype datasets are available to visual-
ize complex genetic relationships resulting from evolutionary and 
demographic processes, and be useful for phenotype, ancestry and 
lineage studies. The implemented projection method can be applied 
to any dataset with large amounts of missing data (aDNA or low-
coverage modern data) as long as a high-quality reference dataset 
with little missing data is available. Importantly, our PCA functional-
ity provides results that mirror SMARTPCA analyses but runs 2–4 
times faster for big datasets in a user-friendly, platform-independent 
context. By providing multivariate tests for differences in the loca-
tion and dispersion of genetic data across predefined groups, the 

smartsnp package also makes it possible for users to formally detect 
population structure and other differences potentially caused by 
evolutionary, ecological or sociocultural factors.
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