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Abstract. Due to their remarkable spatial and spectral resolution, hyperspectral sensing devices 

appear the most suited for detection of vegetation presence according to the peculiar spectral 
features that vegetation exhibits. Among the applications, vegetation identification as well as 

vegetation health-state detection via spectral data analysis is feasible due to the modifications 

the typical vegetation spectral signature undergoes when abnormalities are present. A push-

broom-sensor-based spectral device characterized by low cost, weight, power consumption, and 

no need of GPS/inertial measurement units for post- flight georeferencing was placed on an 

airplane and employed for the acquisition of spectral data in a wide territory. The proximal 

sensing field campaign was carried out in San Teodoro (Olbia-Tempio-Sardinia). Classification 

procedures and the employment of vegetation indices made it possible to identify the vegetated 

areas. The platform characteristics and the methodology developed allow vegetation to be 

investigated within a large interval of scales from a few centimeters to some hundred meters. 

Data acquired agree well with thematic maps of the areas under investigation. The broadband 
indices Red DVI, SR and TVI perform remarkably well in highlighting the presence of 

vegetation. 

1.  Introduction 

The huge potentiality of vegetation monitoring via the analysis of hyperspectral data is largely 

documented in the literature with interesting applications aimed at identifying different plants and the 

eventual start and evolution of stress situations [1-3]. 

It is well-known that healthy plants present unique spectral properties strictly connected to their 
chemical composition (pigments and other biochemical constituents), the physical (leaf thickness, 

mesophyll structure) and physiological (water content, photosynthetic efficiency) characteristics of the 

leaf apparatus [4]. Airborne hyperspectral sensing systems supply high spatial, spectral and temporal 
resolution data and are for this reason particularly suited for vegetation monitoring [5-6]. One of the 

most relevant applications is in the context of the quantitative estimate of biochemical and biophysical 

variables related to the physiological state of vegetation and of the occurrence of stress situations. The 
timely identification of stress situations is particularly relevant to facilitate the identification of targeted 

areas and the design of localized actions that limit costs and avoid degradation of the environment with 

unnecessary treatments (anticrittogamics, insecticides) [7]. To handle the huge amount of information 

provided by hyperspectral sensing systems, it is useful to compute proper hyperspectral indices that 
synthesize reflectance characteristics. The indices, which in the case of vegetation monitoring are called 

vegetation indices, VIs, are in most of the cases functions of the reflectance in red (R) and near-infrared 

(NIR) spectral bands [8]. Vegetation indices are empirically determined combinations of bands 
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associated to the specific features of the vegetation spectral signatures. [9] and [10] presented a useful 

and complete review of vegetation indices available in the literature discussing their specific 

applicability and representativeness according to the vegetation of interest, environment, and 
implementation precision. In field applications, optimal VIs are usually tailored to the specific 

application requirements coupled with appropriate validation tools and methodologies in the ground 

[11]. 
VIs have been widely implemented within remote sensing applications using different airborne and 

satellite platforms with recent advances using Unmanned Aerial Vehicles (UAV). [2] employed a micro-

hyperspectral imager to study the temporal patterns of canopy fluorescence and reflectance indices 

related to physiology and canopy structure. [12] presented vegetation map created by a UAS-based 
device and demonstrates that it could clearly discriminate community distributions being of particular 

usefulness where field reconnaissance is difficult. [13] presented UAS remote sensing for vegetation 

mapping in complex urban landscapes due to the ultra-high-resolution imagery acquired at low altitudes. 
[14] employed a small, fixed-wing UAS to survey a plot field experiment designed to estimate sorghum 

damage caused by an invasive aphid. Normalized difference vegetation index (NDVI) maps were built 

and correlated to aphid density. 
In spite of the recent progresses documented by the literature, the design and development of 

hyperspectral manned or unmanned aircraft devices, as well as procedures for calibration, processing 

and interpretation of data collected are challenging tasks that require further developments [15]. Within 

this framework, the paper focuses on original procedures to process images acquired with a push-broom 
hyperspectral device designed and developed at the Department of Civil and Environmental Engineering 

of the Sapienza University of Rome. The spectrometer platform was realized by assembling commercial 

devices. It presents the following unique characteristics that make it suitable to be employed for 
monitoring actions in proximal sensing: (1) high spectral resolution (up to 3 nm in the wavelength 

interval 400-1800 nm); (2) high spatial resolution (on the order of centimeters); (3) easy portability, the 

system has been engineered so that it can be transported by manned or unmanned aircraft devices; (4) 

less costs, being a GPS/inertial measurement unit (IMU) unnecessary. An assembled platform was 
preferred to commercial spectral devices to reduce the investment costs and to control the weight of the 

equipment. However, algorithms for calibration, mosaicing, post-flight georeferencing and 

orthorectification of the acquired images had to be developed.  
The above-mentioned platform was employed in a proximal sensing field campaign carried out in 

San Teodoro (Olbia-Tempio-Sardinia). To this aim, the spectrometer platform was mounted on an 

ultralight airplane. The purposes of the investigation were i) to develop the procedure for combining 
information contained in multiple, overlapping images of the same scene to produce a single image 

representing the entire investigated area and transfer to a push broom type spectral imaging and ii) to 

demonstrate the suitability of vegetation indices to identify vegetated areas.  

This paper is organized as follows: Section 2 describes the push-broom hyperspectral device. Section 
3 describes the algorithm for image mosaicing and post-flight georeferencing. Section 4 describes the 

results of the analysis of data acquired during the proximal sensing field campaign conducted in San 

Teodoro (Olbia-Tempio—Sardinia). The paper ends with a concluding section. 

2.  The hyperspectral sensor platform 

The linear spectrometer Specim ImSpector VIS V10 OEM allows the acquisition of the hyperspectral 

information in the visible range of the electromagnetic spectrum (400 nm to 1000 nm). Through a slit, 
the spectrometer captures a line image of the target and disperses the light from each line image pixel 

into a spectrum. A Dalsa Falcon 1.4M100 CMOS camera (hereinafter spectrometer camera) of 

1400×1024 pixel resolution (100 frames per second (fps) maximum acquisition frequency), is coupled 

to the spectrometer in order to acquire spectral images. Each spectral image contains the line pixels in a 
spatial axis and spectral pixels in a spectral axis (2D information). Spectral features of the entire target 

(3D information) can be obtained by acquiring images of the target while it is moving or by moving the 

spectral device. In the latter case, the position and altitude of the spectrometer camera must be precisely 
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recorded at the time of every frame capture for post- flight georeferencing. This is usually achieved by 

using GPS/IMUs. The time resolution of the IMU system must fit the frame rate employed for image 

acquisition and the procedure accuracy relies on highly accurate time stamping on images. Our system 
makes it possible to overcome the need of high time resolution IMU because post-flight georeferencing 

is performed employing a Dalsa 4M60 camera (hereinafter mosaicing camera) of 2352×1728 pixel 

resolution equipped with a standard lens. The spectrometer and mosaicing cameras are synchronized 
and arranged with parallel optical axes (acquisition frequency set to 25 fps). Each image acquired with 

the mosaicing camera will present only a portion of the target while each image acquired with the 

spectrometer camera will contain the spectral features of the target linear sub-portion seen through the 

slit. A mosaicing procedure is required to reconstruct the entire target and to properly georeference the 
line image acquired with the spectrometer camera.  

The system for image storage consists of an IO Industries DVR Express ® Core provided with two 

camera link inputs. It is suitable to manage the transfer of 780 Mbytes/s. The device memory consists 
of four solid state disks for a total capacity of 1 Tbyte. The trigger signal that synchronizes the 

acquisition of the two cameras is generated by the Core. The device allows the acquisition and storage 

of images without any compression. A laptop manages the synchronization, acquisition and storage 
operations. The platform has been designed ensuring a reduced weight (less than 8 Kg) and low 

consumption (300 W at the start-up). Fig. 1 shows a picture of the ultralight airplane employed for the 

measurement campaign.  

 

 

Figure 1. Ultralight airplane employed for the measurement campaign conducted in San 

Teodoro (Olbia-Tempio - Sardinia) using the spectrometer platform. 

 

3.  Spectral image processing procedures 

Mosaicing is the procedure aimed at putting together several partially superimposed images to obtain 

only one image of the scene [16]. Three steps are mandatory to mosaic images: image registration, image 

reprojection, and image blending. The procedure for image registration requires an accurate point-to-
point correspondence between images within the input sequence, i.e., given two consecutive images of 

the sequence, image points in the second image that correspond to the same points in the first image 

have to be found. Here we employ a methodology based on the correlation between consecutive images. 

This methodology is suitable to process the large number of images detected by an aircraft where it is 
assumed that no tilt occurs and that scale changes are the same in the two principal directions. The 

computation of the two-dimensional correlation between couples of consecutive images is based on the 

use of the two-dimensional Fourier transform (2-DFFT). Recalling that the rigid translation of an image 
with respect to the other one is related to the position of the peak of the 2-DFFT, the registration of the 

Spectrometer 

platform 
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i-th image on the scene is performed through iteratively applying the 2-DFFT procedure to each image 

pair. To take into account eventual rotations around the camera axis and variations in the distance 

between the point of view and the scene, the i-th image of the pair is rotated in the range of −5° to 5° 
with a 0.05° step, and the scale is modified relative to the original size of −6% to 6% with a step of 

0.5%. The variation of scale, rotation and displacement that maximizes the consistency of the luminosity 

between the images of the pair is found. As a matter of fact, the procedure adopted is equivalent to a 
four-parameter homographic transformation (similarity). The implemented image blending function 

uses a simple averaging of intensity values. This is so because the main objective of the mosaicing 

procedure is to reproject the line acquired with the spectrometer. Mosaic rendering is not the objective 

of the procedure provided the mosaic is clear enough to comprehend the features of the area under 
investigation.  

Image mosaicing results, i.e., translations, rotations and scale changes between each couple of 

consecutive images, were finally used for correctly assigning the line acquired with the spectrometer 
within the investigated area. This made it possible the construction of the images of the area under 

investigation at the different wavelengths, i.e., the hyperspectral cube.  

4.  The case study  

A proximal sensing field survey was conducted in San Teodoro (Sardinia) with the spectrometer 

platform mounted on an ultralight airplane. The aim of the survey was to demonstrate the suitability of 

the hyperspectral device to highlight the presence of vegetation. With respect to [17], this contribution 

investigates a different area where due to the heterogeneous land cover, the detection of vegetation may 
be challenging. A further novelty respect to [17] lies in the use of the vegetation indices to verify if they 

are suitable to highlight vegetated areas. Both the visual check of the map of the area under investigation 

(i.e., the map provided by Google Earth) and the comparison with the results of the classification 
procedure will be used to check results. 

Roughly 400 images were acquired with the frame rate of both the spectrometer and mosaicing 

cameras set to 25 fps. The mosaic and the hyperspectral cube images output by the mosaicing procedure 

were geo-referenced within the WGS-84 geographic coordinate system datum, with ground control 
points selected using a georeferenced map of the area (e.g., a map obtained from Google Earth) (Fig. 2 

and Fig. 3). Control points are landmarks found on both images like road intersection and natural 

features. In [17], we conducted an accurate analysis of the errors associated to the mosaicing and 
georeferencing procedure. Applying the georeferencing procedure four times using 7, 10, 15 and 20 

points, the mean deviation varied between 3.76 and 3.47 (3.61 on average) pixels. Given that one pixel 

in the Google map is equal to approximately 0.57 m, the deviation varies between 2.14 and 1.94 m. In 
[17], we also showed that changes due to an increase in the number of points employed for the 

georeferencing operation appear negligible, indicating that the distribution of the points is more 

important than the number of points. 

In Fig. 4, the hyperspectral cube of the area under investigation, built with 61 images ranging from 
wavelengths of 400 nm to 1,000 nm with a step of 10 nm, is displayed in RGB using images at the 660 

nm (R), 560 nm (G) and 480 nm (B) bands. The signature of emerging rocks was employed for the 

radiometric calibration of the hyperspectral cube. 
To identify vegetated areas, the Spectral Angle Mapper classifier was employed. The classifier 

determines the spectral similarity between two spectra by calculating the angle between the spectra and 

treating them as vectors in a space with dimensionality equal to the number of bands. The maximum 
angle threshold used was 0.15 radians. In Fig. 5 the result of the classification procedure is presented as 

well as the average spectral signature of the vegetated areas obtained from the classified hyperspectral 

cube. The vegetated surfaces indicated by the classifier, highlighted as yellow hatched filled areas, 

correspond very well to the vegetation identifiable in the map of the area under investigation (Fig. 2). 
The vegetation spectral signature presents the typical features previously described, i.e., green peak, 

chlorophyll wells, red edge and NIR plateau. 
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Moreover, a few vegetation indices were employed as an additional tool i) to transform hyperspectral 

data into a single image band representing the vegetation distribution and ii) to test the possibility of 

using VIs to highlight vegetated areas and the vegetation health state. With respect to [9] and [10], we 
focus on fewer indices, i.e., the broadband indices, because they are more consolidated than narrowband 

indices due to their recurrence in the literature. In Table 1 the list of VIs used in this study is provided. 

 refers to reflectance and the subscripts refer to specific spectral bands or wavelengths (i.e., NIR refers 

to the average in the band interval 750–1,100 nm, RED to the average in the band interval 600–700 nm 

and GREEN to the average in the band interval 500–600 nm).  
Fig. 6 presents the map of Red NDVI for the area under investigation and demonstrates the 

potentiality of the vegetation index to identify vegetated areas. Red NDVI was chosen for its recurrence 

in the literature. Pixels with a high value of Red NDVI, associated with the color green, correspond very 
well to vegetation identifiable in the map of the area under investigation (Fig. 2). 

 

 

Figure 2. a) Area of interest (San Teodoro ponds); b) zoom in the area monitored with the 

hyperspectral platform (from Google Earth). The points employed for the geometric transformation 

are shown in the map. 
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Figure 3. Result of the mosaicing procedure applied to 380 images acquired with the camera 

Dalsa 4M60 equipped with a standard lens. a) Mosaic before the geo-referencing procedure 

within the WGS-84 geographic coordinate system datum; b) Georeferenced map. 

 

 

Figure 4. Hyperspectral cube representation in RGB using images at bands 660 nm (R), 560 nm 

(G) and 480 nm (B). 

 

The broadband indices Red DVI, SR and TVI were employed as well. They provided similar 
vegetation maps which, for this reason, were not included in the manuscript. Using the results of the 

classification procedure as the reference, the percentage of vegetation identified by each index respect 

to the total vegetation coverage was computed. Among the VIs investigated, TVI performs better than 
the other ones with 99% of vegetation properly identified. For the other indices, over 97% of vegetation 

is recognized. 
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Table 1. Vegetation indices investigated. 

Vegetation indices  Equation 

Red Difference Vegetation 
Index 

Red DVI redNIR  −  

Simple Ratio SR redNIR   

Red Normalized Difference 
Vegetation Index 

Red 
NDVI 

( ) ( )dNIRdNIR ReRe  +−  

Triangular Vegetation Index TVI ( ) ( )( )greenNIRgreenNIR  +−− 2001205.0  
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Figure 5. a) Map of the investigated area with vegetated areas identified with the classification 
procedure highlighted and b) spectral signature of the vegetated area. 

 

 

Figure 6. Map of Red NDVI highlighting vegetated areas. 

 

5.  Conclusions 

The results of the monitoring field survey conducted in San Teodoro (Sardinia) described here have 
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helped the design and setup of the push-broom hyperspectral sensing device. The hyperspectral 

platforms provide high spectral resolution (10 nm) and remarkable spatial resolution on the order of a 

few centimeters, allowing a great detail of information to be extracted.  
The computation of vegetation indices turns out to be a fast and efficient way to manage the huge 

amount of data provided by the sensing devices. The computation of Red DVI, SR, TVI and Red NDVI 

allowed the transformation of a n-layer hyperspectral cube into a single image band which well 
represents the vegetation distribution. Nevertheless, no attempt is made to correlate the value assumed 

by the indices to the vegetation health state due a lack of proper control data on the ground. The 

procedure was limited to the computation of the above-mentioned VIs but no reasons prevent us from 

generalizing the procedure and computing other vegetation indices. In this contribution, the vegetation 
detection was conducted employing broadband indices. Nevertheless, the hyperspectral sensors provide 

high spectral resolution data that may be profitably employed to compute narrowband indices that are 

likely to be more effective to characterize the vegetation. 
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