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Abstract
In this paper multi-sensor airborne remote sensing has been applied to the Arpi archaeological
area of southern Italy to assess its suitability for detecting and locating subsurface
archaeological structures and to delineate subsurface remains beyond the current limits of
ground geophysical data. To this aim, the capability of CASI and ATM reflectances in the
VIS–NIR spectral range and the ATM apparent thermal inertia for subsurface archaeological
prospection have been assessed at different sites of the Arpi archaeological area. First, linear
spectral mixture analysis has been applied to CASI and ATM images to retrieve the dominant
land cover for the selected subsurface structures, and then, the spectral bands most effective
for the archaeological buried structure detection as a function of the land cover characteristics
have been evaluated. The results reveal that multi/hyperspectral airborne remote sensing data
can represent an effective and rapid tool to detect subsurface structures within different land
cover contexts. Therefore, the proposed methodology can be used to perform a preliminary
analysis of those areas where large cultural heritage assets occur by prioritizing and localizing
the sites where to apply archaeological prospection.

Keywords: hyperspectral imagery, airborne remote sensing, subsurface archaeological
structures, anomalies, photo-interpretation

1. Introduction

The massive developments and changes to the landscape
induced by human growth make it necessary to develop
efficient and cost-effective methods to find, map and attain
information from sites of our cultural heritage (Kvamme
2005). Viewing archaeological structures and/or subsurface
remains from ground level generally does not clearly
identify the spatial characteristics of these structures or
the relationship with surrounding archaeological sites. To

this aim, the application of remote sensing data for
detecting subsurface structures is becoming a remarkable
tool for the archaeological observations to be combined with
the near surface geophysics (Kvamme 2005, Kucukkaya
2004). Different satellite and airborne sensors have
been used for archaeological applications, such as the
identification of spectral anomalies (i.e. marks) related to
the buried remnants within archaeological sites, and the
management and protection of archaeological sites (Buck
et al 2003, Lasaponara and Masini 2007, Rowlands and Sarris
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2007, Gallo et al 2009). In particular, airborne remote sensing
allows us to rapidly investigate archaeological areas; it can
detect features relative to subsurface remains unseen before,
precisely map them and offer interpretations based on their
form, distribution and context (Kucukkaya 2004, Buck et al
2003, Rowlands and Sarris 2007). Although presenting
opportunities to the archaeological community, these sensors
have their disadvantages that also need to be taken into account
(Rowlands and Sarris 2007). First, it is to be remarked that
the remote sensing detectability of permanent surface spectral
features (labelled as ‘marks’) due to buried structures, i.e. to
the alteration of the natural trend of superficial soil and/or
vegetation growth, is affected by the following factors: (1) the
spectral contrast between the target and background materials,
(2) the dimension and fraction of the target in relation to the
background, (3) the imaging system characteristics being used
(bands, instrument noise and pixel size), (4) the land cover
type and condition under which these structures lie (i.e. the
compaction of soil, moisture content and vegetation type and
structure) and (5) the conditions under which the surface is
being imaged (i.e. illumination and atmospheric conditions)
(Lasaponara and Masini 2007). The combination of these
factors defines the pixel appearing with differences, with
respect to the adjacent pixels, in colour, texture, brightness and
spectral feature behaviour (Cavalli et al 2007). Second, most
applications utilizing remote sensing within archaeology take
a single sensor approach, whereas the real benefits with respect
to the archaeological interpretation will be achieved through
a multi-sensor approach exploiting the different qualities of
each sensor (Rowlands and Sarris 2007).

In this framework, the paper stresses the importance of
the spectral information to evaluate different airborne imagery
capability in terms of detection potential of archaeological
spectral anomalies related to subsurface remnants covered by
different land cover. To this aim, the spectral information
of Compact Airborne Spectrographic Imager (CASI) and
Airborne Thematic Mapper (ATM) multi/hyperspectral
airborne sensors with respect to the dominant land cover
surfacing known and unexcavated archaeological subsurface
structures (e.g. stone walls and pavements near the surface)
has been analysed and compared to assess their effectiveness
in subsurface structure detection.

Starting from certain training information attained by
Cavalli et al (2005, 2009) for multispectral infrared visible
imaging spectrometer (MIVIS) data in the Arpi archaeological
area, 25 pairs of regions of interest (ROI) encompassing the
spectral anomaly–background system (marks) (Cavalli et al
2005) related to subsurface remains were manually delineated
on CASI and ATM images. Spectral mixture analysis was used
to assess CASI and ATM images, the land cover fractional
abundances surfacing the chosen buried remains. Next, a
spectral separability index was applied to determine the CASI
and ATM suitable spectral bands to detect subsurface remains
in relation to the surfacing land cover.

Comparison results for the CASI and ATM sensors
bear out that the proposed methodology applied to airborne
multi/hyperspectral remote sensing data can represent an
effective and rapid tool to detect subsurface remains.

2. Study area and data

To demonstrate the effectiveness of the two proposed airborne
multi/hyperspectral sensors, a well-established (Cavalli et al
2005, 2009, Bradford 1957) test site of the Arpi archaeological
area (southern Italy) is presented.

The Arpi archaeological area encompasses an ancient city
of Apulia located 8 km NE of the modern city of Foggia
in a prevailing agricultural area. This area is considered
the metropolis of the ancient Daunia (Greek place name,
‘Argyripta’) (Bradford 1957). Strabo says that from the extent
of the city walls one could gather that it had once been one of
the greatest cities of Italy. As a protection against the Samnites,
Arpi became an ally of Rome (320 BC) and remained faithful
until after the battle of Cannae. Arpi was then ruined by
the Saracens in the 11th century, and according to medieval
sources, it was populace of Arpi who settled nearby Foggia.
Excavations begun in the 1940s discovered the foundations of
Hellenic–Roman buildings showing pretty mosaic floors. A
necropolis was also found, with many graves and small cave
burials, with examples of Apulian vases with their red figures
and geometric decorations, dating from between the fourth
and third century BC. The most important remnants are the
ancient city stone walls.

For this area, previous studies performed by Cavalli
et al (2005, 2009) had identified on MIVIS imagery spectral
anomalies related to subsurface archaeological structures and
the optimal MIVIS wavelength bands to detect the following
not yet excavated archaeological structures: an ensemble of
features relative to the whole ancient city external perimeter
wall (the ‘aggere’, about 10 km), two features relative to the
defensive structures along the perimeter (i.e. stone walls) and
some features relative to the main stone streets entering into
the ancient metropolis.

The site was, therefore, chosen for the current study
since it contains known subsurface archaeological remains,
has existing detailed geophysical and archaeological data
locating buried archaeological features within 1 and 3 m of the
surface and has relatively low vegetation densities with areas
of exposed soil in a main agricultural area, which is covered
by MIVIS, CASI and ATM airborne multi/hyperspectral
images.

The CASI and ATM (figure 1) airborne imagery was
acquired over a 2 day period with eight CASI and six
ATM stripes acquired on 25 April 2005 at 13:50, and three
ATM night stripes acquired in order to gauge diurnal heat
capacity on 26 April 2005 at 03:06, as part of the Natural
Environment Research Council (NERC, UK) Mediterranean
Flight Campaign. The study area corresponds to a CASI and
ATM resized image of 1700 × 5000 pixels (i.e. about 3400 ×
10 000 m) as depicted in figure 1.

The CASI sensor is limited to the visible and near
infrared (NIR) and was programmed to operate in spatial
mode acquiring data in 48 channels from 449 nm to 940 nm
at a spatial resolution of 2.0 m, whilst the ATM sensor acquired
data in 11 broader bands, with a spatial resolution of 2.0 m.
The ATM sensor provides important information in the short
wave infrared (SWIR) and the thermal (TIR) portions of the
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(a) (b) (c)

Figure 1. (a) Location of the Arpi study area over a regional map. (b) CASI and (c) ATM stripes acquired on the Arpi archaeological area
(CASI and ATM mosaic of the images at 0.66 μm are depicted only for visualization purposes).

Table 1. Characteristics of CASI and ATM sensors used for this study.

Spectral Spectral Spectral Spatial IFOV Swath
region resolution (μm) range (μm) resolution (m) (deg) width

CASI VNIR (48 ch.) 0.019 0.40–0.80 (VIS) ∼=2 1.0 mrad 512 spectral pixels
0.81–0.95 (NIR)

ATM VNIR (9 ch.) 0.02 (VIS) 0.42–0.90 ∼=2 2.5 Pixel swath 938
0.05 (NIR) 0.91–1.75

SWIR (1 ch.) – 2.08–2.35
TIR (1 ch.) – 8.5–13.0

spectrum with respect to soil properties and heat capacity
(Rowlands and Sarris 2007). The main characteristics of the
CASI and ATM sensors are summarized in table 1.

3. Methods

3.1. Test sites selection

The test sites were chosen in the Arpi archaeological area
since they (a) include subsurface archaeological remains
unexcavated, with a sharp geometry and covered by CASI

and ATM airborne multi/hyperspectral remote sensing data
acquired with similar atmospheric conditions, at low solar
zenith angle and with similar soil moisture dryness conditions,
and (b) have existing detailed geophysical and archaeological
data locating buried archaeological features (Cavalli et al 2005,
2009).

For each of the 25 selected test sites, two ROIs, one
relative to the known marks identified by archaeologists
(Cavalli et al 2005, 2009) and one to the marks’ surrounding
background, were manually delineated on CASI and ATM
airborne imagery to be further analysed by using the SI index.
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These ROIs point up only homogenous land cover both for the
mark and background and are characterized by a spatial extent
of at least 60 m2 for the mark and no less than 120 m2 for the
background.

3.2. Airborne data pre-processing

For this study, CASI and ATM airborne remote sensing data
were processed.

First, CASI and ATM radiances were corrected to
reflectance using the FLAASH module incorporating the
MODTRAN4 radiation transfer code (Matthew et al 2000)
in the ENVI software package.

Second, CASI and ATM airborne data were geometrically
corrected by using an own code based on the precise trajectory
reconstruction process by using onboard GPS/INS systems
of the two airborne and additional ground control point
information to compensate for aircraft position, altitude and
ground surface separation. A mean RMS error of 1 pixel
was attained for each image of CASI and ATM datasets so
enabling their mosaicking and precise comparison for the
further processing results between the classified imagery,
which can be influenced by the accuracy of the pixels’ location
(RMS error).

Finally, on the ATM TIR data, the apparent thermal inertia
(ATI) as proposed by Price (1985) was calculated. However,
the ATI is only applicable to those sites covered by bare soil or
regions with low crop vegetation. In general, the thermal
inertia is given by the formula P = √

Kcρ, where K is
the thermal conductivity, c is the specific heat and ρ is the
density of the material, and it describes the resistance of a
material to the change in its temperature. The thermal inertia is
approximated by the ATI that can be obtained by using remote
sensing thermal images (Price 1985). The ATI is defined as

ATI = NC1(1 − α)/(�T ) (1)

where N is the scaling factor, α is the apparent albedo, as
obtained by CASI daytime atmospherically corrected images,
�T is the temperature difference calculated on ATM thermal
images acquired during the night and the day passes and C1 is
defined as

C1 = sin ϑ sin ϕ(1 − tan2 ϑ tan2 ϕ)

+ cos ϑ cos ϕar cos(− tan ϑ tan ϕ) (2)

where ϑ is the latitude and ϕ is the solar declination.

3.3. Imagery classification

To verify the potentialities of the airborne multi/hyperspectral
sensors in detecting archaeological spectral anomalies (marks)
related to subsurface remains covered by two different land
covers, which was performed by evaluating the spectral
contrast between the known marks and the surrounding
background, the following processing methodology was
applied to the whole multi-sensor dataset: (1) spectral
unmixing (LSU), (2) spectral separability index (SI)
calculation on a CASI and ATM per band basis and (3) plot
analysis of the SI versus land cover fractional abundances (i.e.
LSU results).

First, a constrained spectral mixture analysis (Small 2001,
Settle and Drake 1993, Chan 2003) trained with the dry bare
soil and green crop endmembers was used within the ENVI
software package. The endmembers used depend on the nature
of the scene, as well as the spatial scale, spectral resolution and
number of spectral bands in the image (Small 2001, Settle and
Drake 1993). These two endmembers were defined by Cavalli
et al (2009) for the same test sites in their study and chosen for
this research, as they depict the land cover variability on the
25 test sites. Mathematically, linear mixing comprises linear
combinations of component (endmember) spectra:

r = MfN + ε (3)

where r is the column vector of the measured
radiance/reflectance spectrum with L spectral bands, M is
the L × N endmember spectra matrix (N is the number
of pure endmembers), fN is the concentration vector whose
components represent the endmember fraction for each
endmember and ε is the residual error. In this model, M is
known, while the unknown to be retrieved is the concentration
fN .

Alternatively, it is to be considered that different
techniques for automatic endmember extraction from
hyperspectral data can be applied to the same purpose. When
no references (e.g. spectra from in situ measurements or from
spectral libraries) are available, the analyst must derive the
endmembers directly from the data cube (see e.g. the Pixel
Purity Index, the Orasis, the N-FINDR and the Iterative Error
Analysis algorithms), which is not an obvious task (Chan
2003). In fact, the major drawback of all these approaches
is that they only take into account the spectral information
contained in the data cube, disregarding spatial information.

Second, the separability spectral index (SI) described by
Cavalli et al (2007), and here briefly recalled, was used to
rank the capability of detecting the archaeological spectral
anomalies by a per-band basis on the airborne data. The SI
index describes, for the 25 test sites (i.e. the 25 pairs of ROI
encompassing the spectral anomaly–background systems),
the total differences between the frequency distributions
of spectral anomaly pixels and the pixels selected as the
background for the same spectral anomalies, and it is defined
as a normalized scalar product expressed as follows:

SI =
⎛
⎝1 −

∫
DmarksDbackground dx√∫

D2
marksdx

∫
D2

background dx

⎞
⎠ × 100 (4)

where Dmarks represents the frequency distribution of the digital
values of those pixels belonging to the archaeological spectral
anomalies (marks) in all images, while Dbackground corresponds
to the frequency distribution of those pixels selected as the
background.

Finally, plot analysis (Chan 2003) of the SI values
calculated for each CASI and ATM band with respect to
the LSU results (i.e. to the fractional abundances of the
two endmembers of the mark–background systems) was used
to show up which are the spectral bands maximizing the
archaeological signatures and to verify the correctness of the
procedure proposed by Cavalli et al (2007, 2009) for the same
archaeological area using MIVIS airborne imagery.
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(a)

(b)

Figure 2. Plot analysis of the unmixing versus SI results for CASI
and ATM sensors compared with MIVIS ones attained for two
different land cover conditions: (a) archaeological subsurface
structures covered by more than 75% of dry bare soil, and
(b) covered by more than 75% of green crop vegetation (the ATM
thermal results are reported in red in both graphs as ATI mean
values only for visualization purposes).

4. Results and discussion

Bare soil and photosynthetic green crops were applied as
endmembers in the LSU procedure of CASI and ATM imagery
by constraining the fractions to sum to 1. The ‘shade
endmember’ was not included in each endmember model to
account for variation in illumination, as the 25 marks were not
significantly affected by shadowing (i.e. the data were recorded
in sun with maximum elevation).

The unmixing results for the CASI and ATM remote
sensing data on the selected Arpi test sites (i.e. 25 ROIs with
3120 pixels known to be marks and 11 245 pixels selected as
the background used for computing the SI) are in accordance
with those attained by Cavalli et al (2009) for MIVIS data (see
figure 2), thus confirming that the spectral mixture analysis
can be applicable to describe the wide range of anomaly–
background systems used for this study also for images
acquired by different airborne sensors (i.e. MIVIS, CASI and
ATM).

Plot analysis of SI values versus the fractional abundances
of the two endmembers was used to highlight the optimal
CASI and ATM bands exploiting the archaeological signatures
for multi/hyperspectral airborne remote sensing imagery

(figure 2) within different land covers with different fractional
abundances.

Plot analysis of the unmixing versus SI results for the
two sensors allowed us to establish that for the land cover
characterized by green crop vegetation that was set as the
occurrence of green crop vegetation higher than 75%, the
VIS–NIR spectral regions better enhance the buried man-made
structures thus confirming the results attained by Cavalli et al
(2009) in previous studies. In particular, the two most
promising wavelengths for their detection are the chlorophyll
peak at 0.56 μm and the red edge region (0.66 to 0.70 μm)
(see e.g. in figures 3(a)–(c), the test sites 2 and 3). This result
also confirms that the variation induced by the subsurface
structures (e.g. stone walls, road networks) to the natural
vegetation growth and/or colour (i.e. for different stress
factors) is primarily detectable by the chlorophyll peak and the
red edge region. Actually, the transition between two regions
at approximately 0.7 μm is characterized by the red edge of
the chlorophyll absorption maximum, and the leaf reflectance
is controlled in the visible to 0.7 μm by the pigments in
the leaves. In the region 0.7 to 1.3 μm, the dominant
feature is the high, relative reflectance associated with leaf
cell structure and is associated with the cellular arrangement
within the leaf and the hydration state. The exact position of
the red edge is changed in plants influenced by geochemical
stress.

As regards the test sites where dry bare soils cover the
structures with fractions higher than 75% from the unmixing
results, all the VIS, NIR and SWIR spectral regions are suitable
to detect the subsurface structures (see e.g. in figures 3(a)–(d)
the test site 1).

The ATM TIR (see e.g. in figure 3(e)) spectral region
(8.5–13.0 μm) provided useful results in terms of subsurface
structure detection only for the calculated ATI (thermal inertia)
whenever the structures are covered by dry bare soil for more
than 75%, instead ATM TIR data provided only SI values under
40% for the structures covered by soils more than 75% and
under 25% for the structures covered by crop vegetation more
than 75%. However, we believe that the ATM TIR spectral
properties of subsurface archaeological structures have not
been fully exploited in this study as ATM TIR data, even if
with only one channel, allows for an effective detection of
archaeological subsurface structures covered by soil or crop
vegetation. This is because the heat transfer through the soil
is affected by the presence of buried objects; thus, it is of
primary importance to calculate the material inertial resistance
to temperature fluctuations for detecting the subsurface
remains.

Last, we verified on other known (Cavalli et al 2005,
2009, Bradford 1957) buried structures within the Arpi
archaeological area that if over the subsurface structures crop
up a mixture of bare soil and green crop, as identified by
the LSU results, there will be a loss in terms of subsurface
structure detection potential of all CASI and ATM bands.

In conclusion, looking at the graphs in figure 2 it
is possible to state that a multi/hyperspectral airborne
sensor covering the 0.55–0.75 μm spectral range (VIS–NIR)
with high spectral (0.1–0.3 μm) and spatial (i.e. at least
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(a) (b) (c)

(f )(e)(d )

Figure 3. Examples of CASI and ATM bands selection as derived by applying the proposed procedure and suitable for detecting subsurface
structures on three selected test sites within the Arpi archaeological area. For the three test sites the pixels known to be marks used for
computing the SI are 124 and they are depicted in blue in (a) only for visualization purposes.

2–3 m/pixel) resolutions can be suitable for subsurface
archaeological structure detection each time the surfacing
fractional land cover is well known, thus confirming previous
results attained for the same area by MIVIS hyperspectral
airborne data (see figure 2).

Looking at the ATM thermal data classification, they
provide appreciable results in discriminating subsurface
structures covered by soil more than 75% (see ATM ATI
values in figure 2(a)). This is also confirmed by comparing the
results with previous results obtained by MIVIS TIR data for
the same test areas and with the same atmospheric conditions
(Cavalli et al 2009). Probably the better results obtained by
the ATM TIR data are due to (a) the higher spatial resolution
of the ATM data (2 m/pixel) with respect to the MIVIS one
(3 m/pixel), (b) different time and season of acquisition and
(c) soil moisture and roughness. Furthermore, the calculation
on ATM TIR night and day dataset of the thermal inertia (see

e.g. figure 3(f )) provided, as expected, appreciable results
only in those sites (i.e. marks relative to subsurface remains)
covered by more than 75% by dry bare soil, thus sustaining
that the ATI calculation is useful where dry bare soil covers the
subsurface structures. Moreover, it is to consider that we used
the simplified equation of apparent thermal inertia, where only
surface albedo and surface day–night temperature difference
are considered, and surface latent flux, surface sensible flux
and other atmosphere parameters are neglected thus leading to
higher error occurrences. However, the ATI SI mean values
attained for all the test sites are higher than those for the ATM
TIR night and day data.

5. Conclusions

In this paper we test and demonstrate with different spectral
resolution airborne imagery that the combined use of the
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separability index and the land cover fractional abundance
(as derived by spectral unmixing) is a powerful technique to
identify the sensors’ bands most profitable for archaeological
prospection. The results attained for the selected Arpi (Italy)
test area reveal that if the dominant land cover abundances in
agricultural land areas are known, we can a priori select the
optimal spectral range for remote sensing data suitable for the
enhancement of spectral anomalies related to the subsurface
archaeological remains. Furthermore, the results show that
high spatial resolution VNIR multi/hyperspectral data, such
as CASI and ATM airborne data, can be extremely effective for
the analysis of large cultural heritage assets. The usefulness of
the ATI (thermal inertia) where archaeological structures are
covered by bare soil is also noteworthy.

At present, the only possibility of improving the attained
results is the application of hyperspectral imagery with a very
high spatial resolution (if possible <1 m) also in conjunction
with LIDAR and/or high resolution SAR data such as the new
COSMO-SkyMed SAR data. In this context, the COSMO-
SkyMed data are expected to represent a precious source of
information thanks to the high spatial resolution of the images
(at maximum 1 m) acquired, to the very short revisit time and
to the low sensitivity, typical of synthetic aperture radar (SAR)
data, to atmospheric and sun-illumination conditions.

Further research will include the evaluation of the
effectiveness and robustness of the proposed procedure in
the same and other archaeological areas by including more
endmembers in the unmixing procedure.

This will allow us to develop a quick and affordable
tool for archaeologists whenever starting their analysis on
airborne remote sensing data with scarce information and to
improve the standard methods employed in landscape research,
from creating archaeological risk maps to assembling regional
information systems. However, the relatively high costs of
high spatial/spectral remote sensing data must be balanced
against the real larger costs of planning decisions based on
poor knowledge of what lies in the subsurface and of failing

to correctly locate archaeological features and other culturally
sensitive deposits prior to their disturbance.
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