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Abstract
Springs are interface habitats between the surface and subterranean environments, often neglected by zoological studies and
generally regarded only from a surface perspective. Springs are also often collected and managed by humans: catching buildings
that collect spring water may provide an accessible window over groundwaters. With this paper, we aim to assess the
determinants of invertebrates’ occurrence in springs using a comprehensive approach and considering the role of catching
buildings and of predator occurrence. During 2017 and 2018, we performed six repeated surveys in 44 springs of N-Italy. We
distinguished between collected and natural springs, assessed the springs morphological features and recorded the occurrence of
predator Salamandra salamandra (Linnaeus, 1758) larvae and of four invertebrate taxa corresponding to strictly spring-dwelling,
groundwater-dwelling and stream-dwelling groups, such as the gastropod Graziana alpestris (Frauenfeld, 1863), the amphipods
Niphargus thuringius Schellenberg, 1934 andGammarus balcanicus Schäferna, 1922 and dipterans larvae of the family Tipulidae.
We used a constrained redundancy analysis to evaluate the relative role of fire salamander occurrence and of springs features on
the occurrence of the invertebrate taxa surveyed. Spring typology and fire salamander larvae were the major determinants of
spring invertebrates’ occurrence.G. alpestriswas positively related to artificial catching structures. Fire salamander was related to
the occurrence ofN. thuringius, G. balcanicus and Tipulidae larvae. Our results provide evidence that catching spring structures
can significantly favour the detection of strictly spring-dwelling species; moreover, we reveal that the breeding of semi-aquatic
predators like salamanders may play important roles on the community of invertebrates occurring in the spring habitats.

Keywords: Gastropod, seepage, headwater, stream, amphibians

Introduction

Among freshwater habitats, one of the most interest-
ing from both a zoological and management perspec-
tive is the spring habitat. Springs have since a while
played a fundamental role for humans, being impor-
tant for the intake of potable water. Currently, spring
habitats are defined as groundwater-dependent eco-
systems (Eamus & Froend 2006) and are broadly
spread worldwide. Generally, springs can be defined
as the interface between groundwaters and surface
freshwater habitats (Alfaro & Wallace 1994), with
both the subterranean and the epigean habitat fea-
tures that interplay in characterising each spring.
However, zoological studies focusing on springs are

often approached only under a surface perspective,
neglecting the role played by groundwaters (Galassi
2001; Fiasca et al. 2014). From an ecological point of
view, springs have been distinguished in three main
categories such as (a) flowing springs (also named
rheocrenic), in which water flow feeds small streams;
(b) pool springs (also named limnocrenic), where the
flow is low and creates lentic habitats; and (c) seepage
springs (also named helocrenic) that create a shallow
damp zone (Thienemann 1922; Martin & Brunke
2012).
Moreover, due to the human action, together with

natural springs, there are also different typologies of
artificial catchment buildings used, especially in the
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past, to collect and laminate groundwater for agri-
cultural and civil purposes. There are two main
typologies of artificial springs: draining galleries
and catchment houses (also often called “bottini di
presa”). These artificial springs are characterised by
a more or less developed accessible part that pene-
trates the side of a slope, to catch and bring outward
water; these buildings collect water directly in the
groundwater table. Old artificial springs base their
catching activity essentially on gravity and are asso-
ciated with the urban and agricultural landscape of
all the world, with particular importance for Europe,
Japan, Asia and Northern Africa (Balland 1992).
The importance of old catching buildings other
than historical factors may also be significant for
zoological studies. Catching buildings often occur
in non-karst areas where natural caves or spaces
allowing the observation of groundwaters are not
available. Catching buildings may thus represent
a window over freshwater subterranean environ-
ments that could be otherwise accessible only using
expensive samplings. As studying distribution and
habitats of underground animals is quite complex
and is receiving growing interest (Mammola &
Leroy 2018; Ficetola et al. 2019), accessible win-
dows to subterranean aquifers may have strong zool-
ogical importance. Moreover, from a zoological
point of view, old catching buildings may expand
the area of the border between the surface and sub-
terranean waters favouring both surface and subter-
ranean populations of organisms related to the
spring habitat. When springs are stable and isolated,
the environmental conditions may favour the devel-
opment of a highly specialised fauna; spring-
dwelling specialised organisms are often called cre-
nobionts and are organisms that are necessarily asso-
ciated with spring source habitats to survive and
accomplish their life cycles (Di Sabatino et al.
2000; Hoffsten & Malmqvist 2000). Generally,
strict crenobiont species are quite rare and are
mainly represented by some species of snails of the
superfamily Hydrobioidea and by different species
of water mites (Roca & Gill 1992; Pezzoli 1996,
2010; Di Sabatino et al. 2000). However, much
more organisms are often associated with spring
habitats, the springs being often the upper border
reached by some stream-dwelling invertebrates and
the lower border reached by groundwater-dwelling
species. The typical spring-fauna can be composed
of different groups such as amphipods, decapods,
oligochates, triclads, caddisflies, crane-flies and
water beetles (Hirabayashi et al. 2004; Cantonati
et al. 2006; Manenti 2014; Nakano et al. 2018;
Manenti et al. 2019). Also, some semi-aquatic

organisms, like salamanders and some dragonfly
species, may often exploit spring habitats for their
larval cycles, becoming often the top predator of the
source trophic webs (Lowe & Bolger 2002; Gillespie
2013) and contributing substantially to the whole
aquatic biomass of springs living organisms
(Barzaghi et al. 2017).
In Europe, among the amphibian species that are

more strictly connected with spring habitats, there is
the fire salamander (Salamandra salamandra
Linnaeus, 1758) (Manenti et al. 2009a). This spe-
cies is ovoviviparous and typically breeds in small
shallow streams with highly diversified substrate,
rich macrobenthos and absence of fish (Manenti
et al. 2009b, 2017; Manenti & Ficetola 2013).
Several observations have also been reported for
different typologies of natural and artificial spring
where the larvae of this species may reach strong
densities (Limongi et al. 2015). Fire salamander
larvae are predators, and their occurrence is likely
to affect the composition of the invertebrate fauna.
From a zoological perspective, spring surface

organisms are often studied, and communities’
assemblages of the invertebrate fauna of natural
springs are available, even if temporarily and spa-
tially fragmented. At the same time, few information
is available on the use of springs by typical ground-
water fauna, on the use and role of semi-aquatic
organisms as amphibians and on the importance
that old catching buildings may play for spring-
fauna occurrence and observation.
Considering all these aspects, with this paper, we

aim to (a) determine if spring catching buildings
may affect communities of invertebrates and (b)
understand if the occurrence of semi-aquatic preda-
tors may affect the distribution of groundwater, cre-
nobiont and surface invertebrates living in springs.
We hypothesise that (a) both crenobiont and
groundwater organisms may be positively related to
catching spring buildings and that (b) all inverte-
brates’ categories are related to the fire salamander
larvae occurrence in springs.

Materials and methods

From November 2017 to March 2018 and from
November to December 2018, we performed
repeated surveys in 44 springs situated in the
Regional Park of Montevecchia (Lombardy, NW
Italy; Figure 1). In this area, one of us (EP) per-
formed in the past extensive monitoring of the
springs, discovering and describing several impor-
tant sites, both natural and artificial (Pezzoli 1996,
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2007, 2010). During our research, for each site, we
performed six distinct diurnal surveys to assess the
occurrence of fire salamander larvae and of four
invertebrate taxa such as Niphargus thuringius
Schellenberg, 1934, Graziana alpestris (Frauenfeld,
1863), Gammarus balcanicus Schäferna, 1922 and
dipterans larvae of the family Tipulidae.
N. thuringius is a typical groundwater-dwelling spe-
cies sometimes encountered at springs mouths
(Stoch 2000); G. alpestris is a typical crenobiont
species (Pezzoli 1996, 2007); G. balcanicus and
Tipulidae larvae are typical of headwaters (Tachet
2010). The occurrence of fire salamander larvae and
invertebrates was assessed both visually and by mov-
ing substrate with a deep net. Visual surveys lasted
15 min at each sampling, and we performed deep
nettings for 10 min. Additionally, in each site, we
sifted 2 kg of substrate (or all the substrate if the
occurring amount was less than 2 kg) with a sieve of
35 mesh to detect the occurrence of fresh shells of
the snail G. alpestris. The siftings were repeated two
times during the study period.
In natural springs, the surveys were performed in

the pool occurring exactly at the mouth of the spring
at the interface with groundwaters. In catching
buildings, the surveys were performed in all the
occurring pools (usually built to laminate the water
and filter substrate). During surveys, we recorded
two morphological features of the spring such as the

maximum area of the pools and the maximum depth
of the pools. We assigned the springs to two typol-
ogies such as natural springs and collected spring.
As natural springs, we considered springs in which
no artificial buildings for their collection or struc-
tures covering the surface of the mouth occurred,
while collected spring was considered those springs
occurring in catching buildings. We included in the
samplings all the typologies of catching building
occurring in the study area such as draining gal-
leries, buildings for water lamination and “bottini
di presa”.
We used a constrained redundancy analysis (RDA)

to evaluate the relative role of fire salamander occur-
rence, of spring typology and of springs features on
the multivariate structure (i.e. species composition) of
invertebrate taxa surveyed. RDA is a canonical analy-
sis that is particularly effective as it combines the
properties of regression and ordination techniques.
RDA allows evaluation of how much of the variation
of one dataset structure (e.g. invertebrate community
composition in a spring; endogenous dataset) is
explained by independent variables (e.g. spring biotic
and abiotic features; exogenous datasets) (Borcard
et al. 2011). We performed the RDA using the
vegan package (Oksanen et al. 2005). In the analysis,
we considered one matrix composed of fire salaman-
der occurrence, of the natural or collected spring
typology of the pool surface and of pool maximum

Figure 1. Study area. Soft grey represents urbanised areas; light blue represents hydrographic networks. The borders of the Regional Park
of Montevecchia and Curone Valley are represented by the red continuous line. Yellow circles represent the sampling sites; due to
geographic proximity, some sites appear superimposed.
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depth as exogenous matrix, and we used the matrix of
invertebrate taxa occurrence as endogenous. We cal-
culated the significance of explained variance by per-
forming ANOVA-like permutation tests
(10,000 permutations) (Borcard et al. 2011). We
performed the statistical analysis in the R 3.3.2 envir-
onment (R Development Core Team 2018).

Results

Twenty-eight out of the 44 springs sampled were
catching buildings with different shapes and fea-
tures. Some buildings hosted multiple pools for the
water lamination. G. alpestris was detected in 34
sites. The fire salamander was detected in 24 sites,
Gammarus blacanicus in 7 and N. thuringius in 17,
and we observed fly larvae of the Tipulidae family in
10 sites. G. balcanicus and Tipulidae flies were
detected mainly in shallow springs, while we
observed N. thuringius mainly in smaller pools and
the fire salamander in larger pools (Figure 2).
Spring invertebrates were significantly related to the

biotic and abiotic spring features considered (permu-
tation test: P = <0.001). The relationship between

invertebrate occurrence and spring features explained
25% of the variation. The first RDA axis was repre-
sented by spring typology and the second RDA axis
by the fire salamander occurrence (Figure 3; Table I).
The first RDA axis explained 17% of the variation
explained by the RDA, and the second RDA
explained 8%. G. alpestris occurrence was positively
related to collected springs, while G. balcanicus and
Tipulidae occurrence was related to natural springs.
N. thuringius showed a weak positive relationship with
collected springs (Figure 3; Table II). The occurrence
of the fire salamander larvae played a negative role on
the occurrence of N. thuringius and, at a weaker
extent, on the occurrence of G. balcanicus and of
Tipulidae larvae; on the contrary, no effect was played
on G. alpestris occurrence (Table II).

Discussion

Our results showed that two major determinants
were related to the distribution of spring organ-
isms in the study area. Both the spring typology
(natural or with artificial collecting building) and
the occurrence of the fire salamander played an

Figure 2. Box whiskers plots of the relationship between taxa occurrence and some spring environmental features recorded. (a)
Relationship between Tipulidae larvae occurrence and spring pools depth; (b) relationship between Gammarus balcanicus occurrence
and spring pools depth; (c) relationship between Niphargus thuringius and spring pools area; (d) relationship between fire salamander larvae
occurrence and spring pools area.
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important and differential role on species pre-
sence. In the study, we considered multiple cate-
gories of organisms including crenobiont species
represented by the gastropod G. alpestris, stygo-
biont species often inhabiting groundwaters as the
amphipod N. thuringius and species generally liv-
ing in epigean headwaters. The spring typology
was related to all the taxa considered, with dis-
tinct patterns. We detected a strong positive influ-
ence of catching buildings only for G. alpestris;

a weak positive correlation with N. thuringius and
a strong negative correlation with G. balcanicus
and Tipulidae larvae, which are typical epigean
taxa.
The emblematic crenobiont species, G. alpestris in

particular, was positively related to artificial catching
buildings. This is a species that may reach high
abundances also in springs with the moderate flow
(Pezzoli 1996, 2007; Pezzoli & Lemme 2003).
Populations of the species are known also for sub-
terranean environments where depigmented and
blind individuals may occur, but the species is
a typical inhabitant of the interface environment
represented by sources (Giusti & Pezzoli 1977,
1980). Water temperature and hardness are impor-
tant factors for the occurrence of the species that it is
rarely observed in sites that exceed 13°C and does
not bear water hardness below 5 French degrees
(Pezzoli & Spelta 2000; Pezzoli & Lemme 2003;
Pezzoli 2007). The species is considered a good
bioindicator of the water quality, being able to tol-
erate only few amounts of organic pollution and
being very sensitive to different chemicals (Pezzoli
& Spelta 2000). Due to its limited distribution, often
linked to local biogeographical factors, the species
cannot be used as a biological indicator in biotic
indexes for assessing springs quality, but the assess-
ment of its occurrence across time may provide
important indications for the springs management
at the single-site level. Our results reveal that catch-
ing buildings provide important environments for
the detection of this species. The high occurrence
of G. alpestris in artificial catching buildings may be
linked both to the fact that artificial springs enlarge
the ecotonal habitat available for the species and to
the structure of the buildings themselves. They, in
fact, usually have one or more pools expressly built
for allowing water lamination and sediment collec-
tion. These pools are extremely efficient in stock-
piling the shells of this gastropod (Pezzoli 1996,
2007; Pezzoli & Spelta 2000). The occurrence of
freshly, not concretioned, shells that we collected
in the substrate indicates the existence of viable
populations. In general, our results show that artifi-
cial collecting buildings may be important for allow-
ing the detection of elusive crenobiont species and
suggest that their maintenance should be incorpo-
rated in management plans dealing with spring
source habitats.
Only a weak positive correlation occurred

between spring catching buildings and N. thuringius
occurrence. Niphargus is the most various genus of
freshwater amphipods, with more than 300
described species (Marković et al. 2018). The

Figure 3. Plot of the RDA showing the relationship between
spring features and invertebrate taxa occurrence. Black arrows
identify environmental features; dark grey symbols identify inver-
tebrate taxa position with respect to the first two RDA axes.
Environmental features: Sal = fire salamander larvae, Ar = pool
area, Dpt = pool depth, Col = collected springs with catching
buildings. Invertebrates: Gb = Gammarus balcanicus, Tip =
Tipulidae larvae, Nt = Niphargus thuringius, Ga = Graziana
alpestris.

Table I. Relationships between the variables included in the RDA
and the first and second RDA axes.

Variables RDA1 RDA2

Collected spring 0.94 −0.17
Pool area 0.36 0.44
Maximum depth 0.57 0.27
Fire salamander larvae 0.25 0.79

Table II. Relationships between the invertebrates included in the
RDA and the first and second RDA axes.

Invertebrate taxa RDA1 RDA2

Niphargus thuringius 0.05 −0.58
Graziana alpestris 0.60 −0.23
Gammarus balcanicus −0.49 −0.11
Tipulidae −0.63 −0.17
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genus is widespread and primarily inhabits ground-
waters even if some mainly epigean populations and
species are known (Marković et al. 2018).
N. thuringius is a common species in Northern Italy
occurring in springs and caves from Po plain low-
land areas to Prealps, and it is considered a relatively
recent, presumably postglacial, invader of ground-
waters (Stoch 2000). Our observations suggest that
the exploitation of ecotonal areas between ground-
waters and surface waters is possible also for this
species as recorded for other species of the genus,
especially during night (Fiser et al. 2007). A strong
negative correlation occurred between springs catch-
ing buildings and the stream-dwelling species. Both
G. balcanicus and Tipulidae larvae were associated
with natural springs. Tipulidae are semi-aquatic
insects, using freshwaters for breeding; likely the
occurrence of catching building limits reproduction
and accessibility for flying adults. G. balcanicus is
a widespread species occurring in headwaters of
Balkans and N-Italy and is often recorded in spring
areas (Stoch 2000). Our results suggest that the
occurrence of natural not managed springs is impor-
tant for the species.
Our study reveals also that the occurrence of

predators may play an important role for different
aquatic organisms more or less linked to the spring
habitats. We focused on the occurrence of a semi-
aquatic predator, the fire salamander, that gener-
ally breeds in headwaters and that can often use
also springs and subterranean habitats (Manenti
et al. 2009b). Previous studies showed that the
fire salamander is often associated with accessible
artificial subterranean springs other than emitting
caves. The features determining fire salamander
larvae occurrence in spring catching buildings are
generally the accessibility of the spring itself and
the occurrence of prey (Manenti et al. 2011,
2016). Even if both surface and groundwater
organisms are negatively related to the fire sala-
mander larvae occurrence, the relationship is
strong only with N. thuringius. The negative effect
played by fire salamander larvae occurrence on
N. thuringius may indicate that predator presence
in springs may limit the exploitation by ground-
water-dwelling species of resources closed to the
interface between surface and groundwaters. With
respect to groundwaters, source mouths can be
strongly attractive environments with a relatively
high amount of trophic resources available for sub-
terranean organisms (Culver & Pipan 2014).
Niphargus amphipods occurrence in springs and
other surface habitats is generally considered linked
to foraging purposes (Marković et al. 2018). Fire

salamander larvae may directly prey on
N. thuringius individuals entering springs from
groundwater or create a landscape of fear prevent-
ing their exploitation of springs. The weaker nega-
tive effect played by fire salamander larvae
occurrence on G. balcanicus and on Tipulidae lar-
vae may suggest that these surface species have
developed antipredator responses; moreover,
Tipulidae larvae at older stages are bigger than
fire salamander larvae and are not preyed upon. It
is also possible that covariation occurs between the
habitat where the fire salamander breeds and that
of the invertebrates not negatively related to its
larvae as perennial accessible shallow springs may
represent valuable environments for aquatic and
semi-aquatic organisms with different functional
roles (Barzaghi et al. 2017). We did not detect
relationships between fire salamander larvae occur-
rence and the crenobiont G. alpestris; this small
gastropod is able to shelter in interstices (Pezzoli
2007) where it may easily escape predation.
The strong negative relationship that we detected

between N. thuringius and fire salamander larvae
suggests that future studies on this species may be
performed in springs with and without the fire sala-
mander larvae, considering the role that the exten-
sions of spring ecotonal areas towards the surface (as
happens during night) and the landscape of fear may
play in affecting the exploitation of epigean fresh-
waters by species inhabiting groundwaters.
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