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ABSTRACT ARTICLE HISTORY
Among the bacterivorous protists, heterotrophic nanoflagellates (HNFs) Received 10 February 2016
are considered to be the main grazers of bacteria in freshwaters due to Accepted 11 June 2016
their size-selective grazing. In this work, we assessed the change of a KEYWORDS

riverine bacterial community in controlled incubations, where HNFs’ Bacteria; nanoflagellates;
predation pressure was initially released through filtration. Filtration did aggregates; filaments;
not prevent the passage of cysts, which grew in the enrichments functional diversity; river
afterwards. Data on the composition of the bacterial community were ecology

gathered by Catalyzed Reporter Deposition Fluorescent In situ

Hybridization (CARD-FISH) using 16S probes targeting phylogenetic

groups. Bacterial cell size was also examined using image analysis. Overall,

the initial filtration directly (through release of predation pressure) or

indirectly (through competition among bacterial groups) affected the

bacterial community composition. When nanoflagellate abundance rose, a

reduction of bacterial abundance and changes in cell size distribution

were observed. Gamma-Proteobacteria and Actinobacteria were the

groups showing the greatest reduction in abundance. Beta-Proteobacteria

showed a reduction of cell size and were found in aggregates. Alpha-

Proteobacteria and Actinobacteria developed two distinct filamentous

morphotypes: short, segmented rods and long chains of rods. Our results

showed that the release of the predation pressure and the successive rise

of the nanoflagellates changed the bacterial community in terms of

composition at large phylogenetic scale. HNF grazing is highly group-

specific and seems to reconstruct the community based on cell size, and

thus, not only drastically changing the bacterial community composition,

but also increasing its functional diversity.

Introduction

Planktonic bacteria are important players in biogeochemical cycles. In aquatic ecosystems, the main
factors that have been identified as influencing bacterial communities are substrate supply, lysis by
viral infections, and protozoan and metazoan predation (Jiirgens & Matz 2002). A great deal of labo-
ratory and field evidence shows that protists’ grazing is one of the major forces shaping the bacterial
community structure (Pernthaler et al. 1996, 1997; Simek et al. 1997; Jiirgens et al. 1999; Pernthaler
2005; Corno & Jiirgens 2008; Chen et al. 2011; Chow et al. 2014). Thus, a more comprehensive
understanding of the bacteria—protist interaction is one of the central issues in carbon transfer in
aquatic systems and, more generally, in freshwater ecology. Among the bacterivorous protists,
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heterotrophic nanoflagellates (HNFs) are widely considered to be the main grazers of bacteria in
freshwaters (Jiirgens et al. 1997; Arndt et al. 2000; Jacquet et al. 2005; Weitere et al. 2005; Bong &
Lee 2011). HNFs’ grazing can impact both the standing stock and taxonomic structure of bacterial
communities, as well as size and morphology of each bacterial phylogenetic group (Simek et al.
1999; Fazi et al. 2008).

Biovolume is an important characteristic of bacterial cells because it shapes the contribution of
microbes to total biomass and biogeochemical cycling. Since biomass depends on cell size as well as
cell abundance, the distribution of biovolume within bacterial groups is as important as abundance
(Straza et al. 2009). The analysis of the cell biovolume is, therefore, a crucial step towards a better
understanding of the contribution of each picoplanktonic population to community dynamics and
carbon flux in the water column (Schattenhofer et al. 2009). In particular, as the carbon-to-volume
ratio has been shown to vary with cell volume, the community cell volume distribution needs to be
carefully considered when modelling the food web and nutrient cycling at the ecosystem level
(Simon & Azam 1989; Malfatti et al. 2010). Most of the bacterioplankton cells of both marine and
freshwater environments are small in size (volume < 0.03 pm?). However, the numerically predom-
inant fractions in aquatic environments under high grazing pressure are represented by ultramicro-
bacteria (volume < 0.001 wm?) or large filaments (volume > 1 wm?; Hahn et al. 2003; Corno et al.
2008; Justice et al. 2008; Jousset 2012). HNF grazing on bacteria is size-selective with a preference
for medium-sized bacteria (Chrzanowski & Simek 1990; Gonzélez et al. 1990; Simek & Chrzanowski
1992; Gonzalez 1996; Corno et al. 2008; Gliicksman et al. 2010). Large-sized bacteria, such as fila-
mentous bacteria (Hahn et al. 1999) and microcolony-forming bacteria (Hahn et al. 2000), may
exceed a species-specific upper ingestion limit of HNFs, thus providing these bacteria with a refuge
from grazing. Bacterial resistance against predation depends on morphological plasticity of each
bacterial strain (Pernthaler 2005). However, it is still a matter of debate whether some resistance
forms, such as filamentous, are due to a change in the morphology of non-filamentous bacteria
(Pernthaler et al. 1997), if bacteria evolve to become more filamentous (Corno & Jurgens 2006), or if
permanently filamentous bacteria become more abundant under high grazing pressure (Hahn et al.
1999; Justice et al. 2008). Another open question is whether filament formation is triggered by chem-
ical stimuli released by the predator (Pernthaler et al. 1997; Corno & Jurgens 2006; Blom et al. 2010)
or if it is growth rate dependent (Hahn et al. 1999; Salcher et al. 2007). On the other hand, it is well
known that aquatic bacteria developing in microcolonies embedded in a complex matrix produce a
wide range of extracellular polymeric substances such as polysaccharides, proteins, nucleic acids,
and lipids (Hahn et al. 2004; Salcher et al. 2007) and are protected from nanoflagellates’ predation.
The shift to the aggregation cell type may be a passive consequence of selective feeding on single
cells (Hahn et al. 2004; Corno & Jiirgens 2008), but microcolony formation can also be specifically
induced in the presence of predators by cell-cell communication (quorum sensing; Matz et al. 2004;
De Kievit 2009).

Most of the experimental studies aimed at following prey-predator dynamics between picoplank-
tonic and nanoplanktonic components of freshwaters food web have been based on (1) protist inoc-
ulum in the bacterial growth media (Pernthaler et al. 1996; Simek et al. 1997; Posch et al. 1999;
Salcher et al. 2005); (2) community studies in short-term experiments, by measuring bacterial edibil-
ity for protozoa over a few days using an optical clearance-rate test (Thelaus et al. 2008), (3) by esti-
mating the feeding activity of specific grazers detected by Fluorescent In situ Hybridization (FISH)
for a few hours with tracer preys (Massana et al. 2009); or (4) the responses to stress conditions that
may affect the interplay between protists and bacteria (Fazi et al. 2008). Following the latter
approach, here, we assessed the change of a riverine bacterial community in controlled incubations
where water was pre-filtered to initially release the HNF predation pressure. It has been
demonstrated that physical treatment options, including filtration (Oemcke and van Leeuwen 2005;
Worsfold et al. 2009), have greater potential for protist removal over chemical treatments (Doblin &
Dobbs 2006). However, the filtration process is not only inevitably accompanied by changes in bac-
terial cell physiologies and cell destruction, as a result of the physical separation of bacteria and
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grazers, including suspended particulates-associated microbiota, but it is also likely to influence
nutrient availability and bacterial growth (Takeshi & Jacquet 2008), thus enhancing competition
among different bacterial groups (Bohannan & Lenski 2000; Corno et al. 2008) or the effect of pro-
karyotic viruses (phages) and fungi (Boer et al. 2005; Weinbauer et al. 2007; Chow et al. 2014).

Because phages and flagellates consume the same prey, an antagonistic interaction may be
expected; that is, a decrease in the activity of one type of consumer could result in an increase in
resources for the other consumer of bacteria (Maki & Yamamura 2005; Chow et al. 2014). As phages
typically do not trespass genus boundaries and, as phage infection is density-dependent, phages
should limit competitive bacterial dominants and thus allow fewer competitive bacterial types to
survive (Fuhrman & Suttle 1993; Thingstad et al. 1993). Thus, viral mortality can be considered as a
mechanism that potentially increases species evenness in the bacterial community. In the same way,
fungi can also affect bacterial community composition by removing or creating bacterial niches
(Boer et al. 2005).

We followed bacteria—protists dynamics for 8 days, starting from a condition in which protists
were eliminated by filtration, a process which did not prevent the passage of cysts that grew in the
enrichments afterwards. We intended to (1) detect the direct or indirect effects of HNF removal on
bacterial community structure; (2) assess the potential morphological plasticity of bacterial clusters
when they start to be exposed to the protist predation.

Data on the composition of the bacterial community were gathered by Catalyzed Reporter Depo-
sition Fluorescent In situ Hybridization (CARD-FISH), particularly analyzing the dynamics of five
phylogenetic clusters: Proteobacteria (a—p—y), Bacteroidetes, and Actinobacteria. By coupling
CARD-FISH with image analysis (Posch et al. 2007; Fazi et al. 2008; Posch et al. 2009; Salcher et al.
2010), we described changes in the distribution of the individual cells in volumetric classes for each
of the analyzed phylogenetic clusters.

Methods
Experimental set up

Water was collected at Santa Lucia River (Uruguay) in 5-L, clean acid-washed bottles and trans-
ported to the laboratory in an icebox (4 °C). Water samples were filtered through GF/C filters (nom-
inal pore size 1.2 wm, Whatman™) and the experiment was set up. Three independent replicates
were conducted in sterile flasks (1 L), which were maintained at the in situ temperature (20 °C) in
the dark with gentle shaking (IKA KS 130 orbital shaker). Water was sampled after 0, 20, 95 and
192 h from the starting of the experiment. Dissolved inorganic nitrogen (DIN, as the sum of NO, -
N, NO; -N and NH,"-N) and soluble reactive phosphorus (SRP) were determined by standard
methods (APHA 1995) at the beginning (0 h) and the end (192 h) of the incubations.

Cell numbers of bacteria and protists

The abundance of bacteria (BAB) and HNFs was evaluated by staining with 4'-6-diamidino-2-phenyl-
indole (DAPI) (Porter & Feig 1980). Water samples were fixed with NaOH-buffered formaldehyde
solution (FA, 1% v/v final concentration, pH = 7.4) for a maximum of 24 h. Depending on the
concentration of organisms, between 0.5 and 5 mL of samples per replicate bottle were filtered onto
black polycarbonate membrane filters (pore size 0.2 pm, 25 mm diameter, Nuclepore Corporation,
Pleasanton, USA) by gentle vacuum (<0.2 bar), stained with DAPI, and total bacterial and protist
abundances were determined in these preparations by epifluorescence microscopy (Leica DC 350 F)
at a magnification of 1000x (Jiirgens & Montserrat Sala 2000). Additional aliquots of fixed samples
were filtered onto polycarbonate membrane filters (pore size 0.2 wm, 47 mm diameter, Nuclepore
Corporation, Pleasanton, USA) and stored at —20 °C until further processing (CARD-FISH staining).
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Bacterial community composition by CARD-FISH

CARD-FISH was performed following the protocol optimized by Fazi et al. (2005, 2013). The fol-
lowing rRNA-targeting HRP-labelled probes (Biomers, Ulm, Germany) were used: ALF968, target-
ing sequence types affiliated with alpha-Proteobacteria; BET42a for beta-Proteobacteria; GAM42a
tor gamma-Proteobacteria; CF319a for Bacteroidetes (formerly Cytophaga-Flavobacterium-Bacter-
oides); HGC69a for Actinobacteria (Loy et al. 2007). The stained filter sections were inspected on an
epifluorescence microscope (Leica DM LB 30, Leica Microsystems, Wetzlar, Germany) at 1000x
magnification. At least 300 cells were counted in >10 microscopic fields randomly selected across
the filter’s sections. The relative abundance of hybridized cells was estimated as the ratio of hybrid-
ized cells to total DAPI-stained cells.

Biovolume of the different populations

A Leica DC 350F high-resolution camera (Leica Microsystems, Wetzlar, Germany) was used to cap-
ture 1300 x 1030 TIFF gray-scale images of DAPI-stained cells at a color depth of 8 bits and a reso-
lution of 0.1 mm per pixel. Image filtering was performed using the software Image] (version 1.37,
National Institutes of Health, Bethesda, MD, USA). More than 10 images randomly captured across
each of the three replicate filters were processed at UV excitation to detect DAPI-stained cells. The
binary images were generated and processed according to Amalfitano et al. (2008). To determine
the size of bacterial cells from different populations, image pairs of the same microscopic field were
captured at UV and blue light excitation in order to detect cells hybridized by CARD-FISH with spe-
cific probes. After spatial filtering and segmentation, a contour mask was created around hybridized
cells in each image and applied to the corresponding segmented images from DAPI staining. Size
measurements were performed separately for each population from DAPI-stained cells as described
above. This procedure was also repeated separately for each of the filamentous cells observed in
some bacterial strains. The same image pairs analyzed in order to detect cells hybridized by CARD-
FISH were further processed measuring only the biovolume of the filamentous cells without their
context. Finally, the biovolume of each bacterial population was divided into 13 cell volumetric clas-
ses (um’), according to Fazi et al. (2008), for further analysis.

Statistical analyses

All statistical analyses were performed using GraphPad Prism version 5.0 for Mac OS X (GraphPad
Software, San Diego, CA, USA). If required, data were log-transformed prior to analysis in order to
approximate normality (Kolmogorov—Smirnov test); if this was not obtainable, parametric tests
were replaced by their non-parametric alternatives such as Wilcoxon test for paired comparisons.

One-way repeated measures analysis of variance (RM-ANOVA) was utilized to analyze changes
of bacterial abundance in time, with bottles as subject factors, time as the repeated factor, and bacte-
rial abundance as the categorical factor; two-way RM-ANOVA was utilized to analyze the abun-
dance of the four bacterial clusters. RM-ANOVA was also performed to analyze changes in time of
the biovolume distributions of each bacterial cluster.

Results

Nutrient concentrations did not show any significant change during incubation. At the beginning of
the experiment, DIN and SRP concentrations were 29.4 £ 2.9 pM and 17.9 £ 0.4 pM and at the
end 29.0 & 0.1 pM and 18.8 & 1.2 uM, respectively (paired t-test, p > 0.05). Overall, the total BAB
showed values ranging from 4.8 x 10°to 9.9 x 10° cells/mL, while HNFs reached an abundance of
8.2 x 10" cells/mL (Figure 1). At the beginning of the experiment (0 h), BAB showed an average
value of 9.2 x 10° & 2.0 x 10° cells/mL, while the presence of nanoflagellates was not observed.
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Figure 1. Abundances of bacteria and flagellates (cell/mL) at time 0, 20, 95 and 192 h. At all incubation times, taxonomic composi-
tion of the bacterial community as analyzed by CARD-FISH is shown. Error bars indicate standard deviation (alpha = alpha-Proteo-
bacteria; beta = beta-Proteobacteria; gamma = gamma-Proteobacteria; HGC = Actinobacteria; total prokaryotes = DAPI-stained
bacteria).

At 20 h, still in the absence of nanoflagellates, BAB was 9.9 x 10° 4 2.3 x 10° cells/mL. At 95 h, the
appearance of nanoflagellates (8.2 x 10* & 1.2 x 10" cells/mL) resulted in a lowering of BAB (4.8 x
10° & 9.9 x 10’ cells/mL). BAB increased again at the end of the experiment (192 h), reaching a
mean value of 7.8 x 10° & 3.2 x 10’ cells/mL, when nanoflagellates disappeared almost completely
(83 x 10° & 1.4 x 10" cells/mL).

One-way RM-ANOVA, with bottles as subject factors, time as the repeated factor, and bacterial
abundance as the categorical factor, showed a significant difference in the mean values among time
points (F = 5.46; p = 0.038; df = 11). All pairwise multiple comparisons (Student-Newman-Keuls
Method) showed a significant decrease only between time 20 h vs. 95 h (p = 0.037) and time 0 h vs.
95 h (p = 0.042). The inverse relationship between the abundance of predators (nanoflagellates) and
that of prey (bacteria) was statistically significant (n = 36; * = 0.9; p < 0.05).

At the beginning of the experiment, the bacterial community was dominated by alpha-Proteobac-
teria and Actinobacteria, with abundance values of 1.9 x 10° & 7.0 x 10° and 2.1 x 10° + 2.9 x 10°
cells/mL, respectively. At 20 h, alpha-Proteobacteria increased to 3.9 x 10° + 6.2 x 10° cells/mL.
Interestingly, gamma-Proteobacteria were almost completely absent at 0 h and showed the highest
abundance at 20 h (3.8 x 10° & 3.2 x 10° cells/mL). Actinobacteria, instead, did not undergo any
significant numerical variations at 20 h compared to the beginning of the experiment. After the
appearance of the nanoflagellates in the water (95 h), the abundance of all bacterial groups
decreased; alpha-Proteobacteria and Actinobacteria reached their minimum value of 9.7 x 10° +
1.0 x 10° and 32 x 10° & 7.0 x 10* cells/mL, respectively. Beta-Proteobacteria decreased
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throughout the experiment, with the minimum value of 3.8 x 10° £ 1.6 x 10° cells/mL at 192 h.
Cytophaga-Flavobacteria abundance was always below the detection limit. Two-way RM-ANOVA,
with the abundances of the different bacterial groups as categorical factors, showed significant differ-
ences among groups (F = 13.78; p = 0.002; df = 3) and time (F = 204.71; p < 0.001; df = 3) and a
significant interaction between groups and time (F = 35.09; p < 0.001; df = 9). All pairwise multiple
comparisons (Student-Newman-Keuls Method) for alpha-Proteobacteria showed significant differ-
ences among all time points except between time 95 h vs. 192 h (p = 0.567). For beta-Proteobacteria,
only the 192 h time point was significantly lower than all the other ones (p < 0.05). For gamma-Pro-
teobacteria, only the 20 h time point was significantly higher than all the other ones (p < 0.001).
Actinobacteria abundance significantly differed only between time 0—20 h vs. 95—192 h (p < 0.001).

The percentage of the prokaryotic cells not affiliated with any of the four analyzed groups
decreased from 41.7% at the beginning of the experiment (0 h) to 0% at 20 h. Afterwards, when the
nanoflagellates appeared, this percentage increased again, up to 71.8% at 192 h (Figure 1).

One-way RM-ANOVA, with bottles as subject factors, time as the repeated factor, and biovolume
of the total DAPI-stained cells as the categorical factor, showed a significant change in the mean bio-
volume through time (F = 3.57; p = 0.023; df = 11), with all pairwise multiple comparisons showing
significant differences between time points 0 and 95 h (p = 0.023) and between time points 20 and
95h (p = 0.036).

The size distributions of the four phylogenetic groups are shown in Figure 2. One way RM-
ANOVA showed a significant change in the mean biovolume through time for all the four clusters
(alpha-Proteobacteria, F = 6.25; beta-Proteobacteria, F = 5.71; gamma-Proteobacteria, F = 10.31;
Actinobacteria, F = 4.66; all p < 0.01; df = 11), with all pairwise multiple comparisons showing sig-
nificant differences between time points (Table 1):

- Alpha-Proteobacteria, relatively small at time 0 h, with a peak of abundance corresponding to
the volumetric class of 0.032 pm?, increased in size after 20 h (significant difference between 0
and 20 h; p = 0.013). Afterwards, their biovolume first decreased at 95 h and then increased
again at 192 h, significantly differing in both times from 20 h (p = 0.002 and p = 0.003,
respectively).

- Large gamma-Proteobacteria cells became abundant at 20 h, with a peak corresponding to the
size class of 0.128 wm’. Afterwards, a decrease of their biovolume (significant difference
between 20 and 95 h; p < 0.001) was observed, along with a drastic reduction in abundance.

- Both beta-Proteobacteria and Actinobacteria did not significantly differ in biovolume between 0
and 20 h. Beta-Proteobacteria cells size decreased at 95 h, but the only significant differences in
biovolume were observed between 0-20 and 192 h (p = 0.003 and p = 0.005, respectively). Acti-
nobacteria cell size increased at the end of the experiment (192 h), with significant differences in
biovolume between 0 and 95—192 h (p = 0.020 and p = 0.044, respectively) and between 20 and
95—192 h (p = 0.029 and p = 0.041, respectively).

Interestingly, the formation of cell aggregates was observed at 95 h, particularly for alpha- and
beta-Proteobacteria. Moreover, the appearance of filamentous morphotypes (volumetric classes
range: 0.512-2.4 wm®) belonging to alpha-Proteobacteria (short-segmented rods) and Actinobacteria
(long chains of rods) was observed at the end of the experiment (192 h) (Figure 3).

Discussion

In this work, we combined a time-series microcosm study with highly sensitive analytical techni-
ques, such as CARD-FISH and image analysis, to trace ecosystem predator-prey dynamics under
laboratory conditions. Time-series microcosm studies based on the reconstruction of two- and
three-level food chains of bacteria and protists have been proven to be highly descriptive with regard
to predator—prey dynamics in nature and their role in shaping the food web and the carbon cycle in
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Figure 2. Distribution of bacterial abundances in size classes at time 0, 20, 95 and 192 h as analyzed by image analysis. Data are
expressed in cell/mL. The four panels show different scales on the Y-axis (alpha = alpha-Proteobacteria; beta = beta-Proteobacte-
ria; gamma = gamma-Proteobacteria; HGC = Actinobacteria).

the water column (Bal¢iinas & Lawler 1995; Pernthaler et al. 1996; Simek et al. 1997; Posch et al.
1999; Petchey 2000; Salcher et al. 2005; Thelaus et al. 2008; Massana et al. 2009; Malfatti et al. 2010).
However, the majority of these works do not take into account environmental stress conditions that
may affect the interplay between protists and bacteria (Fazi et al. 2008). Here, we followed a size-
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Table 1. All pairwise multiple comparison (Student-Newman-Keuls Method) among biovolume
through time for all the four analyzed clusters (ALF = alpha-Proteobacteria; BET = beta-Proteobac-
teria; GAM = gamma-Proteobacteria; HGC = Actinobacteria). Acronyms are reported only for the
significant comparisons (p < 0.05).

20 h 95h 192 h
Oh ALF HGC BET-HGC
20 h ALF-GAM-HGC ALF-BET-HGC

95h —

fractionation approach via filtration to study bacterial community abundance and composition over
time after an initial release of the HNF predation pressure (Simek et al. 2001). Filtration did not pre-
vent the passage of HNF cysts that grew in the enrichments afterwards, allowing us to follow the
changes in bacterial community abundance, composition and biovolume when nanoflagellates’
abundance rose. Indeed, we could not exclude the effect of other factors, such as removal of non-
encysting protists and effects due to bacteriophages and fungi. However, in line with Fazi et al.
(2008), we intended to capture and depict the changes in community composition and morphology
structure when a bacteria consortium starts to be exposed to the protist predation, emerging within
the same microbial consortium, without any inoculum of external HNFs.

The total abundance of planktonic bacteria at the beginning of the incubation (before the appear-
ance of the HNFs) resembled the in situ abundance and was similar to that reported for other fresh-
water environments (McManus et al. 2004; Freese et al. 2006). During the first 20 h, the total
bacterial abundance did not change and all the identified bacteria were affiliated with the four ana-
lyzed clusters. Moreover, an enrichment of gamma-Proteobacteria was observed. This bacterial
group reached a relative abundance of approximately 40% in accordance with previous observations
in microcosm incubations (Puddu et al. 2003). Fuchs et al. (2000) hypothesized that the fast-growing
gamma-Proteobacteria would fill the niche of typical r-strategists, which rapidly exploit extra
nutrients when they become available. Members of this group are adapted to high nutrient concen-
trations and therefore grow well under culture conditions (Glockner et al. 1999). In addition, Puddu
et al. (2003) hypothesized that the lack of grazing in their incubations, with a consortium of bacteria
from coastal waters, could result in a disadvantage for other bacteria in competing with the domi-
nant gamma-Proteobacteria. This is in line with many other works where an enrichment of fast
growing r-strategists bacteria was observed after grazer removal (Eilers et al. 2000; Simek et al. 2005;
Posch et al. 2007; Salcher et al. 2007; Grossart et al. 2008; Hutalle-Schmelzer et al. 2010; Newton
and McMahon 2011; Neuenschwander et al. 2015). In this study, the initial filtration removed the
protists and the changes observed in the bacterial community composition between 0 and 20 h could
be due to changes in competition among different bacterial groups in the absence of predation
(Bohannan & Lenski 2000), or the effect of prokaryotic viruses (phages) and fungi (Boer et al. 2005;
Weinbauer et al. 2007; Chow et al. 2014). A constant reduction of the community’s relative diversity
has been observed in several studies where the predator was removed (Bohannan & Lenski 2000;
Corno et al. 2008); the absence of the predator promoted greater competition for the resources
among different bacterial strains, particularly in low-resource environments. Protist removal was
also associated with synergistic and antagonistic effects between HNFs and viruses on bacterial
activity and diversity, suggesting group-specific vulnerabilities to the two sources of mortality
(Weinbauer et al. 2007). Similarly, fungi can also affect bacterial community composition (Boer
et al. 2005). This is particularly evident in fungus-associated bacteria, with a shift towards some bac-
terial strains as the dominant members of the bacterial community of fungal surfaces (Artursson &
Jansson 2003; Boer et al. 2005).

After an initial lag phase, HNFs appeared in the water and their abundance increased afterwards.
Owing to the pre-filtration of the water, the finding of HNFs in the incubations can be attributed to
the existence of cysts that could pass through the GF/C pores (Foissner 2007; Weisse 2008). It has
been claimed, in fact, that the development of cysts in adult flagellates can be affected by nutrient
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gamma-Proteobacteria

Actinobacteria

<4— alpha-Proteobacteria

Figure 3. Micrographs of prokaryotes at epifluorescence microscope after DAPI staining. (A) Typical small bacteria at 0 h; (B) large
dividing cells at 20 h, mainly gamma-Proteobacteria; (C) appearance of flagellates and bacteria aggregation in a microcolony near
a flagellate at 95 h; (D) the arrows indicate the appearance of the two filamentous morphotypes: large- and short-segmented rods

(alpha-Proteobacteria) and long chains of rods (Actinobacteria).
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availability and by bacterial abundance and size range of edibility (Varnam & Evans 2000). In a pre-
vious study, Fazi et al. (2008) found the emergence of flagellates after a few hours of incubation in
favorable environmental conditions and after the colonization of the water by edible bacteria.

The abundance of HNFs in different pelagic habitats varies greatly, but typically ranges from 100
to 10,000 cells/mL in lakes, rivers and marine surface waters (Boenigk et al. 2002), according to the
values of HNFs’ abundance measured in this work. Moreover, in our study, the ratio of HNFs to het-
erotrophic bacteria was approximately 1:1000, comparable to that found by other authors (Sanders
et al. 1992), although this estimation has been disputed (Gasol & Vaque 1993). The drastic numeric
reduction of flagellates at the end of the experiment could be explained by the density-dependent
mechanism (Abrams & Ginzburg 2000). After the appearance of flagellates, there was a drastic
decrease of alpha- and gamma-Proteobacteria abundances, large cells very attractive to flagellates,
and an increase of the total bacteria not affiliated with the four analyzed groups, probably indicating
the appearance of phylogenetic clusters resistant to predation (Pernthaler 2005; Corno et al. 2008).
Then, it can be argued that, in our study, changes in bacterial community composition could have
been driven by both direct (feeding, from 20 h onwards) and indirect (e.g. changes in competition
among different bacterial groups, in the first 20 h of incubations) effects, which cannot be separated.

After the appearance of HNFs, a morphological modification of the bacterial groups was also
observed. Beta-Proteobacteria showed an overall reduction of cell size. Moreover, both alpha- and
beta-Proteobacteria were observed within aggregates, suggesting that the formation of aggregates
could give resistance against predation as soon as the nanoflagellates emerge. Some small rods or
cocci beta-Proteobacteria are strongly affected by predation (Jiirgens et al. 1999; Posch et al. 2001;
Simek et al. 2001; Gasol et al. 2002; Salcher et al. 2008), giving rise to a paradox of the aquatic micro-
bial ecology (Salcher et al. 2005), since these Proteobacteria are very abundant in freshwater ecosys-
tems (Methé & Zehr 1999; Glockner et al. 2000; Burkert et al. 2003; Gao et al. 2005; Lemke et al.
2009). In this work, beta-Proteobacteria was not the dominant group and their abundance did not
change significantly after the appearance of nanoflagellates, probably due to their ability to form
small aggregates. This result is partly in line with numerous studies (Jiirgens et al. 1999; Simek et al.
2001; Burkert et al. 2003; Hahn et al. 2004; Alonso-Saez et al. 2009), in which beta-Proteobacteria,
when exposed to high predation pressure, formed aggregates and microcolonies. Here, we also
detected small alpha-Proteobacteria cells forming microcolonies in association with beta-Proteobac-
teria. This result is confirmed by the work of Salcher et al. (2005), in which they found a cluster of
beta-Proteobacteria (BET3-446) and species of the genus Caulobacter, belonging to alpha-Proteobac-
teria, associated in aggregates as a consequence of increased nanoflagellates’ abundance. Therefore,
after the appearance of HNFs, changes in the interactions between alpha- and beta-Proteobacteria
were observed, suggesting that the aggregation of bacteria in microcolonies could be a defense mech-
anism against predation (Matz & Jiirgens 2003; Jousset 2012).

At the end of the experiment, alpha-Proteobacteria and Actinobacteria developed into two dis-
tinct filamentous morphotypes resistant to predation, consisting of short, segmented rods and long
chains of rods, respectively. The alpha-Proteobacteria do not normally represent the highest propor-
tion of bacteria in freshwater systems (Methe & Zehr 1999; Glockner et al. 2000; Klammer et al.
2002; Lemke et al. 2009). However, in line with our findings, filaments forming alpha-Proteobacteria
are often found under high grazing pressure (Jiirgens et al. 1999; Simek et al. 1999; Weitere et al.
2005; Thelaus et al. 2008). Regarding the highly diverse group of the Actinobacteria, it has been
claimed that some of the most abundant freshwater Actinobacteria would not suffer size changes
induced by protists digestion, because of their cell wall structure (Sekar et al. 2003; Tarao et al. 2009;
Simek et al. 2013) or their constantly small cell size (Hahn et al. 2003; Salcher 2013). However,
bacterial community taxonomic and morphological changes induced by predation are very species-
specific, particularly when bacterial groups consisting of many different morphological species, such
as Actinobacteria, are exposed to variable environmental conditions (Jiirgens & Matz 2002). It has
been seen, for example, that the same flagellate (Bodo saltans) activated different bacterial morpho-
logical responses in different experimental systems: no filaments appeared in chemostat experiments
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(Posch et al. 1999; Simek et al. 1999), although the development of filaments had been observed in a
previous study (Simek et al. 1997). In this work, the development of filamentous Actinobacteria
could be explained by taxonomic changes of the bacterial community. However, to fully understand
whether the development of filaments is a direct response to enhanced grazing pressure or the result
of bacterial community shifts due to other factors, such as competition among different bacterial
strains, further investigations are required involving the performance of fitness essays by comparing
how well flagellates can consume non-filamentous and filamentous bacterial cells within each bacte-
rial group.

Cytophaga-Flavobacteria were not found in this study, in contrast with many studies where Bac-
teroidetes have been found to be a frequent component of the riverine bacterial community (Crump
et al. 2009; Read et al. 2015) or the main group forming filamentous cells under high grazing pres-
sure (Salcher et al. 2005). On the contrary, other studies (Puddu et al. 2003; Crespo et al. 2013) have
demonstrated that Cytophaga-Flavobacteria are usually enriched on particulate organic detritus,
and they could be specialists for particulate organic matter degradation, which was removed by fil-
tration in this experiment.

To conclude, our results showed that the analyzed bacterial clusters differently respond to HNFs’
predation pressure by changing in abundance and morphology with important implications on the
overall community composition, and, more generally, on the biochemical cycling into the water col-
umn. HNFs’ grazing is highly group-specific, determining changes of the bacterial community
towards a similarity with its composition at the beginning of the experiment. An interesting point is
that even though the bacterial community is similar in terms of diversity at the beginning and at the
end of the experiment, nanoflagellates seem to reconstruct the bacterial community based on cell
size, thus also increasing its functional diversity. These results pinpoint the importance of predators
and top-down regulation for prey community composition and abundances. Further investigations,
coupling biovolume and taxonomic identification with activity estimation at single-cell level, could
certainly expand our knowledge on ecosystem functioning and stability.
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