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Abstract. The CMS experiment obtained a large number of groundbreaking results from

the analysis of 7- and 8-TeV proton-proton collisions produced so far by the Large Hadron

Collider at CERN. In this brief summary only a few of those results will be discussed.

The new scalar discovered in 2012 has been studied in detail and all its characteristics

have been found in agreement with standard model predictions for a Brout-Englert-Higgs

boson. The large sample of top quark events collected in 2011 and 2012 have allowed

world-class measurements of its mass; the combination of those results is Mt = 173.49 ±
0.36 ± 0.91 GeV. The rare decay B0

s → μμ has been observed and found in agreement

with standard model predictions; the search for the rare decay B0 → μμ has allowed to

set a 95% CL limit on the branching fraction at 1.1 × 10−9. These two results strongly

constrain new physics models.

1 Introduction

The observation of the Brout-Englert-Higgs boson in July 2012 has marked a turning point for the

CMS experiment: while being the declared main goal of the Large Hadron Collider, the observation

of the particle believed to be the manifestation of the mechanism of electroweak symmetry breaking

is only the beginning of a long and careful plan of investigations of the physics of hadron collisions at

the multi-TeV scale. The planned increase in the beam energies, which will bring the centre-of-mass

energy at the design energy of 13-14 TeV in the forthcoming years, keeps hopes alive for the discovery

of new physics beyond the standard model.

The investigation of the properties of the newly found boson has been carried out with all the data

available from Run 1 of the Large Hadron Collider. The observable characteristics of that particle

allow us to say today that it perfectly fits the predictions of the standard model; yet a more precise

determination of its couplings and a study of its less frequent decay modes will be possible with the

data expected in 2015, with the aim of determining whether anomalies or unpredicted features are

hiding in the details of its phenomenology. In parallel with those investigations, CMS has undertook a

wide range of studies of standard model physics, extending our knowledge of frontier particle physics

with precise measurements of electroweak observables.

The search for new phenomena is of course today the main focus of the CMS experiment. While

the first studies of 7- and 8-TeV collisions have revealed no departures from standard model predic-

tions, the range of possible signals of new physics hiding in the huge datasets already collected is

quite broad, and surprises are still possible. The large amount of results produced in those searches
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prevents their discussion in this brief report; a summary can be found in the reports from the parallel

sessions in these proceedings.

This document is organized as follows. Section 2 provides a brief description of the experiment.

In Sec. 3 is offered a short review of the most interesting results of the investigations of the nature of

the new 125 GeV scalar particle. In Sec. 4 a few recent results in standard model measurements are

briefly highlighted. Some conclusions are offered in Sec. 5.

2 The CMS Detector

CMS –an acronym for Compact Muon Solenoid– is a multi-purpose magnetic detector designed to

study the multi-TeV proton-proton collisions delivered by the CERN Large Hadron Collider. The

detector is located in a underground cavern at a depth of 100m at the site of Cessy, near the border of

France and Switzerland. Particles emitted in hard collisions at the center of CMS cross in succession a

silicon tracker, electromagnetic and hadron calorimeters, a solenoid magnet, and muon drift chambers

embedded in the solenoid iron return yoke. A drawing of the CMS detector is shown in Fig. 1.

Figure 1. An exploded view of the CMS detector, showing the outer muon chambers (white) embedded in iron

(red). Internally can be seen the calorimeter system (ECAL, in green, and HCAL, in orange). The tracker is

located in the core of the central barrel.
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2.1 Overview of the CMS Detector

The momenta of charged particles emitted in the collisions at the center of the CMS detector are

measured using a 13-layer silicon pixel and strip tracker; 66 million silicon pixels of dimensions

100x150 μm are arranged in three barrel layers, and are surrounded by 9.6 million 180 μm-wide

silicon strips arranged in additional concentric barrels in the central region and disks in the endcap

region. In order to allow a precise measurement of charged particle momenta, the silicon tracker is

immersed in the 3.8 T axial field produced by a superconducting solenoid. The tracker covers the

pseudorapidity range |η| < 2.5, where pseudorapidity is defined as η = −ln tan θ/2 and θ is the polar

angle of the trajectory of a particle with respect to the direction of the counter-clockwise proton beam.

Surrounding the tracker are an electromagnetic calorimeter (ECAL) composed of lead tungstate

crystals and a brass-scintillator hadron calorimeter (HCAL). These detectors are used to measure the

energy of incident particles from the produced electromagnetic and hadronic cascades; they consist of

a barrel assembly covering the central region, plus two endcaps covering the solid angle for particles

emitted at lower angle with respect to the beams direction. The ECAL and HCAL extend within

the pseudorapidity range |η| < 3.0; at smaller angles particles emitted in the collision encounter a

steel/quartz-fiber Cherenkov forward detector (HF) which extends the calorimetric coverage to |η| <
5.0.

The outermost component of the CMS detector is the muon system, consisting of four layers of

gas detectors placed within the steel return yoke. The CMS muon system performs a high-purity iden-

tification of muon candidates and a stand-alone measurement of their momentum, and in combination

with the inner tracker information provides a high-resolution determination of muon kinematics. More

detail on the CMS detector is provided elsewhere [1].

CMS collects data with a two-level trigger system. Level 1 is a hardware trigger based on custom-

made electronic processors that receive as input a coarse readout of the calorimeters and muon de-

tectors and perform a preliminary selection of the most interesting events for data analysis, with an

output rate of about 100 kHz. Level 2, also called "High-Level Trigger" (HLT), uses fine-grained

information from all sub-detectors in the regions of interest identified by Level 1 to produce a final

decision, selecting events at a rate of about 300 Hz by means of speed-optimized software algorithms

running on commercial computers.

2.2 The LHC in 2011 and 2012

The 2011 proton-proton run of the LHC produced collisions at the centre-of-mass energy of 7 TeV. In

the course of seven months of data taking CMS acquired a total of 5.3 inverse femtobarns of integrated

luminosity; 5.0 of these were collected with all the CMS subdetectors fully operational.

During the 2011 run the instantaneous luminosity reached up to 3.5 × 1033cm−2s−1. At a bunch

crossing rate of 50 ns, the average number of pp interactions per bunch crossing was approximately 10.

In such conditions, the rare hard collision which produces the physics objects (electrons, muons, taus,

photons, energetic jets, missing transverse energy) recognized by the trigger system and fulfilling the

criteria for data acquisition is usually accompanied by several additional pp interactions overlapping

with it in the same bunch crossing. These additional collisions, which are typically of low energy but

may still produce significant contributions to global event characteristics such as total visible energy

or charged particle multiplicity, are denoted as pile-up events. The analysis of the hard collision

properly includes the effect of pile-up, which is also modeled in all the necessary Monte Carlo (MC)

simulated samples.

In 2012 the Large Hadron Collider has been operating at the increased energy of 4 TeV per beam.

In total, CMS has acquired a total of 21.8 inverse femtobarns of proton-proton collisions at a centre-
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of-mass energy of 8 TeV. The LHC in 2012 also ran at higher instantaneous luminosities than in

2011; this produced a still higher pileup of 20 to 50 simultaneous interactions per bunch crossing.

CMS responded to the resulting reconstruction challenge with more sophisticated algorithms and

calibration procedures, which have allowed to maintain the same physics output despite the harsher

experimental conditions. Most of the results discussed in the following sections are based on the full

data samples collected in 2011 and 2012.

3 Higgs Boson Physics

Following the July 2012 discovery of a scalar particle at 125 GeV [2], the CMS experiment has used

the whole datasets collected in 2011 and 2012 to verify in detail that the observed characteristics of

that particle are in effect in agreement with what the standard model predicts for the Brout-Englert-

Higgs boson [3–8] (in the following we will refer to it as simply “Higgs boson” for brevity). This

broad range of investigations has included the measurement of production rate in all the observed

decay channels, the determination of its coupling strength to fermions and bosons, a precise measure-

ment of the Higgs boson mass from the 4-lepton and γγ final states, and the study of the spin-parity

assignments of the new particle.

After a short review of the predicted phenomenology of Higgs production and decay, we summa-

rize below the status of the CMS measurements of Higgs boson mass, cross section, and properties.

As appropriate, we refer the reader to the bibliography for articles and preprints describing those

measurements in detail.

3.1 Production and Decay

The standard model Higgs boson has a non-zero coupling to all massive particles, and can therefore

be produced by several different mechanisms in proton-proton collisions. The reactions studied so

far at the LHC include gluon-fusion diagrams, where a Higgs boson is emitted most frequently by a

virtual top-quark loop; vector-boson-fusion processes, where the Higgs is produced together with two

characteristic high-rapidity hadronic jets resulting from the emission of two virtual W or Z bosons off

the initial state quarks; and Higgs-strahlung diagrams where the particle is radiated by a highly-off-

shell W or Z boson or a top quark.

At a mass around mH = 125 GeV, the Higgs boson exhibits also a very rich decay phenomenology.

The decays to weak boson pairs (H → WW∗, H → ZZ∗) are possible when one of the two final-state

objects is off-mass-shell, but their branching ratios are comparatively small, allowing other decays to

be observable. CMS has so far obtained significant signals from five different decay modes of the

Higgs boson: the two mentioned above, as well as decays to b-quark pairs, τ-lepton pairs, and photon

pairs. The latter, although quite rare (with a predicted branching fraction of 2.3 × 10−3), has in fact

been crucial for the first observation of the Higgs boson. Other still rarer decay modes (e.g. H → Zγ,

H → μμ) will also become accessible to a direct measurement in the future.

3.2 Determinations of Higgs boson cross section, mass, and properties

CMS has obtained independent measurements of the cross section of Higgs boson production in all

the decay modes currently at reach. The following experimentally significant production modes of

Higgs particles have been exploited: gluon-gluon fusion, vector-boson fusion, and Higgs-strahlung

off vector bosons. Five decay modes have been considered: photon pairs [9], Z boson pairs [10], W

boson pairs [11], bottom quark pairs [12], and τ-lepton pairs [13].
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The results of these searches are combined by taking into account all statistical and systematic

uncertainties and their correlations [14, 15]. The combination is performed by constructing a global

likelihood function, with each systematic source assigned to a nuisance parameter; each of these has

a corresponding probability density function. Most of the systematic uncertainties are constrained by

subsidiary measurements.

Figure 2. Left: Measured Higgs production cross sections for the studied decay modes, in units of the stan-

dard model prediction (a mass mH = 125.7 GeV is assumed). The shaded band shows the fitted average of

experimental measurements. Right: individual results of fits to the production rate of the Higgs boson in vector-

boson-fusion and in production in association with W and Z bosons (vertical axis) and production in gluon-gluon

fusion and top pair higgs-strahlung processes (horizontal axis). The five ellipses encompass 68% CL regions and

are all in agreement with the predicted production rates (yellow marker at (1,1)).

The different analyses provide rate measurements of Higgs decays in the various considered final

states. The individual measurements are shown in the left panel of Fig. 2, where the cross section

is measured in units of the standard model expectation. The combined measurement of CMS [16]

is μ = 0.80 ± 0.14. A nice recent result is the one obtained in the H → ττ final state, where tau

leptons are identified both from their decay into electrons or muons, and from hadronic decays. The

combination of the measurements yields μ = 1.1 ± 0.4 for the ratio of measured cross section divided

by standard model prediction [13].

The separation of signals into ones with and without additional “tagging” objects (such as jets,

missing transverse energy, and identified leptons) allowed to study in more detail how the production

mechanisms agree with model predictions [16]. As shown in the right panel of Fig. 2, the overall

compatibility of the production processes is quite good. A more detailed study allows to extract from

the signal yields the best-fit value of the coupling-strength modifiers kV and k f , defined as multipliers

of the standard model couplings of the Higgs boson to vector bosons and fermions, respectively.

In this case the custodial symmetry is implicitly assumed, and the coupling to different fermions is

assumed to be in the proportions predicted by the standard model. Figure 3 (right) shows that CMS

data is in very good agreement with the hypothesis that those couplings be equal to their standard

model values.

The mass of the Higgs boson has been precisely measured by using the H → ZZ → 4l decay

mode [10]. The mass is determined as MH = 125.6 ± 0.4 ± 0.2 GeV, where the first uncertainty is

statistical and the second one is the combined effect of systematic uncertainties.
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Figure 3. Results of a fit to the fermionic and bosonic couplings of the Higgs boson from the yields of signal in

the five observed decay modes. The grey ellipse shows the combination of the measurements, at 68% CL. The

three markers indicate the predicted values of the coupling modifiers for the standard model, for a model with

zero Higgs couplings to fermions, and for the no-Higgs hypothesis.

Finally, the angular distribution of the decay products allows to test for the spin-parity assignments

of the new particle. Using a matrix-element discriminator in the four-lepton final state of H → ZZ

decay candidates, the pseudo-scalar hypothesis and all tested spin-one hypotheses have been rejected

with a confidence level of 99% or higher [10].

4 Precision Measurements of Electroweak Observables

At centre-of-mass energies of proton-proton collisions of 7 TeV and above, electroweak interactions

parameters can be determined with unprecedented accuracy by the analysis of CMS data, challenging

theoretical predictions. In what follows we summarize only a few of the many new measurements

produced by CMS with vector bosons and top quarks.

4.1 Vector Boson Production Cross Sections

The production cross section of W and Z bosons at a centre-of-mass energy of 7 and 8 TeV has

been studied both inclusively [17, 18] and as a function of the number of hadronic jets accompa-

nying the bosons [19]. Additional measurements have determined the cross section of Wγ and Zγ
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production [20], as well as the production rate of WW, WZ, and ZZ pairs [21–25], exclusive WW

production [26], and the production of Z bosons with forward jets [27, 28]. In all these measure-

ments, W boson candidates have been selected by searching for their decay to eνe and μνμ final states,

and Z bosons by searching for their ee and μμ final states. In the case of ZZ production the second

boson has also been identified in its decay to τ-lepton pairs.

Figure 4. The total production cross section of final states including W and Z bosons, top quarks, and Higgs

bosons, in picobarns (red markers) are compared to theoretical predictions at 7 TeV (blue lines) and 8 TeV (green

lines). For single boson production are also reported the cross sections of processes including at least one to at

least four hadronic jets with transverse energy ET > 30 GeV and pseudorapidity |η| < 2.4.

The general picture that can be drawn is one of excellent agreement with theoretical calcula-

tions, which are available at next-to-leading order (NLO) [30–32] and next-to-next-to-leading order

(NNLO) [33–37] in perturbative QCD. Figure 4 provides a nice summary of the CMS measurements

of these processes, along with ones involving top quark or Higgs boson production.

4.2 Top Quark Measurements

The large samples of top quark events produced in the 2011-2012 run of the LHC have allowed the

CMS experiment to measure with great accuracy the top pair production cross section in 7- and 8-

TeV proton-proton collision using several different final states. The most precise CMS determinations

come from the analysis of the clean dilepton final state of top pair decay [38, 39]. These have reached

an equal or smaller total uncertainty than existing theoretical estimates at NLO [40] and NNLO [41,
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42]. For example, with data corresponding to 5.3 inverse femtobarns the 8-TeV production cross

section is measured atσ8 TeV
tt̄

= 239±2±11±6pb, where the first two quoted uncertainties are statistical

and systematic, while the latter comes from the uncertainty in the total integrated luminosity.

The top quark mass remains a parameter of great interest even after the precise measurements

produced by the Tevatron experiments. CMS has produced several measurements using the dilepton,

the single lepton, and the all-hadronic topologies, and has also exploited kinematical characteristics

that alleviate the impact of the jet energy scale systematic uncertainty on the measurement, such as

the use of the measured decay length of B hadrons emitted in top decay. Figure 5 (left) compares

the various recent determinations by CMS. By combining all the results listed there, the top quark

mass is measured at mt = 173.49 ± 0.36 ± 0.91 GeV [43], where the first uncertainty quoted is the

combination of statistical with jet-energy-scale-related systematic uncertainty, and the second is the

quadrature sum of all other systematic uncertainties. The total error of this determination is thus of

0.98 GeV, a remarkable achievement !

Figure 5. Left: top quark mass determinations by the CMS experiment. From top to bottom are shown the early

measurements in the dilepton and lepton+jets final states employing 2010 data, the analysis results of 2011 data

in the three topologies and the result employing the end-point technique, and the 2012 result using the B hadron

decay length. Right: output of a boosted-decision tree discriminant for the search of associated tW production.

The signal contribution is in orange.

A recent new observation in top quark physics worth mentioning here is the one of the associated

production of a single top quark and a W boson. That process is difficult to put in evidence due to the

similarity of the final state with the regular production and decay of a top-antitop quark pair. A mul-

tivariate analysis based on kinematic properties is used to separate the signal from that background in

a sample of 12.2 f b−1 of 8-TeV collisions selected to contain two charged leptons, missing transverse

energy, and one b-tagged jet. An excess of data is observed at high values of the discriminant, with

a significance of 6.0 standard deviations with respect to the background-only hypothesis. The pro-

duction cross section of the tW signal is measured [44] at σtW = 23.4+5.5
−5.4

pb, in agreement with the

standard model expectation of 22.2± 1.5 pb [45]. Figure 5 (right) shows the excess in one of the data

categories.
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4.3 Search for B0 → μμ and B0
s → μμ decays

Thanks to its excellent and redundant system of muon detectors, the CMS experiment is capable of

competing favourably with dedicated machines in several B physics measurements. This has been

shown clearly in the case of the measurement of rare B → μμ decays, which have been a hot topic

in the last few years. The decays of the B0 and the B0
s meson to muon pairs are heavily suppressed

in the standard model due to the absence of flavor-changing neutral-current diagrams at tree level.

Two additional factors further reduce their rate: the ratio m2/m2
B

between the squared masses of

muons and B mesons implied by the helicity configuration of zero-total-momentum energetic fermion-

antifermion final states, and the ratio f 2
B
/m2

B
(where fB is the B decay constant) due to the inner

annihilation of quarks in the decaying meson. The smallness of the total predicted branching fractions,

B(B0
s → μμ) = (3.6±0.3)×10−9 and B(B0 → μμ) = (1.1±0.1)×10−10 [46], constitute an opportunity

to search for indirect evidence of new physics, which could intervene in the form of the exchange of

new virtual particles, with significant increases in the rate of these decays for specific values of the

new physics parameters.

CMS has searched for the rare decays in the full Run 1 statistics of 5 f b−1 of 7-TeV collisions

and 20 f b−1 of 8-TeV collisions [47]. The method is a combined fit of the two B species and all

backgrounds to the dimuon mass distributions of selected events, separately for 7- and 8-TeV data.

Because of the dependence of mass resolution and background levels on the pseudorapidity of detected

muons, the data is divided in “barrel” candidates, which have both muons with |η| < 1.4, and “endcap”

candidates, which include all remaining events. Further, the candidates are divided in different bins

depending on the output of a multi-variate discriminant based on the event kinematics and muon

quality. MC simulations are used to estimate backgrounds from other B decays, while combinatorial

backgrounds are evaluated from the data in suitable mass sidebands. A normalization sample of

B+ → J/ψK+ decays, with the subsequent J/ψ → μμ decay, is collected by a similar trigger to the

one used for the rare decay search, and is used to remove the uncertainties of B hadron production

cross section and integrated luminosity of the data sample.

The combined likelihood fit evidences an excess of B0
s → μμ decays corresponding to a branching

fraction B = (3.0+1.0
−0.9

) × 10−9. The excess has a significance of 4.3 standard deviations, when 4.8σ

were expected a priori from the analysis design and the size of the data sample. No significant B0

signal is instead observed; the signal extracted by the fit corresponds to a significance of 2.0σ (see

Fig. 6). An upper limit of B(B0 → μμ) < 1.1× 10−9 at 95% confidence level is extracted with the CLs

criterion [48, 49] using the event counts in signal and sideband regions resulting from a simplified

event selection.

A recent combination of the above results with the similar ones obtained by the LHCb collabo-

ration has been published in [50]. The combined fit yields a branching fraction of the B0
s meson to

dimuon pairs of (2.9 ± 0.7) × 10−9.

5 Conclusions

The CMS experiment has exploited the proton-proton collision data collected during the 2011 and

2012 runs of the Large Hadron Collider to produce a large number of groundbreaking results in

precision measurements of standard model observables and searches for new physics. Among the

most exciting of these results is certainly the observation of a new scalar boson [2]; the particle

exhibits production modes and decays with rates in excellent agreement with what is expected for a

standard model Higgs, is compatible with the JP = 0+ spin-parity assignment but incompatible with

the pseudo-scalar hypothesis, and has a mass measured at Mh = 125.6 ± 0.4(stat.) ± 0.2(syst.) GeV.
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Figure 6. Results for the B0
s and B0 branching fractions from the combined likelihood fit of the mass distributions

of muon pairs in CMS Run 1 data. The insets show the profiled likelihood distribution for the branching fraction

of the two B hadron species. The red marker shows the standard model prediction [46].
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