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Abstract: This study deals with the problem of adaptive radar detection when a limited number of training data, due to
environmental heterogeneity, is present. Suppose that some a priori spectral models for the interference in the cell under test
and a lower bound on the power spectral density (PSD) of the white disturbance term are available. Hence, generalised
likelihood ratio test-based detection algorithms have been devised. At the design stage, the basic idea is to model the actual
interference inverse covariance as a combination of the available a priori models and to account for the available lower bound
on the PSD. At the analysis stage, the capabilities of the new techniques have been shown to detect targets when few training
data are available as well as their superiority with respect to conventional adaptive techniques based on the sample covariance
matrix.
1 Introduction

Conventional adaptive radar receivers [1–3] require an
estimate of the interference covariance matrix, performed
through the training (secondary) data sample covariance.
The training set is often composed of data vectors from
range gates spatially close to the one under test and sharing
the same spectral properties. This represents an important
limitation since in real environments the number of data
where the interference is homogeneous (often referred to as
sample support) is very limited. Poor training data selection,
in adaptive detectors, can lead to a remarkable degradation
of radar performance especially in regions which include
varying ground surfaces [4, 5]. A possible strategy to
circumvent the lack of a sufficient number of homogeneous
secondary data (required to achieve a satisfactory
performance) is to exploit some a priori information about
the scene illuminated by the radar, namely to perform a
cognitive knowledge-based processing [6, 7, and references
therein]. Alternatively, some structural information on the
disturbance covariance matrix [8, 9] can be used for the
estimation process.
In this paper, we devise adaptive detectors that jointly

exploit some a priori knowledge available about the
operating environment and training data (even if in a
limited number) in order to confer robust adaptivity to the
detectors. Otherwise stated, the idea is to exploit multiple
spectral a priori models for the covariance matrix of the
disturbance and suitably combine them (also accounting for
the available information on a lower bound on the power
spectral density (PSD) of the white disturbance term
[10, 11]) in order to obtain an accurate estimate of the
actual disturbance covariance. The training data rule the
coefficients of the model combination. According to this
guideline, exploiting the maximum likelihood (ML)
principle, we propose some constrained estimates of the
unknown parameters (target response and covariance
matrix) compliant with the conditions that:

† the inverse covariance matrix of the interference plus noise
is a combination of the a priori spectral models available for
the operating environment;
† the estimated PSD of the white disturbance term is greater
than or equal to the a priori known lower bound.

Hence, we exploit these estimates to devise three
generalised likelihood ratio test (GLRT)-based detectors for
the hypothesis testing problem under consideration. Two
adaptive detectors are obtained resorting to the one-step
GLRT design procedure, whereas the third relies on the
two-step GLRT approach. Specifically, the former one-step
GLRT is devised exploiting an iterative procedure to
evaluate the constrained ML estimates of the unknown
parameters and involves the solution of MAXDET convex
optimisation problems [12, 13], which can be efficiently
handled using interior point methods with a worst-case
polynomial computational complexity. The latter one-step
GLRT exploits heuristic estimates of the unknown
parameters, and is characterised by a quite low
computational complexity. Finally, the two-step GLRT is
synthesised substituting the constrained ML estimate of the
covariance matrix obtained from secondary data, into the
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GLRT derived from the primary data assuming that the
covariance matrix is known. This procedure leads to an
adaptive matched filter (AMF)-like receiver where the
conventional secondary data sample covariance matrix is
replaced by the new constrained ML covariance estimate.
At the analysis stage, we assess the capabilities of the new

covariance matrix estimators to track the actual clutter PSD
(even with a very small number of secondary data) and
show the superiority, in terms of detection probability, of
the devised decision rules with respect to some
conventional approaches based on the sample covariance
matrix. Precisely, the analysis is conducted in comparison
with the optimum detector, which assumes perfect
knowledge of the interference covariance matrix, Kelly’s
GLRT [2] and AMF [3]. The detection probability results
highlight that the proposed algorithms exhibit an acceptable
performance loss with respect to the benchmark and can
achieve interesting performance gains over Kelly’s GLRT
and AMF.
The paper is organised as follows: In Section 2, we

formulate the problem and introduce the target and
disturbance (interference plus noise) models. In Section 3,
we devise the constrained estimates of the unknown
parameters and design three adaptive detectors. In Section
4, we assess the performances of the proposed detectors and
analyse the capability of the proposed covariance estimator
to predict the actual interference environment. Finally, in
Section 5, we draw conclusions and outline some possible
future research tracks.
1.1 Notation

We adopt the notation of using boldface for vectors a (lower
case), and matrices A (upper case). The conjugate transpose
operator is denoted by the symbol (·)†. tr(·) and det(·) are,
respectively, the trace and the determinant of the square
matrix argument. I and 0 denote, respectively, the identity
matrix and the matrix with zero entries (their size is
determined from the context). CN and HN are, respectively,
the sets of N-dimensional vectors of complex numbers and
of N ×N Hermitian matrices. The Euclidean norm of the
vector x is denoted by ||x||. λmax(X) and λmin(X) indicate the
maximum and the minimum eigenvalue of X [ HN ,
respectively. The curled inequality symbol X (and its strict
form ≻) is used to denote generalised matrix inequality: For
any A [ HN , A X 0 means that A is a positive
semi-definite matrix (A ≻ 0 for positive definiteness). The
letter j represents the imaginary unit (i.e. j =√−1). For any
complex number x, we use ℜ(x) and ℑ(x) to denote,
respectively, the real and the imaginary part of x. Finally,
E[ · ] denotes statistical expectation.
2 Problem formulation and detectors design

We consider a monostatic radar that transmits a coherent train
of N pulses and denote by r [ C

N the N-dimensional vector
of the samples obtained after base-band conversion, filtering
and sampling at the range of interest the incoming
waveform (primary data). We suppose the availability of
secondary data ri [ C

N , i = 1, …, K, (K≥ 0), which do not
contain useful target signal and exhibit the same covariance
matrix as the primary data. Notice that, from a practical
point of view, a data selection scheme [14, 15] can be
employed for screening the available training data so as to
excise possible outliers. Precisely, we focus on the
696
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following binary hypothesis testing problem

H0:
r = n
ri = ni, i = 1, . . . , K

{

H1:
r = n+ ap
ri = ni, i = 1, . . . , K

{
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1)

where p [ C
N denotes the unitary norm steering vector of the

target and a [ C is an unknown parameter accounting for
both target reflectivity and channel propagation effects. As
to the interference plus noise random vectors, we model n
and nis, i = 1, …, K, as independent, complex, zero-mean,
circular symmetric Gaussian vectors sharing the same
covariance matrix M ≻ 0, namely

E[nn†] = E nin
†
i

[ ]
= M , i = 1, . . . , K

Subsequent developments require specifying the complex
multivariate probability density function (pdf) of the
observable matrix R = [r, r1, …, rK] under both the
hypotheses. Denoting by X =M−1, the inverse disturbance
covariance matrix, previous assumptions imply that

fR(R|X , H0) =
det X( )(K+1)

pN (K+1)
exp −tr XRR†{ }( )

(2)

and

fR(R|X , a, H1) =
det X( )(K+1)

pN (K+1)
exp −tr X Ra + KS

( ){ }( )
(3)

with S = (1/K)
∑K

i=1 rir
†
i , the sample covariance matrix of

the secondary data, and Rα = (r−αp)(r−αp)†.
According to the Neyman–Pearson criterion, the optimum

solution to the hypothesis testing problem (1) is the likelihood
ratio test (LRT). However, for the case under consideration,
this procedure does not lead to a uniformly most powerful
test as the resulting detector requires the knowledge of the
parameters α and X, which reasonably are assumed to be
unknown. A possible way to cope with the aforementioned
a priori uncertainty is to resort to adaptive detectors, where
the unknown parameters appearing in nominal decision
statistics are replaced by suitable estimates.
Conventional adaptive algorithms, such as Kelly’s GLRT

and AMF, assume at the design stage a homogeneous
training set whose cardinality K is greater than or equal to
N and exploit the sample covariance matrix computed from
the secondary data. Additionally, to achieve a good
detection performance, K has to be greater than or equal to
2N. Unfortunately, in practical radar scenarios, such
assumption is not always valid [16]. More specifically, the
size of the training set is often limited, namely, the large
swaths of homogeneous clutter/interference necessary for
accurately estimating M through the sample covariance
matrix may not be available. Finally, the analysis of several
adaptive algorithms, mostly designed assuming
homogeneity of the secondary data, has shown that
non-homogeneities magnify the loss between the adaptive
implementation and optimum conditions [4, 5].
The idea followed in this paper is to exploit some a priori

information about the interfering environment so as to
suitably describe, and hence constrain, the interference plus
noise covariance matrix. By doing so, the sample support
IET Radar Sonar Navig., 2014, Vol. 8, Iss. 7, pp. 695–707
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requirement is reduced while keeping good detection
performance. Precisely, it is assumed:

† the availability of multiple a priori models for the
interference PSD. Each of them corresponds to a model for
the inverse interference covariance matrix X; these inverse
covariance models, Xi, i = 0, …, H, are assumed
positive-definite, that is, X i ≻ 0, i = 0, . . . , H ;
† the availability of a lower bound σ2 on the PSD level of the
white disturbance term s2

0, that is, s
2
0 ≥ s2.

Otherwise stated, it is supposed that X belongs to the
uncertainty set

A = X ′ ≻ 0 : X ′ =
∑H
i=0

tiX i,

{

X ′ W
I

s2
, ti [ R, i = 0, . . . , H

} (4)

The following section proposes some constrained estimates of
the unknown parameters α and X based on the ML principle.
These estimates are exploited to devise some adaptive
detectors for the hypothesis testing problem (1).
3 Estimates of the unknown parameters and
adaptive detectors

A possible strategy to estimate the unknown parameters α and
X accounting for the covariance structure (4), is to resort to
the constrained ML approach. Specifically, the constrained
ML estimates of the unknown parameters under the
hypotheses H0 and H1 are optimal solutions, respectively, to
the optimisation problems PH0

and PH1
, defined in (5)

where QH0
= {0} and QH1

= C. To obtain the sought
estimates, let us define the following MAXDET convex
optimisation problem [12], parameterised in the positive
semi-definite matrix S1 X 0

P S1

( ) min
X

tr S1X
( ) − log det(X )

subject to X [ A

{
(6)

Recalling that by ‘solvable’, we mean that the problem is
feasible and bounded below, and the optimal value is
attained, see [17, p. 13] the following proposition
summarises the key properties of problem P S1

( )
.

Proposition 1: For any S1 X 0, problem P S1

( )
is solvable

and admits a unique optimal solution. Additionally, its
optimal solution can be efficiently computed in polynomial
time using interior point methods.

Proof: See Appendix 1.
PHk

min
a,X

tr X
1

K + 1
Ra +

([{

subject to
X [ A
a [ QHk

⎧⎪⎪⎨
⎪⎪⎩
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Estimation algorithms under H0: Resorting to Proposition 1,

the ML estimate X̂
ML
H0

of X under H0 can be obtained solving

P S1

( )
with S1 =

1

(K + 1) (KS + rr†). Hence, the ML

estimate can be computed in polynomial time.
Notice that, from a practical point of view, it is also of

interest to introduce a simplified (even if sub-optimum)
approach to minimising the objective function in PH0

.

Towards this goal, we devise a heuristic estimate X̂H0
of X

under H0; the main guideline is to reduce as much as
possible the computational complexity of the optimisation
procedure while keeping good estimation performances. To
this end, we first estimate the inverse covariance matrix
assuming that only the model Xi is active, i = 0, …, H, then
we compute the arithmetic mean of the resulting estimates.
Precisely, for a specific model Xi, i = 0, …, H, exploiting
the concavity of the log-likelihood function, the ML
estimate of X, is given by

X̂ i = min
1

s2lmax(X i)
,

N

tr S1X i

( )
( )

X i, i = 0, . . . , H

where (N/tr(S1Xi)) is obtained nulling the derivative of the
log-likelihood function with respect to ti, that is, solving the
equation

d

dti
−tr S1tiX i

( ) + log det tiX i

( )[ ] = −tr S1X i

( ) + N

ti
= 0

(7)

with S1 =
1

(K + 1) (KS + rr†).
Algorithm 1, reported in Fig. 1, summarises the steps for

the computation of the unknown covariance matrix,
compliant with the model (4).
Estimation algorithms under H1: Let us now focus on PH1

.
To minimise the objective function and obtain suitable

estimates âML and X̂
ML
H1

of a and X , we propose an
alternating optimisation procedure. The idea is to iteratively
maximise the likelihood. Specifically, starting from a target
response estimate â (n−1), we compute the ML inverse
covariance estimate X̂ (n)

H1
, at step n compliant with model
KS
)]} − log det(X )

k = 0, 1 (5)
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(4). Whenever X̂
(n)
H1

is found, we search for the ML target

response â (n), and so on. Notice that, â (n) can be computed
in closed form nulling the derivative of the log-likelihood
function with respect to a, that is

â (n) = p†X̂
(n)
H1
r

p†X̂
(n)
H1
p

As to X̂
(n)
H1
, it is given by the optimal solution to problem

P S1

( )
, with S1 =

1

K + 1

[ ]
KS + Râ (n−1)

( )
.

Algorithm 2, represented in Fig. 2, describes the steps of
the proposed sequential optimisation procedure.
The proposed optimisation technique shares some

interesting properties summarised in the following
proposition:

Proposition 2: Let â (n), X̂
(n)
H1

( ){ }
be a sequence of points

obtained through the proposed sequential optimisation
procedure; let ML(n) be the likelihood value corresponding

to the point â (n), X̂
(n)
H1

( ){ }
at the nth iteration. Then,
Fig. 3 Algorithm 3
† the sequence ML(n) is a monotonic increasing sequence;
† the sequence ML(n) converges to a finite value ML⋆.

Proof: See Appendix 2.

Let us now introduce two heuristic procedures, characterised
by a low computational complexity, for estimating α and X
under H1. Both the techniques operate as follows:

1. estimate the inverse covariance matrix, X̂ say;
2. compute the ML estimate of a resulting from the

computed estimate X̂ , that is, â = p†X̂r/p†X̂p
( )

.

However, they differ for the adopted inverse covariance
matrix estimate. The first procedure extends Algorithm 1, to
account for the presence of the useful signal in the primary
data. Specifically, it first estimates the inverse covariance
matrix assuming that only model Xi is active, i = 0, …, H,
698
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then it computes the arithmetic mean of the quoted
estimates. According to this guideline, when it is assumed
that only the model ith is active, the ML estimate of X can
be obtained in closed form as

X̂ i = min
1

s2lmax(X i)
,

N

tr 1
K+1

( )
(Râ i

+ KS)X i

( )
⎛
⎝

⎞
⎠X i,

i = 0, . . . , H (8)

with âi = p†X̂ ir/p
†X̂ ip

( )
, i = 0, …, H.

The second proposed sub-optimum estimation procedure
(this technique assumes K≥ 1) performs the constrained
ML estimation of X only exploiting secondary data, which
are assumed free of the useful target signal. Hence, the
computed estimate is the optimal solution to the
optimisation problem P S1

( )
with S1 = S.

Algorithms 3 and 4, reported in Figs. 3 and 4, respectively,
summarise the steps for the computation of the target
IET Radar Sonar Navig., 2014, Vol. 8, Iss. 7, pp. 695–707
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response and unknown covariance matrix. In the following
subsections, we devise some adaptive receivers exploiting
the proposed estimates.

3.1 Adaptive detectors

In this subsection, we design some GLRT-based detectors
exploiting the devised estimates of the unknown parameters
α and X. Precisely, we exploit both one-step and two-step
GLRT-based design procedures to solve the hypothesis
testing problem (1).

One-step GRLT-based detectors: Strictly speaking, the
one-step GLRT criterion is tantamount to replacing the
unknown parameters with their ML estimates under each
hypothesis, namely it is the following decision rule

maxa[C,X[A det(X )K+1 exp −tr X Ra + KS
[ ]{ }( )

maxX[A det(X )K+1 exp −tr X rr† + KS
[ ]{ }( ) _

H1

H0

h (9)

where η is the detection threshold. The proposed one-step
GLRT-based detectors approximate (9) replacing the ML
estimates involved in the numerator and denominator of (9)
with the estimates developed in Section 3. Precisely, the
synthesised decision rules are, respectively, given by

l1 =
det X̂

ML
H1

( )K+1
exp −tr X̂

ML
H1

RâML + KS
[ ]{ }( )

det X̂
ML
H0

( )K+1
exp −tr X̂

ML
H0

rr† + KS
( ){ }( ) _

H1

H0

h1

(10)

where h1 is the detection threshold, âML and X̂
ML
H1

are

obtained through Algorithm 2, and X̂
ML
H0

is the optimal

solution to P S1

( )
with S1 =

1

(K + 1) (KS + rr†). This

receiver will be referred to as GLRT-1 in the following:

l2 =
det X̂H1,1

( )K+1
exp −tr X̂H1,1

Râ1
+ KS

( ){ }( )
det X̂H0

( )K+1
exp −tr X̂H0

rr† + KS
( ){ }( ) _

H1

H0

h2

(11)

where h2 is the detection threshold, â1 and X̂H1,1
are obtained

through Algorithm 3, and X̂H0
is the output to Algorithm 1.

This receiver will be referred to as GLRT-2 in the following.
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Two-step GRLT-based detector: The two-step GLRT
criterion is tantamount to substituting a suitable estimate X̂
for the unknown inverse covariance matrix into the GLRT
derived assuming that X is known. According to this
guideline, given X, the GLRT is

maxa[C det(X )K+1 exp −tr X Ra + KS
[ ]{ }( )

det(X )K+1 exp −tr X rr† + KS
[ ]{ }( ) _

H1

H0

h (12)

where η is the detection threshold. Hence, the proposed two-step
GLRT detector substitutes the constrained ML estimate of the
disturbance covariance matrix based on the secondary data in
place of X in (12), namely, it can be computed as

l3 =
p†X̂H1,2

r
∣∣∣ ∣∣∣2
p†X̂H1,2

p

= log
det(XH1,2

)K+1 exp −tr X̂H1,2
Râ2

+ KS
( ){ }( )

det(XH1,2
)K+1 exp −tr X̂H1,2

rr† + KS
( ){ }( )

⎛
⎝

⎞
⎠_

H1

H0

h3

(13)

where h3 is the detection threshold, while â2 and X̂H1,2
are

obtained through Algorithm 4. This receiver will be referred
to as GLRT-3 in the following. Interestingly, it can be
interpreted as the AMF receiver [3] where the conventional
sample covariance matrix S, computed from the secondary

data is replaced with the constrained ML estimate X̂
−1
H1,2

,
accounting for the structural model (4).
An important remark concerning computational

complexity is now in order.

† GLRT-1 exploits an iterative procedure (alternating
optimisations) to maximise the numerator of (9). This
implies the solution of as many MAXDET problems as the
number of required iterations to satisfy condition 7 in
Algorithm 1.
† GLRT-3 does not require iterative optimisations but
exploits one-shot sub-optimum estimates of the unknown
parameters. A single MAXDET problem has to be solved.
Otherwise stated, GLRT-3 requires a computational effort
smaller than GLRT-1.
† GLRT-2 does not require iterative optimisations but
exploits one-shot sub-optimum estimates of the unknown
parameters. Additionally, no MAXDET problem has to be
solved. Otherwise stated, GLRT-2 requires a computational
effort much smaller than both GLRT-1 and GLRT-3.
699
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Fig. 5 Block schemes of the devised GLRT-based detectors

a GLRT-1 detector
b GLRT-2 detector
c GLRT-3 detector
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In Fig. 5, the block diagrams of the three new GLRT-based
detectors are shown.
4 Performance assessment

In this section, we assess the capability of the proposed
covariance matrix estimators to correctly predict the
disturbance PSD; besides, we analyse the performance of
the devised GLRT-based detectors, in terms of detection
probability Pd, also in comparison with the optimum
detector, which assumes the perfect knowledge of the
disturbance covariance matrix, Kelly’s GLRT and AMF.
The available multiple a priori models for the interference

covariance matrix are assumed Gaussian-shaped [18];
precisely, the (h, k)th entry associated with the ith model,
700
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i = 1, …, H, is given by

M i(h, k) = r(h−k)2

i exp j2p(h− k)fi
[ ] + 10−2dh,k

where δh,k denotes the Kronecker delta function, ρi is the
one-lag correlation coefficient and fi represents the
normalised Doppler frequency. Moreover, M0 has been set
equal to I to account for the receiver noise floor. With this
in mind, the inverse interference covariance matrix models
are defined as follows:

† X0 = M−1
0 ;

† X i = M−1
i , i = 1, . . . , H ;

As to the actual covariance matrix, we consider an
interference sharing a bimodal PSD accounting for the
IET Radar Sonar Navig., 2014, Vol. 8, Iss. 7, pp. 695–707
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presence of ground and sea clutters in addition to white noise.
Assuming an exponentially-shaped PSD for both the
interfering sources, the (h, k)th element of the overall
normalised disturbance covariance matrix can be expressed as

M(h, k) = CNRs r
|h−k|
s exp j2p(h− k)fs

[ ]
+ CNRg r|h−k|

g exp j2p(h− k)fg

[ ]
+ dh,k

(14)

where

† CNRs and CNRg denote, respectively, the
clutter-to-noise-ratio (CNR) for the sea and the ground
clutter;
† ρs and ρg are, respectively, the one-lag correlation
coefficients for the sea and the ground clutter;
† fs and fg, are, respectively, the normalised Doppler
frequency for the sea and the ground clutter.

Moreover, we model the target signature p via the
conventional Doppler steering vector, that is

p = 1   
N

√ 1, e j2pfd , . . . , e j2pfd(N−1)[ ]T
(15)

where fd is the normalised target Doppler frequency.
It is worth noting that the model used to generate the

simulated data does not correspond to any Xi, i = 0, …, H.
In all the simulations, we use the values of the parameters
reported in Table 1; additionally, the Doppler frequencies of
the a priori models, Xi, i = 1, …, H, are uniformly
distributed over the frequency range [−(1/2), (1/2)[, that is

fi = −0.5+ i− 1

H

( )
, i = 1, . . . , H (16)

Finally, to solve the MAXDET problems, we resort to the
CVX toolbox [19], a MATLAB package for specifying and
solving convex programs.

4.1 PSD analysis

In Figs. 6–8, we plot the actual PSD of the clutter data and its
estimates, obtained using the proposed constrained
covariance matrix estimators (Algorithms 2–4), for different
values of the training data size K and of the a priori model
number H + 1. All the PSDs are computed resorting to the
Capon method [20] applied to the appropriate interference
covariance matrix, namely the true for the evaluation of the
Table 1 Parameters used at analysis stage

Parameter Value

ζ 10−2

N 10
fd 0.20
fg 0.05
fs 0.285
ρi 0.90
ρg 0.93
ρs 0.85
σ2 [dB] −10
CNRg [dB] 30
CNRs [dB] 20
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actual PSD and the new estimated covariances for the
predicted PSDs.
In each figure and for each algorithm, we show 20

statistically independent PSD realisations as well as their
average value. The 20 PSD estimates are drawn from 20
statistically independent snapshots, each composed of K + 1
independent and identically distributed (i.i.d.) zero mean
complex circular Gaussian random vectors sharing the
covariance matrix (14). In Fig. 8, for comparison purpose,
we also plot the PSD estimated through the sample
covariance matrix.
The results show that Algorithms 2 and 4 outperform

Algorithm 3. Interestingly, the estimators devised for H = 20
ensure better performances than those designed for H = 5,
highlighting that the models used for H = 5 are not able to
track the actual interference environment. As a confirmation
of such a behaviour, it can be observed that the estimators
synthesised for H = 5 do not improve their estimation
performance as K increases. On the contrary, the estimators,
devised for H = 20 and based on Algorithms 2 and 4,
exhibit better and better performances as the sample support
increases; indeed, as K grows up, their capability to
correctly match the real clutter PSD shape improves. As a
consequence, it can be conjectured that the uncertainty set
connected with H = 20 well fit the actual operating
environment, leading to better and better estimation of the
unknown parameters as K increases.
The performed analysis also reveals that, even if a quite

reduced sample support (K = 1) is available, Algorithm 2
for H = 20 is able to suitably track the actual PSD (see
Fig. 6). Besides, inspection of Fig. 8 highlights that
Algorithms 2 and 4, for H = 20, ensure a better estimation
performance than the sample covariance matrix. As a final
remark, the sample covariance matrix tracks the actual PSD
better than Algorithm 3, emphasising the sub-optimality of
the last estimator.
4.2 Detection probability

To evaluate Pd, we set the detection threshold, of each
receiver, resorting to Monte-Carlo simulations based on
100/Pfa independent trials, where Pfa represents the desired
probability of false alarm; to reduce the computational
effort, we set Pfa = 10−2. The performances are given in
terms of Pd against the signal-to-interference plus noise
ratio (SINR), defined as

SINR = |a|2p†M−1p

In the developed analysis, we compare Pd curves of GLRT-1,
GLRT-2 and GLRT-3 with those of the benchmark receiver
(which assumes the perfect covariance knowledge), Kelly’s
GLRT and AMF.
In Fig. 9, the results obtained considering K = 10 and H =

14 are shown. Inspection of the figure highlights that with
such a limited amount of secondary data, the AMF and the
Kelly’s GLRT exhibit unsatisfactory performances, and the
proposed adaptive receivers are a viable mean to
compensate for the loss experienced by the conventional
adaptive structures. Otherwise stated, the new devised
detectors are able to guarantee good detection performances
even if a small sample support is available. Furthermore, it
can be observed that the GLRT-1 and GLRT-3 share almost
the same Pd (the curves are nearly overlapped) and exhibit
performances very close to the optimum receiver, which
701
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Fig. 6 Normalised PSD [dB] against normalised Doppler frequency fd, for the parameters specified in Table 1 and K = 1; in each subplot, the
actual PSD (◊-marked curve), 20 PSD realisations for the considered covariance estimator (dashed-dot curves), and their average value
(□-marked curve)

a Algorithm 2, H = 4
b Algorithm 2, H = 20
c Algorithm 3, H = 4
d Algorithm 3, H = 20
e Algorithm 4, H = 4
f Algorithm 4, H = 20
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Fig. 7 Normalised PSD [dB] against normalised Doppler frequency fd, for the parameters specified in Table 1 and K = 5; in each subplot, the
actual PSD (◊-marked curve), 20 PSD realisations for the considered covariance estimator (dashed-dot curves), and their average value
(□-marked curve)

a Algorithm 2, H = 4
b Algorithm 2, H = 20
c Algorithm 3, H = 4
d Algorithm 3, H = 20
e Algorithm 4, H = 4
f Algorithm 4, H = 20
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Fig. 8 Normalised PSD [dB] against normalised Doppler frequency fd, for the parameters specified in Table 1 and K = 10; in each subplot,
the actual PSD (◊-marked curve), 20 PSD realisations for the considered covariance estimator (dashed-dot curves), their average value
(□-marked curve), 20 PSD realisations for the sample covariance matrix (dotted curves) and their average value (○-marked curve)

a Algorithm 2, H = 4
b Algorithm 2, H = 20
c Algorithm 3, H = 4
d Algorithm 3, H = 20
e Algorithm 4, H = 4
f Algorithm 4, H = 20
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Fig. 9 Pd against SINR for the parameters specified in Table 1,
K = 10, and H = 14

Fig. 10 Pd against SINR for the parameters specified in Table 1,
K = 10, and H = 20

Fig. 11 Pd against SINR for the parameters specified in Table 1, K
= 20, and H = 20

www.ietdl.org
assumes the perfect knowledge of the interference covariance
matrix. As expected, GLRT-1 and GLRT-3 outperform
GLRT-2, which, on the other hand, requires a much lower
computational complexity than the counterparts. In Table 2
(the first row) the values of the SINR ensuring Pd = 0.9 are
shown.
In Fig. 10, to analyse the impact of the adopted model

number, the results corresponding to the same scenario as
in Fig. 10, but with H = 20 are reported. Again, the
proposed detectors significantly outperform the
conventional ones; moreover, GLRT-1 and GLRT-3 ensure
a better performance level than GLRT-2 (see Table 2,
second row). Interestingly, the proposed detectors
experiment a slight performance degradation as H increases
from 14 to 20. We conjecture that, with both H = 14 and H
= 20, the assumed uncertainty set well fit the actual
covariance matrix, so as with H = 14 better performances
can be achieved (a reduced number of parameters has to be
estimated).
Finally, in Fig. 11, Pd curves are shown assuming the same

scenario as in Fig. 10 but K = 20. The receivers can take
advantage of the higher number of training data.
Specifically, the performances of the AMF and Kelly’s
GLRT significantly improve with respect to the case K = 10,
but they are still outperformed by the proposed adaptive
detectors. As in Fig. 10, GLRT-1 and GLRT-3 ensure
almost the same performances and achieve a better
detection probability than GLRT-2. Finally, the three
proposed adaptive receivers are closer to the optimum
receiver than in the case K = 10. This is not surprising,
since higher number of secondary data allows to better
estimate the unknown parameters. In Table 2 (the third
row), the list of the SINR values required to obtain Pd = 0.9
is shown. In summary, the performed analysis highlights
that the proposed adaptive receivers, based on a smart use
of multiple a priori models, exhibit better detection
Table 2 SINR values in dB required to achieve Pd = 0.9

GLRT-1 GLRT-2 GLRT-3

K = 10, H = 14 10.90 11.72 11.12
K = 10, H = 20 11.38 11.78 11.50
K = 20, H = 20 10.39 11.65 10.39

IET Radar Sonar Navig., 2014, Vol. 8, Iss. 7, pp. 695–707
doi: 10.1049/iet-rsn.2013.0233
performances than the conventional adaptive receivers,
especially in environments with a limited number of
homogeneous secondary data.
5 Conclusions

In this paper we have considered the problem of adaptive
radar detection in operating environments characterised by a
limited number of training data. We have proposed three
GLRT-based detection schemes assuming that the inverse
Optimum receiver AMF Kelly’s GLRT

9.68 — —
9.68 — —
9.60 13.31 13.41
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covariance matrix is modelled as a linear combination of
some available a priori models and accounting for the
knowledge of a lower bound on the PSD of the white
disturbance term. The computational complexity of the
proposed adaptive receivers is different; specifically,
GLRT-1 is more demanding, since it involves an iterative
procedure, where in each step the optimum values of a
convex optimisation MAXDET problem is required;
GLRT-3 does not require iterative optimisations but the
optimal solution of just one MAXDET problem. Finally,
GLRT-2 is less demanding since it does not require
iterative optimisations and the solution for MAXDET
problems.
At the analysis stage, we have analysed the capability of the

proposed covariance matrix estimators, involved in the
devised detectors, to predict the actual interference
environment. The results have highlighted that the new
techniques (especially those connected with GLRT-1 and
GLRT-3) are able to track the actual PSD of the data from
the cell under test. Besides, we have assessed the
performance of the new adaptive receivers in terms of
detection probability, in comparison with the optimum
benchmark receiver (which assumes the perfect knowledge
of the disturbance covariance matrix) and two conventional
adaptive detectors Kelly’s GLRT and AMF. The results
have shown that in the presence of a small number of
training data the new receiving structures exhibit an
acceptable performance loss with respect to the benchmark
and a significant performance gain over the conventional
adaptive counterparts.
A possible future research track might concern the

performance analysis of the proposed detectors on real radar
data as well as the exploitation, at the design stage, of both a
structural constraint and a condition number constraint [21],
to further improve the covariance matrix estimation process.
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7 Appendix

7.1 Appendix 1: Proof of Proposition 1
Proof: Let us show that problem P S1

( )
is solvable for any

S1 X 0. To this end, we notice that

tr{SX}− log det(X ) ≥ − log (lmin(X ))+ (N − 1) log (s2)

(17)

where the inequality stems from tr{SX}≥ 0 and
(1/s2) ≥ l1(X ) ≥ · · · ≥ lN (X ) = lmin(X ), with λi(X), i = 1,
…, N the eigenvalues of X. Hence, when X tends to a rank
deficient matrix, the objective function tends to +∞. As a
consequence, there exists e . 0 such that P S1

( )
is

equivalent to

P′
min
X

tr S1X
( ) − log det(X )

subject to
X [ A
X X eI

⎧⎪⎨
⎪⎩ (18)

Notice that the objective function of problem P′ is a
continuous function and the constraint set defines a compact
set. Indeed, the feasible set of P′ is the intersection between
the compact set eI W X (1/s2)I and a linear subspace of
finite dimension. Thus, Weierstrass theorem ensures the
existence of a feasible point Xw for P′ such that
v(P′) = tr{SXw}− log det(Xw). Finally, let us observe that
the objective function of problem P S1

( )
is strictly convex,

and the constraint (4) defines a convex set. Hence, the
optimal solution to P S1

( )
is unique.

7.2 Appendix 2: Proof of Proposition 2
Proof: We first prove that ML(n) is a monotone increasing
sequence, that is, ML(n)≤ML(n + 1). In fact, we have

ML(n) =
det X̂

(n)
H1

( )K+1

pN (K+1)
exp −tr X̂

(n)
H1

Râ (n) + KS
( ){ }( )

(19)
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≤
det X̂

(n+1)
H1

( )K+1

pN (K+1)
exp −tr X̂

(n+1)
H1

Râ (n) + KS
( ){ }( )

(20)
≤
det X̂

(n+1)
H1

( )K+1

pN (K+1)
exp −tr X̂

(n+1)
H1

Râ (n+1) + KS
( ){ }( )

= ML(n+1) (21)

As to the convergence of the sequence ML(n), let us observe
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that, for all â and X̂

det(X̂ )K+1

pN (K+1)
exp −tr X̂ Râ + KS

( ){ }( )

≤ det(X̂ )K+1

pN (K+1)
exp −tr X̂ KS( ){ }( )

(22)

≤ det(X̂ 0)
K+1

pN (K+1)
exp −tr X̂0 KS( ){ }( )

(23)

with X̂0 the optimal solution to problem P S1

( )
, with

S1 =
KS

(K + 1), whose existence is ensured by Proposition

1. Hence, ML(n) converges to a finite value MLw, since it is
an upper bounded monotonic increasing sequence.
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