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Abstract19

Ideally, probabilistic hazard assessments combine available knowledge about physical mechanisms of the haz-20

ard, data on past hazards, and any precursor information. Systematically assessing the probability of rare,21

yet catastrophic hazards adds a layer of difficulty due to limited observation data. Via computer models, one22

can exercise potentially dangerous scenarios that may not have happened in the past, but are probabilisti-23

cally consistent with the aleatoric nature of previous volcanic behavior in the record. Traditional Monte Carlo24

based methods to calculate such hazard probabilities suffer from two issues: they are computationally ex-25

pensive, and they are static. In light of new information newly available data, signs of unrest, new prob-26

abilistic analysis describing uncertainty about scenarios the Monte Carlo calculation would need to be re-27

done under the same computational constraints. Here we present an alternative approach utilizing statis-28

tical emulators that provides an efficient way to overcome the computational bottleneck of typical Monte Carlo29

approaches. Moreover, this approach is independent of an aleatoric scenario model, yet can be applied rapidly30

to any scenario model making it dynamic. We present and apply this emulator-based approach to create mul-31

tiple probabilistic hazard maps for inundation of pyroclastic density currents in the Long Valley Volcanic32

Region. Further we illustrate how this approach enables an exploration of the impact of epistemic uncertain-33

ties on these probabilistic hazard forecasts. Particularly, we focus on the uncertainty of vent opening mod-34

els and how that uncertainty both aleatoric and epistemic impacts the resulting probabilistic hazard maps35

of pyroclastic density current inundation.36

Plain language summary37

We present a method to forecast the probability of inundation by hot volcanic flows of rock and gas.38

In some sense, we can think of a natural hazard forecast much like a weather forecast. Instead of how likely39

is it to rain tomorrow we might ask how likely is our town or the nearby power plant to get inundated by a40

volcanic flow? The weather forecasting analogy is, however, flawed in an important way when dealing with41

rare events. Large-scale, highly destructive volcanic flows are rare events, of course, and it is human nature42

to think that such events will happen as they have in the past. But often the scale (here think mass of the43

flowing material) varies randomly, and sometimes an event bigger-in-scale than any in the historical recorded44

will happen. Thus to generate hazard forecasts we must rely on a combination of models—models of the physics45

governing the volcanic flows as well as models that describe the probabilistic nature of historical data.46

Unfortunately, the typical process of combining these models would require thousands of hours on a47

super computer. Instead, we build a surrogate model of the physical volcanic flow model that alleviates the48

computational bottleneck.49

Index terms and key words50

8488, 4338, 1922, 1906; pyroclastic density currents; hazard forecasting; uncertainty quantification51

–2–

©2018 American Geophysical Union. All rights reserved.



manuscript submitted to Please set Journal Name by using \journalname

1 Introduction/Motivation52

Mapping of volcanic hazards is often based on field reconstructions and numerical modeling of specific53

past events. In contrast, our goal is to produce dynamic probabilistic hazard maps – maps of probabilities54

indicating the likelihood of a hazard affecting the mapped locations – that are consistent with past events55

but can reflect both aleatory uncertainty inherent in the system and epistemic uncertainty due to imperfect56

models and limited data (Marzocchi & Bebbington, 2012; Sparks, 2003). Further, a single probabilistic fore-57

cast map is not the goal – instead we wish to see how dynamic probabilistic hazard maps change as we ex-58

plore these uncertainties (Bevilacqua, Neri, et al., 2017; Neri et al., 2015). Ultimately we envision these dy-59

namic probabilistic hazard maps as a tool to explore the impacts of uncertainties on probabilistic hazard fore-60

casts for those charged with making a hazard map. This paper provides an efficient and reliable statistical61

framework to analyze hazards under uncertainty.62

Physical simulations of pyroclastic density currents (PDCs), such as those employed in TITAN2D (Pa-63

tra et al., 2005, 2018), are indispensable for examining the possible impact of PDCs for a wide range of po-64

tential scenarios where, how large, how frequent. Such scenarios need to be characterized to provide initial65

and boundary conditions at which PDC simulations are exercised. That said, characterizing potential sce-66

narios is a significant scientific task in its own right. The inherent (aleatoric) randomness of such scenarios67

demands a probabilistic description. The probabilistic hazard mapping tool outlined in this paper enables68

one to readily combine a probabilistic scenario model – inputs scenarios treated as random variables and mod-69

eled by probability density functions – with physical simulations to yield a probabilistic description of the70

hazard. Furthermore, this methodology is independent of any specific probabilistic scenario model, yet can71

rapidly produce a probabilistic hazard map once a probabilistic scenario model is chosen. This allows one72

to compare probabilistic hazard maps under several probabilistic scenario models, and to quickly update a73

hazard map as new data or more sophisticated probabilistic scenario models become available.74

Probabilistic assessments of volcanic hazards based on simulations of physical processes have gained75

traction over the past several years (Bevilacqua, Patra, et al., 2019; Biass, Bonadonna, Connor, & Connor,76

2016; Biass, Bonadonna, Di Traglia, et al., 2016; Cappello et al., 2015; L. J. Connor et al., 2012; Dalbey et77

al., 2008; Gallant et al., 2018; Mastin et al., 2014; Mead & Magill, 2017; Sandri et al., 2016, 2018; Tierz et78

al., 2018; Volentik & Houghton, 2015). Computer model emulators (also known as statistical surrogates) are79

an efficient tool in this type of modeling particularly when the physical model is computationally expensive80

to exercise (Bayarri et al., 2009, 2015; Spiller et al., 2014). Probabilistic approaches are particularly useful81

as they let one explore the impact of “tail events” in a systematic fashion. In other words, via simulation82

one can exercise potentially dangerous scenarios that may not have happened in the recent past, but are prob-83

abilistically consistent with previous volcanic behavior. Typically these strategies rely on Monte Carlo (MC)84

simulations to perform probability calculations (e.g., of a hazard inundation at a particular location), as the85

underlying question does a particular sample scenario lead to inundation or not at the location of interest?86

cannot be answered analytically. Standard MC integration is limited by the computational expense of phys-87

ical simulations as it converges slowly, requiring typically O(103 − 106) unique simulations.88
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The computational expense of standard MC does not readily allow us to change or update probabilis-89

tic scenario models. Neither does standard MC let us explore the impact of our models being imperfect nor90

our knowledge of the data being incomplete, e.g., the impact of epistemic uncertainty on hazard forecasts.91

This is problematic. As states of activity in a hazard system evolve, likely so will our choice of probabilis-92

tic scenario models describing the aleatoric variability. Further, hazard assessments in volcanology are of-93

ten characterized with a high degree of epistemic uncertainty. Ultimately, one hopes to model both aleatoric94

variability and epistemic uncertainty in a doubly stochastic sense, in which a probability distribution reflect-95

ing aleatory variability of the system is itself uncertain (Bevilacqua et al., 2016; Marzocchi & Bebbington,96

2012; Ogata & Akaike, 1982; Sparks & Aspinall, 2013). Indeed, for example, the initiation site of a hazardous97

flow can be modeled by an uncertain probability distribution (Bevilacqua, Bursik, et al., 2017; Bevilacqua98

et al., 2015; Selva et al., 2012; Tadini et al., 2017). The statistical tool described in this study avoids the com-99

putational roadblock of standard MC and as such can rapidly produce dynamic probabilistic hazard maps.100

Utilizing statistical surrogates is a key innovation to overcoming the computational limitations of stan-101

dard MC. Effectively, such emulators are a statistical models of physical models (Sacks, Schiller, & Welch,102

1989; Santner, Williams, & Notz, 2013; Welch et al., 1992). Statistical emulators can effectively replace a103

computationally expensive physical simulation with a computationally “free” function evaluation. Further,104

they allow one to account for any uncertainty introduced be replacing the simulator with the emulator. An105

emulator based approach to probabilistic hazard mapping is “dynamic” in that it allows one to explore the106

impacts of various sources and varieties of uncertainty – including estimates of the probability of vent open-107

ing as a function of location – more efficiently than ever before.108

We developed this tool for the Long Valley volcanic region just east of the Sierra Nevada escarpment109

in California. Although some details of this approach are specific to Long Valley (aspects of the scenario space110

to focus on, digital elevation models, etc.), the general approach is not specific to a particular volcano or re-111

gion. Further, we developed this tool for PDC hazards, but the tool hinges on a very general strategy of us-112

ing surrogate models of physical simulations to identify important regions of input scenario space. In this113

sense, we anticipate that the approach presented here and variations thereof will prove useful for a wide range114

of volcanic hazards – lahars, tephra fallout, pyroclastic surges, etc. In particular, we imagine that such an115

approach could be useful to overcome computational challenges described in Biass, Bonadonna, Connor, and116

Connor (2016); Biass, Bonadonna, Di Traglia, et al. (2016); Gallant et al. (2018); Mead and Magill (2017).117

This study also represents a novel strategy for the dynamic implementation of evolving input informa-118

tion onto the background of long-term assessments. Marzocchi and Bebbington (2012) provides a detailed119

review of both long- and short-term probability forecasts of volcanic hazards. Long-term assessments are based120

on past eruption data and current tectonic information, while short-term assessments ideally include the mon-121

itoring of precursors.122

A key aspect to both long- and short-term forecasting is that volcanic systems evolve through differ-123

ent states of activity. As such, hazard assessments should be updated and interpreted based on the current124

state of the volcano. First efforts at this aim applied Bayesian Belief Networks (BBN) as a powerful mod-125
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eling tool (Aspinall et al., 2003). Several studies have explored long-term volcanic hazard assessments us-126

ing Bayesian Event Tree methodology (Marzocchi et al., 2004, 2010; Selva et al., 2010; Sobradelo & Marti,127

2010). Many recent modeling efforts have also explored possible implications of short term-eruption fore-128

casting on hazard assessments (Sandri et al., 2012; Selva et al., 2014; Sobradelo & Marti, 2015). This pa-129

per presents an efficient, computationally judicious, and reliable statistical framework for evolving hazard130

assessments and their attendant uncertainties. Such an approach used in conjunction with those above has131

a strong potential to advance this field.132

2 Background133

Our approach and application to Long Valley hazard mapping provides an efficient strategy that uses134

statistical emulators to combine vent opening data and models, and physical simulations of pyroclastic den-135

sity currents for probabilistic assessment of hazards. In this section we will briefly review each of the “in-136

gredients”.137

2.1 Long Valley Volcanic region138

The Long Valley volcanic region (LVVR) is an area of bimodal basaltic-rhyolitic volcanism encompass-139

ing 4000 km2, east of the central Sierra Nevada mountain range (CA/NV, USA). It became active at ∼4140

Ma and at ∼760 ka erupted about 650 km3 of rhyolitic magma as the Bishop Tuff (Bailey, 2004; Hildreth,141

2004). The deep structural subsidence inside the ring fault zone and shallower landsliding produced Long142

Valley caldera, a depression 32 km × 18 km (Bailey, Dalrymple, & Lanphere, 1976; Hildreth, 2017; Hildreth143

& Mahood, 1986). The Mammoth Mountain system developed since 230 ka on the southwest topographic144

rim of the caldera, and includes a lava dome complex 3,400 m high, competing in height with nearby Sier-145

ran peaks (Hildreth & Fierstein, 2016; Hildreth et al., 2014; Mahood et al., 2010). The Mono-Inyo Craters146

volcanic chain and Mono Lake Islands are a nearly linear array of vents stretching north of the caldera for147

∼45 km (Bailey, 1989; Wood, 1983), with the most recent eruption ∼ 1700 AD. A complete database of Late148

Quaternary eruptive ages in LVVR and their uncertainty is reported in Bevilacqua et al. (2018).149

Tomographic and magnetotelluric studies (Achauer et al., 1986; Flinders et al., 2018; Foulger et al., 2003;150

Peacock et al., 2015, 2016) suggest that numerous, separate, mid-crustal, potentially active magmatic sources151

(partial melt zones) lie in an irregular, N/S elongated zone, extending from Mono Lake to south of Mam-152

moth Mountain. It is these multiple, restless, partial melt zones that are thought to supply the active Mono-153

Inyo and Mono Lake Islands volcanism.154

The ongoing period of unrest in the LVVR started in 1978, with a magnitude 5.8 earthquake at the155

south edge of the caldera (Hill, 2006; Hill, Mangan, & McNutt, 2017). A cumulative uplift of ∼83cm since156

1980 has been measured, centered on the early post-caldera resurgent structure, aged ∼570 ka (Hildreth, Fier-157

stein, & Calvert, 2017). The uplift has been 3-5 cm since 2011 (Montgomery-Brown et al., 2015). Numer-158

ous episodes of unrest centered under Mammoth Mountain have also been observed, including one in 2014159

(Prejean, 2003; Shelly & Hill, 2011; Shelly et al., 2015). Diffuse CO2 emissions at Mammoth Mountain claimed160
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four lives in recent decades and killed ∼40 km2 of forest (Farrar et al., 1995; Gerlach, Doukas, McGee, &161

Kessler, 1998, 1999). In contrast, relatively little degassing is currently measured in the Mono region (Bergfeld162

et al., 2015). Such a long and complex geophysical and geochemical unrest may culminate in a future vol-163

canic eruption that could have a serious impact on the region (Kaye et al., 2009; Miller et al., 1982).164

2.1.1 Pyroclastic density currents in the Long Valley Volcanic Region165

The late Quaternary record of volcanism in LVVR indicates that both dome-collapse (Merapi type)166

and column-collapse (Soufriere type) PDCs have occurred. The Panum block and ash flow (BAF) occurred167

near the very end of the North Mono eruption sequence, after much of the dome building phase had ceased.168

It is typical in runout and volume for a BAF at LVVR, and is the best exposed of these deposits (Dennen,169

Bursik, & Roche, 2014). Column-collapse PDCs are documented for the South Mono, North Mono and Inyo170

eruption sequences (Bursik, Sieh, & Meltzner, 2014; Miller, 1985; Sieh & Bursik, 1986), and, as is common,171

generally occurred near the end of the pyroclastic phases of these eruptions. Both BAF and column-collapse172

PDC deposits occur in the late Quaternary Mammoth Mountain eruptive record, as well as in the Mono-173

Inyo record. BAF deposits crop out along California Highway 203 near Mammoth Mountain ski resort, and174

column-collapse deposits occur in the record of the late (∼ 70 ka) pyroclastic deposits documented by Hil-175

dreth et al. (2014). The volumes of potential PDCs are inferred from the data on past flows, as well as domes176

from which BAF could be generated (Appendix A). A typical volume is taken to be approximately 0.01 km3,177

which represents the failure of a portion of an average LVVR dome. A maximum, “worst-case scenario” vol-178

ume is very roughly estimated to be ∼ 1 km3. This volume represents the failure of an entire large Mono-179

Inyo dome, or column collapse associated with the largest pyroclastic eruptions of the late Quaternary, the180

Mammoth pumice fall of unit rfp (Hildreth et al., 2014) or Wilson Creek formation layer B7 from Mono Craters181

(Yang, Bursik, & Pouget, 2019).182

2.1.2 Vent opening models for Long Valley183

Because it is a tectonically complex region of diffuse volcanism, identifying likely locations of future184

vents is a key step in assessing volcanic hazards in the Long Valley Volcanic Region (LVVR). It is instruc-185

tive to quantify these likely vent locations and represent that analysis visually. To that end, one can con-186

struct a “map of vent openings” which is a distribution of vent openings (probability per unit of area) at each187

point within a region of interest. There are many examples of vent opening maps in the literature, all of which188

model the aleatoric variability (inherent randomness) of vent opening in a given region. Some of those maps189

are solely spatial assessments, i.e. they model the vent locations conditioned on a new eruption occurring190

(Bartolini et al., 2013; Bebbington, 2013, 2015; Bevilacqua et al., 2015; Capra et al., 2011; Chapman et al.,191

2012; C. B. Connor et al., 2000; L. J. Connor et al., 2012; Magill, McAneney, & Smith, 2005; Marti & Felpeto,192

2010; Mazzarini et al., 2013; Mazzarini, Le Corvec, Isola, & Favalli, 2016; Tadini et al., 2017). The most com-193

mon approaches are based on the assumption that new vents will open up near past vent locations. Regions194

containing structural weakness (i.e. faults/fractures) can be incorporated probabilistically by treating geo-195

physical or tectonic information as a model parameter(s) (Bevilacqua, Bursik, et al., 2017; Jaquet, Lantuéjoul,196
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& Goto, 2012; Martin et al., 2004). Some vent opening maps are so-called doubly stochastic (Cox & Isham,197

1980; Ogata & Akaike, 1982). That is, modeling the vent opening probabilistically reflects aleatoric uncer-198

tainty of new vent locations, but these probabilistic models themselves are subject to epistemic uncertain-199

ties which reflect model choices and/or limited data (Bevilacqua, Bursik, et al., 2017; Bevilacqua et al., 2016,200

2015; Bevilacqua, Neri, et al., 2017; Selva et al., 2012; Tadini et al., 2017).201

The hazard mapping tool we are proposing provides an efficient procedure for incorporating vent open-202

ing maps into probabilistic hazard maps, which represent the likelihood of threats from PDCs. The intuition203

of standard MC is useful – one can imagine sampling the vent opening map, and then running TITAN2D204

at those sampled locations. The hazard mapping tool presented herein allows such analysis with a limited205

number of computationally intensive simulations. Further, it allows us to quantify how uncertainty in the206

vent opening maps impacts the resulting probabilistic hazard maps.207

2.2 PDC simulations using TITAN2D208

Depth-averaged physical models for granular flows introduced by Savage and Hutter (1989), and ex-209

panded on by Bursik et al. (2005); R. Iverson (1997); R. M. Iverson and Denlinger (2001); Pitman et al. (2003)210

along with digital elevation models of a basal surface, form a basis for modeling the depth and extent of dry211

pyroclastic flows. It should be noted that the following describes the dense basal flow. The associated surges212

(see for e.g. Ogburn, Calder, Cole, and Stinton (2014)) are not included in this model. A simplified descrip-213

tion of this depth-average granular flow model is as follows:214

∂
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where h(x, y, t) is the depth of the flow at location (x, y) and time t. vx, vy, hvx, hvy are flow velocities and215

depth-averaged momenta. (gx, gy, gz) are components of gravitational acceleration, db
dx and db

dy represent ter-216

rain slopes of the basal surface b(x, y). φint and φbed are internal and basal friction angles and the terms in-217

cluding them reflect dissipation due to particle-particle interactions and flow over a basal surface, respec-218

tively. κ is a rheological parameter which combines the friction angles and a flow-dependent earth pressure219

coefficient.220

Solutions to equation 1 are typically not available in closed form. TITAN2D software provides care-221

ful numerical approximations to the evolution of the flowing mass over a topography represented by a dig-222

ital elevation model Patra et al. (2005); those interested in using TITAN2D should see Titan2D Mass-Flow223

Simulation Tool (2010). TITAN2D employs a second order Godunov solver with an adaptive mesh. The dig-224

ital elevation model provides boundary conditions for the flowing mass equations while initial conditions (ini-225
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tial volume, location, and velocity of the flowing mass) and parameters (internal and basal friction) must226

be provided by the user. Note, we model Mono Lake as a flat surface that PDCs would flow over. This mod-227

eling choice is consistent, to first order, with findings for PDC transport over water as documented in Carey,228

Sigurdsson, Mandeville, and Bronto (1996); Edmonds and Herd (2005); Mandeville, Carey, and Sigurdsson229

(1996); Sigurdsson and Carey (1989). More detailed modeling assumptions could be explored, but are be-230

yond the scope of the present work. Likewise in this model each PDC is initiated with a cylindrical pile of231

material consistent with the volume of the flow under consideration. Although BAF and column-collapse232

pyroclastic flows are often modeled in TITAN2D with different initial height to width ratios and basal fric-233

tion angles, we have not varied these parameters accordingly in the present work, as our intent is not to pro-234

duce an operational flow-inundation hazard map, but to explore and demonstrate a methodology for doing235

so. Such an approximation will likely not constrain the resulting PDCs as much as real topography near a236

source and thus one should take the resulting PDC footprints as conservative approximations for the dense237

underflow portion of the PDC. Note that we are not modeling inundation by any dilute, overriding surge cloud,238

which has considerably different dynamics, and generally larger inundation footprint, from that of the un-239

derflow.240

For the present study, initial location is of particular interest due to significant uncertainty in the vent241

opening location which we must explore for a probabilistic assessment of PDC hazards. Together these sets242

of inputs (initial conditions and parameters) represent a “scenario.” An example of TITAN2D output from243

four scenarios is illustrated in figure 1. Here the scenarios we consider include volumes of 0.01 km3 and 1244

km3 with initial piles centered at (320242, 4167043) and (321071, 4166406) over UTM WGS84 zone 11. For245

each scenario from these four combinations, we plot the maximum flow depth at each location. The 1 km3
246

cases , figure 1 (c) and (d), demonstrate that modeling initiation with a cylindrical pile is relatively crude.247

That is, the flow is less constrained than it would likely be by detailed topography of the initiation. On the248

other hand, while modeling the morphology of potential future vents may be an insightful endeavor, it would249

also be a substantial study in its own right. To this end, it is worth noting that any physical modeling short-250

comings will be inherited by the emulator. This does not diminish the power of the emulator – that many251

potential scenarios can be explored rapidly. This point can be seen in the 0.01 km3 TITAN2D runs, figure 1252

(a) and (b), where a slightly different vent location results in one PDC that inundates locations close to Mam-253

moth and another with a PDC that flows away from Mammoth. TITAN2D can be run on clusters of com-254

puters to speed up processing and handle large amount of simulated data. However, one TITAN2D simu-255

lation for a typical flow simulation can take around 30 minutes of compute time. This computational cost256

makes hazard threat assessment based on standard Monte Carlo – probability calculations to carefully search257

scenario space for those that lead to inundation for each map location based on TITAN2D (or any compu-258

tationally intensive physical model) – significantly expensive. Statistical emulators are a key tool to over-259

come this bottleneck.260
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2.3 Statistical emulators261

Computer model emulators (also known as statistical surrogates) are effectively statistical models of262

computationally intensive simulators like TITAN2D (Rasmussen & Williams, 2006; Sacks et al., 1989; Sant-263

ner et al., 2013; Welch et al., 1992). The benefit of using emulators is obvious – minutes or hours or days264

long simulations can be approximated by a function evaluation which is computationally “free.” A popu-265

lar choice of an emulator is a separable Gaussian process (GP) fit to a relatively small set of simulator input-266

output pairs. For the problem at hand, we will consider an “input” to TITAN2D a set x = {x1, x2, x3, x4}267

where x1 = Volume, x2 = Easting coordinate of a vent location, x3 = Northing coordinate of a vent lo-268

cation, and x4 = basal friction. In this surrogate fitting approach, we will take our “data” to be the max-269

imum height over the flow of a run of TITAN2D at every location of the map. We will then fit a GP to our270

scalar output – the max height data, h, at each location on the map (e.g. the discretized locations indexed271

k = 1, . . . ,M where max-height output is reported). It is worth noting that, once the training runs of TI-272

TAN2D are complete, these M emulators can be fit in parallel (the approach we take here) or the so-called273

partial-parallel emulation can be applied (Gu & Berger, 2016). Considering one location, we will let yS =274

[h1, . . . , hN ]T be a vector of simulated output corresponding to each of N TITAN2D runs at scenarios in the275

design XD. That is, XD = {xD
j }, j = 1, . . . , N . Then the GP surrogate is given by276

Y (x) = µ(x) + Z(x) (2)

where Z(·) is a constant variance, mean-zero spatial Gaussian process and µ(·) is a user-specified mean func-277

tion, typically taken to be linear or constant. In this work, we take the mean to be linear in the volume com-278

ponent and constant in the others. Like the mean, the choice of correlation structure is user-specified. Typ-279

ically, for emulating computer experiments a separable (distinct correlation length scale for each input di-280

mension) power exponential correlation or Matèrn correlation function is employed. Here we will use the Matèrn281

5-2, given by282

c(xi,xj) =
(

1 +
√

5d+
5d2

3

)
exp

(
−
√

5d
)
, (3)

with d =
√∑4

m=1(xmi − xmj )2/ρ2m and where ρm is the correlation parameter in the mth dimension of in-283

put space. We will define the N × N correlation matrix to be R = [Rij ] with elements Rij = c(xD
i ,x

D
j ).284

Then we have the predictive mean and standard error given by285

h̃(x) = E[Y ] = µ(x) + rTR−1
(
yS − µ(xD)

)
(4)

s2(x) = σ2
z

(
1− rTR−1r +

(1− 1TR−1r)2

1TR−11

)
(5)

where 1 is a length N column vector of ones and r =
(
c(x,xD

1 ), . . . , c(x,xD
N )
)T

. Beyond these definitions,286

“fitting” a GP amounts to finding good estimates of parameters – σ2
z , parameters in µ(·), and parameters287

in the correlation structure, namely ρ1, . . . , ρ4 for this work. The takeaway here is that we now have esti-288

mates of TITAN2D output from evaluating h̃(·) at scenarios where we did not run TITAN2D, e.g. x ∈ D,289

but x 6∈ XD. Further, s2(·) quantifies how much uncertainty we introduce by replacing h(·) with h̃(·). In290

past work we have shown that the surrogates so constructed have small and quantifiable error in predict-291

ing h(x, y) obtained by running TITAN2D. The surrogates are able to emulate TITAN2D, but situations where292
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the simulator performance is poor (e.g. the rheology assumed is a poor match for the actual flow or where293

numerical grid choices are too coarse) are also reflected in the surrogate.294

There are two natural approaches to implementing emulator-based Monte Carlo. Either one can di-295

rectly sample Y (instead of h) in a MC calculation or one can utilize h̃ to search for hazard contours that296

divide the input space by separating scenarios that lead to hazard from those that do not. In this work, we297

will focus on the former approach, but explore the latter to build visual intuition about the methodology.298

Figure 1. Estimated maximum flow depth of a pyroclastic flow in Long Valley for events of volume 0.01km3 (a)

and (b), and 1km3 (c) and (d) (basal friction of 10.5 degrees in each case) centered at (320242, 4167043) (a) and (c),

and (321071, 4166406) (b) and (d). (Note, for visualization, yellow represents max height ≥ 50m.) Both initial posi-

tions are near the top of Mammoth Mountain. A red dot is placed at the center of Town of Mammoth Lakes.

3 Methodology: building a dynamic probabilistic hazard map299

Here we will illustrate the methodology for building a dynamic probabilistic hazard map that combines300

synthetic model-based data. The hazard mapping tool begins with a set of simulator runs, TITAN2D runs301

in our case. For the reader not familiar with using emulators of complex computer models, the set of train-302

ing runs may not seem intuitive. Thus we will describe motivation for and choice of the design, inputs/scenarios303

to exercise our training runs. Then we will describe building the emulators, extracting inundation contours304

and calculating inundation probabilities. We will walk through this process focusing on one map location,305

but it is important to keep in mind that once the initial training runs are complete, the rest of the process306

can (and should) be run in parallel. It is worth emphasizing that the probability calculations are done post307

processing and thus can be run repeatedly to reflect both aleatoric and epistemic uncertainty in probabil-308

ity calculations. Further, if desired, these post-processing probability calculations can be run for any level309

of PDC inundation, hcrit, that the user defines to represent a PDC inundation hazard.310

3.1 Designs for hazard mapping311

Recall that the inputs we vary for different runs of TITAN2D are the event volume, Easting and Nor-312

thing of vent locations, and the basal friction coefficient. It is important to keep in mind that we are not as-313

signing any probability to events in the design, but that we need to account for regions of design space that314

we may want to sample later. To this end, in choosing the initial design of N distinct quadruplets {xD
j }, there315

are three concerns to weigh: covering input space for the whole map, accounting for tail events, and space-316

filling.317

Covering the input space for the whole map balances the fact that a “global” probabilistic hazard map318

is effectively the composite of many “local” problems. Intuitively, if a vent opens near a specific map loca-319

tion, even a relatively small-volume PDC could be catastrophic to that location. In contrast if a vent opens,320

–10–

©2018 American Geophysical Union. All rights reserved.



manuscript submitted to Please set Journal Name by using \journalname

say, several kilometers away it may take a very large volume PDC to inundate the location of interest. Thus,321

each location on the map has a critical region of design space and a global design relevant for the whole map322

must cover the union of these critical regions.323

Accounting for tail events reflects that we take a probabilistic approach to quantifying hazards in our324

design and include TITAN2D simulations that may correspond to very-low probability events. Even if an325

event is low probability, if we have no samples (TITAN2D runs or approximations thereof) near that event326

in input/scenario space, corresponding probability calculations will be highly uncertain. To this end, we in-327

tentionally choose to sample a wide footprint of vent opening locations and volumes up to 2 km3. In both328

cases these ranges go beyond what we think is realistic, even for a rare catastrophic hazard. To reiterate,329

no probabilities are assigned as this point in the process. That said, those points are included so that the330

support of any probability density function that we might use to describe aleatoric variability is appropri-331

ately sampled for the purpose of building emulators.332

Space filling designs are the standard approach for training emulators of complex computer models (Sant-333

ner et al., 2013). In this work, we use so-called maximin Latin Hypercube (LHC) sampling to choose our de-334

sign points. These LHC designs spread out samples to ensure that the maximum distance from any point335

in design space to its nearest neighbor is (approximately) minimized and thus are called space filling designs336

(Johnson, Moore, & Ylvisaker, 1990). Further, such LHC sampled designs when projected onto one axis of337

the input space (4-D, in our case) will appear to the eye as N distinct samples from a uniform distribution338

as opposed to using a grid which would result in N1/4 evenly spaced grid points.339

Projections of the N = 12000 design points used to demonstrate the methodology are displayed in340

figure 2. In the Northing-Easting plane, we extended the design beyond the support of both the simple Gaus-341

sian mixture model fit to previous vent locations and beyond the support of the sophisticated vent opening342

map model Bevilacqua, Bursik, et al. (2017). Nominally, basal friction is a material property which is ap-343

proximated by the angle whose tangent is H/L (height drop of flowing mass/horizontal extent of runout)344

(Hayashi & Self, 1992; Sheridan, 1979). In physical models, the basal friction effectively acts as a mobility345

parameter with lower values leading to more mobile flows (Charbonnier & Gertisser, 2009, 2012; Ogburn &346

Calder, 2017). The projection into the basal friction-volume plane is non-standard in two ways. First, the347

density of design points is twice as high below 0.05 m3 as it is above. This choice is motivated by the rel-348

ative footprint of typical small vs. large volume flows to ensure that every location on the map has some small349

volume PDCs that lead to inundation in that site’s emulator design. Second for volumes less than 0.01 km3
350

the design is clearly not a rectangle and warrants further explanation. It is known that gravity driven mass351

flow models such as TITAN2D do not accurately capture the mobility of large-volume flows. Large volume352

flows are more mobile than material properties of the flowing material would suggest. The work of Ogburn353

(2014); Ogburn and Calder (2017) shows that this model inadequacy can be mitigated by running TITAN2D354

with artificially low (in the material property sense) basal friction values and then achieving model flow mo-355

bility consistent with observed PDCs. The transition from basal friction values appropriate for small-volume356

flows to those appropriate for large volume flows was modeled in Ogburn et al. (2016) and we based the range357
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of basal friction values on this relationship. For volumes larger than 0.01 km3, we use a range from 9◦−12◦358

which is again consistent with Ogburn (2014); Ogburn and Calder (2017).359

Figure 2. (a): projections of the design points into the basal friction-volume plane and (b): the Northing-Easting

plane.

3.2 Emulating hazard contours and calculating hazard probabilities360

The process to construct emulators and to calculate hazard probabilities is identical for each location361

on the map and thus we will describe it for just one location of interest, a site within the Town of Mammoth362

Lakes (Mammoth). (Of course, to make a probabilistic hazard map, this process is repeated for each of M363

indexed points on the map.) Mammoth has been already the target of volcanic risk analysis of critical in-364

frastructures (Kaye et al., 2009). Although the methodology does not require one to condition on a PDC365

occurring (Bayarri et al., 2009, 2015), for demonstration purposes and to focus on the impact of uncertain366

vent openings, we choose to do so. Thus, we seek to calculate the probability of inundation conditioned on367

an event of volume v having occurred and visualize the impact of vent opening models on probabilistic haz-368

ard maps. We can calculate this probability for any volume, but we will focus on two volumes, v = 0.01369

km3 and v = 1 km3 which we take to represent a typical PDC for LVVR or a “worst-case sceanrio” PDC),370

respectively. A detailed analysis of potential PDC volumes, based on previous eruptions, is reported in Ap-371

pendix A. Note, we are not endorsing gravity driven, shallow water like flow models such as TITAN2D as372

“good” models for flow events resulting from column collapse, but our approach is agnostic to physical/computational373

models. That is, further analysis could be done with a different model specifically describing large mass flows374

from column collapse events, including multiphase and 3D effects (e.g. R. M. Iverson and George (2014); Neri,375

Esposti Ongaro, Macedonio, and Gidaspow (2003); Pitman and Le (2005); Valentine and Sweeney (2018);376

Valentine and Wohletz (1989)).377

We treat the vent location probabilistically and we can consider any probability density function, p(E,N),378

where E and N are the Easting and Northing coordinates of vent opening. Such an exploration is two-fold.379

We can consider different aleatoric models of the vent location and the resulting probabilistic hazard maps380

under each. Likewise, by the same approach, we can consider epistemic uncertainty in a single probabilis-381

tic model of vent opening.382

Calculating a hazard probability amounts to doing an integral. For the Town of Mammoth Lakes (hence-383

forth referred to as Mammoth and indexed by the subscript k), we have384

Pk(inundation | event volume V = v occurs) =

∫
M

1hk≥1m p(E,N)dEdN (6)

where M is defined by E ∈ [294000, 348000], N ∈ [4138000, 4232000], and 1hk
≥ 1m is an indicator func-385

tion that is 1 if the flow height meets or exceeds 1m at Mammoth, and 0 otherwise. (Note, 1m is a user-defined386

choice to represent PDC “inundation”, likewise 0.25m or 0.5m would be reasonable choices.) In a standard387
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Monte Carlo approximation, which can be written as,388

Pk(inundation | event volume V = v occurs) ≈ 1

Nsamp

Nsamp∑
i=1

1hk(Ei,Ni)≥1m (7)

where Ei, Ni ∼ p(E,N). Note that hk(Ei, Ni) represents the maximum height of the flowing mass result-389

ing at Mammoth for a PDC of volume v from a vent located at (Ei, Ni). This MC approximation would be390

prohibitively expensive if each MC sample required a TITAN2D run. In other words, the computational ex-391

pense of this calculation is in evaluating the indicator function. To overcome this limitation, we utilize an392

emulator of the max flow height of TITAN2D which we can use to approximate evaluations to this indica-393

tor function rapidly. That is, we replace hk(Ei, Ni) ≥ 1m in the indicator function in equation 7 with h̃k(Ei, Ni) ≥394

1m. Note also that we can quantify the uncertainty of using the emulator in place of TITAN2D by sampling395

the GP given by equation 2 for Mammoth directly instead of utilizing the GP predictive mean. In this case,396

we replace the right hand side of equation 7 as397

1

Nsamp

Nsamp∑
i=1

1hk(Ei,Ni)≥1m =
1

NsampN ′samp

Nsamp∑
i=1

N ′samp∑
j=1

1Hj
k(Ei,Ni)≥1m

where Hj
k is the jth draw from the Gaussian process fit at Mammoth and the additional MC step to quan-398

tify the uncertainty induced by replacing TITAN2D with a Gaussian process has N ′samp samples.399

To construct this emulator, we first begin by identifying a subdesign or a subset of the full design that400

is critical for Mammoth. For any location of interest, most of the TITAN2D runs from the full design will401

result in no flow at that location. Thus we will discard most of the zero-flow runs and keep only those that402

are closest (in design space normalized to a unit hypercube) to TITAN2D runs that result in a positive max-403

imum flow height. Typically, the number of “critical” design points relevant to a location of interest is ap-404

proximately two orders of magnitude smaller that the full design and for Mammoth example is 270. (Note,405

this approach to choose a subdesign is independent of the user-defined inundation threshold, hcrit.) Again406

denoting Mammoth with the index k, the resulting subdesign Xk
D ⊆ XD in hand, we then move onto build-407

ing emulators and constructing hazard contours for Mammoth.408

To help visualize this process, it is useful to think of the emulator’s role in the probability computa-409

tion in another fashion. An emulator helps us identify a curve (or surface) that separates events in scenario410

space that lead to inundation from those that do not. Toward this end, we build an emulator of the max-411

imum flow height at Mammoth utilizing only xj ∈ Xk
D and output from the corresponding TITAN2D runs412

ys
k = {hsk(xj)}. We find the predictive mean of the resulting emulator by using this data in equation 4. We413

then use the surrogate mean function, h̃k(x), to determine a level surface in design space, i.e. x ∈ D such414

that h̃k(x) = hcrit. Figure 3 (left) shows this level surface for Mammoth in volume×Easting×Northing space415

along with the critical design points used to fit the emulator at Mammoth (Note the level surface is eval-416

uated at the median basal friction value). Figure 3 (right) shows contours in Easting×Northing space that417

result from evaluating this level surface at specific volumes – here we focus on v = 0.01 km3 and v = 1418

km3. 105 random samples for the PDC initiation vent locations are also plotted on figure 3 (left).Those are419

sampled according to the probabilistic model detailed in Bevilacqua, Bursik, et al. (2017) and reviewed in420

section 4.2 of this study. We remark that the sharp boundary of the vent opening region depends on the uni-421

–13–

©2018 American Geophysical Union. All rights reserved.



manuscript submitted to Please set Journal Name by using \journalname

form map layer included in the model. The boundary is located at a 20 km range from past vent locations,422

excluding regions above 3000 m if not within a 5 km range from past vents. This choice is discussed in the423

vent opening study, and it is relevant to mitigate the possibility of PDC unrealistically initiating over non-424

volcanic plateaus or peaks in the Sierra Nevada range. (Note that we use physical information where avail-425

able to restrict the analysis to only plausible inputs.) We also remark that ∼ 90% of the initiation points426

displayed in the figure are localized along the Mono-Inyo volcanic chain, close to Mammoth Mountain, or427

over Mono Lake islands.428

Figure 3. (a): grey surface represents the level surface corresponding to x ∈ D, where h̃(x) = hcrit, x − y plane

is Easting and Northing and the z axis is volume on a log scale. Green (zero height) and red (positive height) dots

denote training runs of TITAN2D used to construct the emulator at Mammoth, e.g. x ∈ Xk
D. Runs initiated at a given

x and median basal friction value, which fall within the contour defined by constant volume planes parallel to the x−y

plane, lead to inundation. (b): level curve evaluated at v = 0.01 km3 (inner black curve) and v = 1 km3 (outer black

curve), effectively visualize slices of the surface on the left. Blue dots are 105 random samples of the vent location

according to the model in Bevilacqua, Bursik, et al. (2017). For a PDC of given volume initialized at a design point,

vents within the respective black curve will result in inundation at Mammoth (red star).

Using such a level curve in place of an indicator function in the MC calculation in equation 12 amounts429

to sampling a probability density function for vent locations, p(E,N), and counting the fraction of vents that430

fall within the level curve. As such probability calculations are now a post processing step that have com-431

putational demands only restricted by the sampling.432

3.3 Computational advantages of emulator-based Monte Carlo433

The most obvious advantage of using emulator-based MC, is that TITAN2D runs each take O(minutes)-434

O(hours) on super computers (depending on the domain, the local topography, the numerical error toler-435

ance, etc.) while emulators take a fraction of a second to evaluate on a laptop. This speed-up is perhaps not436

obvious in light of the extensive set of training runs we presented. LVVR covers 4500 km2 and getting ad-437

equate coverage of possible vent locations to build emulators required N =12000 training runs. For any lo-438

cation of interest in LVVR, there are roughly N/10 runs whose vents are near enough to the location of in-439

terest to get any flow to that location for the largest volume we considered (a 2 km3 flow). Of course, run440

at smaller volumes, many of these runs still result in no flow at the location of interest. For fitting an em-441

ulator, as we described for Mammoth, we need roughly an order of magnitude fewer runs (270 in that case.)442

Of course, nearby locations will share “important” runs, but the large design required at LVVR is due to443

the large spatial domain of that area and inputs to the emulator that vary spatially (e.g. vent locations.)444

The power of replacing standard MC with emulator-based MC can be seen from investigating error anal-445

ysis of MC calculations. Our exceedance probability calculations are just integrals, and in the most generic446
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sense can be written as447

Ef [G] =

∫ ∞
−∞

g(x)f(x)dx (8)

where, in analogy to equation 12, g(·) is the indicator function and f(·) is a probability density function de-448

scribing our aleatoric uncertainty about potential scenarios. If we define the error in our MC simulation as449

e =
∣∣∣ 1

N

N∑
i=1

g(Xn)− Ef [G]
∣∣∣ Xi ∼ f (9)

then by Chebyshev’s inequality, we have an error estimate given by (Papoulis & Pillai, 2002; Ross, 2012)450

e ∝
√
varf [G]√
N

. (10)

Equation 10 tells us that there are two mechanisms to reduce the error in an MC estimator. The first is to451

increase the number of MC samples. Note, since MC is O(N−1/2), we require a hundred fold increase in to452

get one order of magnitude improvement in the error of the estimator. This is clearly problematic if each453

additional sample requires an O(min)-O(hour) computation. The other mechanism to reduce the error is to454

reduce the variance of the MC estimator, varf [G]. Importance sampling is a powerful variance reduction tech-455

nique, and there is a well known result that the optimal importance sampling distribution is f̃(·) ∝ f(·)g(·)456

(Bucklew, 2010). For our dynamic probabilistic hazard mapping approach this has two implications: through457

f(·), variance reduction depends on the choice of aleatory model, and through g(·) variance reduction is lo-458

cation dependent as the indicator function is location dependent. Thus there is no obvious systematic way459

to improve MC estimates for calculating inundation probabilities for a whole map at once via smart sam-460

pling schemes using a fixed and small number of samples. And if somehow we found one, it would be sub-461

optimal if we wanted to consider the impact of utilizing other probability distributions of scenarios as we do462

to quantify epistemic and aleatoric uncertainties. Alternatively, one could explore location-dependent im-463

portance sampling schemes by using the estimate of the indicator function provided by the emulator in f̃(·) ∝464

f(·)g(·).465

4 Results and Discussion: dynamic probabilistic hazard maps in the Long Valley Vol-466

canic Region467

The hazard mapping tool proposed here provides a systematic and efficient strategy to combine phys-468

ical modeling and statistical modeling for forecasting resulting volcanic hazards. This approach provides both469

state of the art hazard forecasting through probabilistic hazard maps and a mechanism to quantify atten-470

dant uncertainties.471

4.1 Quantifying aleatoric uncertainty.472

The process of constructing emulator-based probabilistic hazard maps as described in section 3 is in-473

dependent of any specific vent opening model. Ultimately a probability model for vent opening that reflects474

the aleatoric variability of the system must be chosen and the resulting map quantifies that choice of aleatoric475

variability via the hazard probability calculation in equation 12.476
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The dynamic probabilistic hazard mapping tool lets one investigate the impact of aleatoric modeling477

choices on hazard forecasts. Here we walk through how a typical probabilistic modeling process might pro-478

ceed. Thus we start with an uninformed, naive model of vent opening to reflect aleatoric variability, namely479

a uniform probability of vent opening over a given region. Then we proceed to consider a simple vent open-480

ing model based on previous vent locations in LVVR. Finally, we consider a sophisticated model that incor-481

porates both previous vent opening data and other geological data that indicate areas of possible new erup-482

tions. The key here is that one does not have to wait for “the best aleatoric model” to be developed to de-483

vise hazard forecasts, and thus one can see the impact of modeling choices on those forecasts.484

Figure 4 shows three examples of probabilistic hazard maps (PHM) according to these very different485

vent opening probability models, and assumes an event of volume of 1 km3, e.g. a worst-case scenario PDC486

in LVVR (see Appendix). (Note, in this example and throughout this section, we take hcrit =1m and eval-487

uate the emulator at the median basal fiction value, 10.5◦.)488

In detail, figure 4a adopts a uniform vent opening probability distribution of a rectangular domain en-489

casing the past vent locations over the region [313000, 33100]×4140000, 4231000]. The hazard levels are sig-490

nificantly spread and influenced by topography, with 20% reached in the canyon of the Middle Fork of the491

San Joaquin River. Figure 4b adopts a Gaussian mixture model with four components fit to past vent lo-492

cations. Hazard values are more peaked, with values >50% in the area of Mammoth Mountain, and >20%493

West and South of the Mono domes, as well as in the West Moat of Long Valley caldera (LVC). Figure 4c494

adopts the mean values of the doubly stochastic model under consideration. These data – samples from the495

doubly stochastic model – are publicly available here (Bevilacqua, Bursik, Patra, Pitman, & Till, 2019). Haz-496

ard values >35% are estimated for the area West of Mono Domes, and values >20% in the Inyo Domes re-497

gion, the West Moat of Long Valley caldera, and all around the Mono chain including the South portion of498

Mono Lake. In summary, the vent opening model has a profound effect on the PHM values - on the max-499

imum hazard levels reached, on where they are located, and on the spatial extension of the area exposed.500

We imagine this kind of analysis could be very useful not as a finished product, but as an aid for understand-501

ing and communicating the impacts of aleatoric uncertainties through the modeling process.502

The power of this methodology lies in the ability to rapidly construct maps such as those in figure 4.503

Once TITAN2D training runs are done and emulators are constructed, producing new probabilistic inun-504

dation maps takes roughly 5-10 min on a cluster. Thus it is very easy to explore different aleatory proba-505

bilistic descriptions of scenarios. In particular we believe this could be a useful tool to incorporate monitor-506

ing data into such probabilistic inundation studies. Aleatory models can be updated/adjusted to reflect new507

information from monitoring data and then fed through the probabilistic hazard mapping process to visu-508

alize the impacts of these updates on probabilistic inundation maps. This approach is faster than running509

a few one-off TITAN2D flows representing scenarios consistent with monitoring data. Further, and more im-510

portantly, this approach is statistically robust as incorporates probabilistic descriptions of potential scenar-511

ios.512
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Figs/FigTest_v9_R1.jpg

Figure 4. Dynamic probabilistic hazard maps conditioned on a PDC event of volume of 1 km3 – a “worst-case

scenario” PDC at LVVR – and based on: (a) a uniform vent opening probability distribution, (b) a Gaussian mixture

model based on known past vent locations, (c) the mean values of the doubly stochastic model in Bevilacqua, Bursik,

et al. (2017). Black triangles mark past vent locations in the last 180ka (Bevilacqua, Bursik, et al., 2017).

4.2 Probabilistic hazard analysis in Long Valley Volcanic Region and quantifying epis-513

temic uncertainty.514

In the following description, we focus our hazard analysis by utilizing the vent opening map(s) described515

in (Bevilacqua, Bursik, et al., 2017). This is the most reliable vent opening model available to us, in terms516

of volcanological knowledge. In this model, the authors consider “map layers” associated with three differ-517

ent conceptual models and combine them with weights found using a Bayesian Model Averaging approach.518
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Figs/figure1_mod_R1.jpg

Figure 5. (a, b) vent opening probability maps for LVVR based on Bevilacqua, Bursik, et al. (2017). In (a) we

show the mean values of the probability per km2, and in (b) the uncertainty index associated with those values. In

(c) we show the uncertainty index of the related PHM (Fig. 4c). Black triangles mark past vent locations in the last

180ka.

The first model focuses exclusively on the distribution of past vents and describes the expected distance519

to new eruptive vents relative to past vent locations. The second model assumes that fault outcrops (i.e. mapped520

faults) are related to future vent locations. Only structures which are likely to have previously interacted521

with the rise of magma are considered, highlighting the preferred routes of previous dike intrusion. The third522

model is a uniformly distributed probability map inside a conservative (i.e. large) distance range. It consid-523

ers the effect of potentially missing information such as the presence of unknown past vents, or any vent open-524

ing dynamics missed by the other models. Note that the model averaging weights themselves are uncertain,525

reflecting the main effects of epistemic uncertainty in the doubly stochastic framework. In particular, the526
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sources of epistemic uncertainty include the unknown relationship between events in the Northern (Mono)527

part of the region relative to those in the Southern (Mammoth) part, the unknown expected distance to fu-528

ture vents from past locations or from fault outcrops, and the chance of unmapped faults.529

Figure 6. Probability of inundation hazard at Mammoth as a function of PDC volume. The mean hazard prob-

ability is plotted as a solid black curve. The full spread of probabilities reflecting epistemic uncertainty in the vent

opening model is shading in light purple while the 95% credible interval is within the black dashed curves.

Figure 5 displays this state-of-the-art vent opening map along with probabilistic hazard maps that uti-530

lize the vent opening model under consideration. We have 250 sample vent opening maps from this model,531

each of which has different weights to combine the map layers in the Bayesian Model Averaging approach.532

These map samples reflect epistemic uncertainty in the vent opening model and that epistemic uncertainty533

varies spatially. Figure 5a displays the mean values of the vent opening pdf per km2. Maximum values of534

1.3% probability per km2 are located along the Mono chain and around Mammoth Mountain. Secondary535

maxima above 0.5% per km2 are on the Inyo chain and on the islands and North shore of Mono Lake. Pos-536

itive values, but <0.02% per km2 are spread on a wide region. Figure 5b shows a description of variability537

due to epistemic uncertainty among the vent opening map samples given by the uncertainty index:538

U(x, y) :=

 λ · q95(x,y)−q5(x,y)q5(x,y))
, if q5(x, y) > 0;

0, otherwise.
(11)

where (x, y) are the geographic coordinates, qn is the nth percentile of the vent opening pdf, and λ is a nor-539

malization constant such that max(U) = 1. The uncertainty index is a new definition, and maps the un-540

certainty as a relative error. We note that the uncertainty index is zero when the 5th percentile is (exactly)541

zero. However, in our case, if that is happening then the 95th percentile is also zero, thus the uncertainty542

is zero. The index shows that the maximum uncertainty is localized in the Mammoth Mountain area, but543

significant uncertainty affects the vent opening probability in Mono Lake and to the East of the Mono re-544

gion.545

Figure 5c displays the uncertainty index of the PHM of figure 4c. Uncertainty is significantly peaked546

around Mammoth Mountain, the West Moat of LVC, and in the canyon of the Middle Fork of the San Joaquin547

River. Before moving on to further hazard analysis, we describe in more detail how the emulator based haz-548

ard mapping tool is used to construct figure 4c and 5c.549

The probabilistic hazard mapping approach presented here can readily capture the effects of epistemic550

uncertainty on a forecasted PDC hazard map. To do so, we construct a probabilistic hazard map using equa-551

tion 7 for each of the 250 sample vent opening maps. That is, we repeat the MC calculation for each of 250552

p(E,N), but the added computational expense is negligible when using the emulator in place of TITAN2D.553

And for each location of interest (e.g. Mammoth), the emulator only needs to be constructed once. Consider554

figure 3b, the analogy here is that each sample of the vent opening map will yield a different set of vent sam-555
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ples that can be evaluated with the same emulator. That is, the blue dots will change from one map sam-556

ple to the next, but not the black contours.557

We can construct dynamic probabilistic hazard maps conditioned on any PDC volume. This allows us558

to explore the probability of PDC hazard inundation as a function of volume under any vent opening map.559

Figure 6 shows this probability of catastrophic hazard (here defined as a flow exceeding hcrit = 1m) as a560

function of PDC volume at Mammoth. The epistemic uncertainty inherited from the vent opening model561

is also explored as a function of volume and included in this figure. It is worth noting that the mean haz-562

ard probability has the steepest slope between volumes of 0.1−0.3 km3. This kind of analysis is useful in563

thinking about the sensitivity of hazard forecasts to an uncertain input scenario even when a probabilistic564

model of that scenario is not readily available.565

In the Appendix we explore four models for volume (two data sets, and two models for each.) We will566

not present full probabilistic hazard maps using those models as the models are still preliminary. That said,567

incorporating volume models into the probability of inundation calculation is quite straight forward. Thus568

emulator-based MC approach allows us to explore the impacts of epistemic uncertainty in the vent opening569

models (as above) and volume models on the probability of inundation. To isolate the impacts of epistemic570

uncertainty on the hazard forecast at Mammoth, let us consider an updated version of equation 7, namely571

Pk(inundation | PDC occurs) =

∫
M

1hk≥1m p(E,N)p(V )dEdNdV. (12)

Here p(V ) has uncertain parameters, and we can either plug in the average parameters or sample those pa-572

rameter values to get a family of p(V )s much as we have a family of 250 vent opening maps as described above.573

For each p(E,N) and p(V ) under consideration, we will take Nsamp = 105 MC samples of {E,N, V } as to574

diminish the effects of MC error on the calculations of Pk (recall, k was the index that denotes Mammoth.)575

We explore three cases and present histograms of each: (1) sample parameters in p(V ), sample vent open-576

ing maps p(E,N); (2) sample parameters in p(V ), fix p(E,N) (as full posterior); (3) fix p(V ) at median pa-577

rameter values, fix p(E,N). In each of the three cases, and for each of the four volume models under con-578

sideration, we repeat the MC calculation 250 times and collect histograms of hazard probabilities that il-579

lustrate the impacts of the various sources of epistemic uncertainty. These results are summarized in figure 6.580

The epistemic uncertainties for models fit to past dome deposit data (a and b) are relatively similar to each581

other. As anticipated from the heavy-tailed nature of the Pareto distribution (a) the right “tail” of the his-582

tograms extend further than they do in the log-normal case (b) (for both histograms 1 and 2), although the583

log-normal has a higher mean inundation probability. In contrast, the epistemic uncertainties for models fit584

to only PDC deposit data (c and d) behave quite differently from each other. In the Pareto case (c) there585

is a dramatic impact on the right tail of both probability histograms (1 and 2). The mean inundation prob-586

ability estimate for the Pareto case is about twice that for the log-normal case. Further, the mean value in587

the Pareto case barely falls in the support of histogram (2) for the log-normal case.588

Note, figure 6 represents 300 million individual MC samples which would be computationally infeasi-589

ble if a new TITAN2D run were required for each, but takes roughly 2 hrs (10 minutes for each of 12 his-590
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tograms) to complete on a laptop. As with the dynamic probabilistic hazard maps presented in this paper,591

such an analysis could be run for each site in parallel with distributed jobs on a cluster.592

We remark that, even if we focus on volumes larger than V = 0.001 km3 (see figure 2a), the chance593

of future, smaller PDCs may not be negligible, because they are difficult to distinguish in the ash layers, and594

often ancillary to larger flows (see Appendix). However, the footprints of such flows are quite geographically595

constrained and we suspect a resulting PDC hazard forecast map would differ little from the vent opening596

model under consideration. Instead, for larger PDCs, the interplay of vent opening, topography and flow physics597

is usually nontrivial. From figure 6 it is apparent that rare yet large scale events are those most likely to lead598

to catastrophic hazards.599

Assuming V = 0.01 km3, figure 8a and 8b show the mean of our 250 probabilistic hazard maps over600

two representations of topography, while figure 8b shows the uncertainty index, which describes variability601

among the 250 probabilistic hazard maps. Note that the palest yellow which dominates the left/middle fig-602

ures represents a probability of hazard of less that 1%. Some of this area reflects the uniform component of603

the vent opening model (and hence location of possible future PDCs) which itself represents epistemic un-604

certainty. Taking such uncertainties into account renders these resulting probabilistic hazard maps as rather605

conservative. The mean hazard values are ≥1% only in a range of ∼5 km from the past vents of Mammoth606

Mountain, Mono-Inyo domes, and Negit Island in Mono Lake. Hazard values >5%, with maximum at 7.4%,607

are located in the northwest of the Mono chain, and at the eastern base of Mammoth Mountain, where Mam-608

moth is situated. The uncertainty index is again peaked around Mammoth Mountain and surrounding ar-609

eas, with secondary maxima to the east of Mono domes, and in the northwest of Mono Lake.610

5 Conclusion611

We have constructed probabilistichazard maps for PDCs of volumes 0.01 km3 and 1 km3. These vol-612

umes volumes are representative of the largest PDC volumes seen in the Long Valley Volcanic Region (LVVR)613

in the Holocene, and the late Quaternary, respectively (Sieh & Bursik, 1986). The probabilistic hazard maps614

represent the likelihood, with uncertainty, that a flow of the given volume would inundate a locality, assum-615

ing the physical model is appropriate, and given an eruption can happen at vent locations consistent with616

the aleatoric model of vent locations from Bevilacqua, Bursik, et al. (2017), and eruptive behavior typical617

of the late Quaternary period. For PDCs of volumes of the range ∼ 0.01 km3 –1 km3, the inundation could618

likely pose a risk to large engineered structures and complexes such as dams, bridges and entire ski resorts619

in addition to roads and minor, non-engineered structures, such as houses. We further illustrated how, us-620

ing this emulator-based strategy, we can incorporate probabilistic models of volume and vent opening into621

such hazard calculations. Further this methodology enables visualization of the impact of scenario model622

epistemic uncertainties on the probability of inundation as we illustrated at Mammoth. The impact of other623

uncertain inputs can be analyzed in a similar fashion. If combined with a temporal vent opening map (Bevilac-624

qua et al., 2018), the data in these maps could be used to generate a map of probability of inundation on625
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an annualized, centennial or millennial basis, whichever is more appropriate to a given engineering or civil626

defense application.627

In the present contribution, we have discussed the role of statistical surrogates (emulators) in volcanic628

hazards assessment and probabilistic hazard map construction for the Long Valley volcanic region, CA.629

The important points of the exercise are the following:630

• Emulators provide a flexible tool for the construction of probabilistic hazard maps from a particular631

type of volcanic phenomenon (in the present case, pyroclastic density currents), given aleatory and632

epistemic uncertainty in the position, persistence and characteristics of the potential source locations.633

New, computationally costly numerical model (simulator) runs are not needed as knowledge of the source634

improves with continued development of geologic information on past events, or geophysical informa-635

tion about evolving unrest. Moreover, the direct characterization of the critical output as a function636

of possible eruption scenarios (in terms of location, volume and mobility of flows) compensates for the637

lack of knowledge of many aspects of the physics.638

• Dynamic hazard maps allow one to efficiently examine the impact of various sources of uncertainties639

on probabilistic hazard forecasts.640

• Given the ability to develop a hazard map quickly, we have shown that there is a role for near-real641

time, probabilistic hazard forecasting and hazard mapping as a situation of unrest, or continued gen-642

eration of pyroclastic flows evolves.643

• The TITAN2D modeling tool here makes many simplifications and does not capture the effect of sev-644

eral significant phenomena (e.g. entrainment and flow stopping criteria) for which data are unavail-645

able and/or the physics is poorly understood. Nevertheless, the careful accounting of uncertainty in646

the dynamic probabilistic hazard map construction outlined here is insightful and implicitly overcomes647

some of the inadequacy of the model while providing support for decision making by experts.648

• Potential further investigations include:649

– As part of a holistic probabilistic hazard study at LVVR, calculating frequency and volume mod-650

els of flow hazards and incorporate those using the presented methodology to make probabilistic651

hazard maps and study the impacts of various uncertainties (see Appendix for a preliminary anal-652

ysis of past volumes.)653

– Making it possible for civil authorities to communicate probabilistic hazard forecasts and uncer-654

tainties as part of a hazard analysis or risk assessment.655

– Taking temporal eruption frequency into consideration, providing time-space assessments. (Beb-656

bington, 2013; Bebbington & Cronin, 2011; Bevilacqua et al., 2016; C. B. Connor & Hill, 1995; Ja-657

quet, Lantuéjoul, & Goto, 2017); and even volume-space assessments (Bebbington, 2015; Bevilac-658

qua, Neri, et al., 2017).659

We reiterate that, although details in this work are specific to PDCs and the Long Valley Volcanic re-660

gion, the approach we present here is quite general and flexible. That is, a similar emulator-based dynamic661
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hazard mapping strategy could be applied to different volcanoes or volcanic regions. Further, a similarly strat-662

egy could be used to assess hazards associated with other volcanic phenomena such as lahars or tephra fall.663

A Statistics of expected PDC volume664

Figure A.1 shows the volumes observed in the Mono-Inyo PDC deposits. Data are collected from Bur-665

sik et al. (2014); Miller (1985); Sieh and Bursik (1986). There are eleven volume estimates, ranging from 0.005666

km3 to 0.06 km3, and including both block-and-ash flows (BAF) generated by lava dome collapse (e.g. Panum667

BAF), and pumice flows from eruptive column collapse (e.g. Panum Dune flow). We rely on information on668

the three most recent eruptions that occurred in the Long Valley volcanic region: the Inyo eruption (South669

Deadman flow of 0.05 km3 and half of Obsidian-Flow pyroclastic deposits of 0.01 km3); North Mono erup-670

tion (Panum Dune flow of 0.009 km3, Panum BAF of 0.033 km3, Panum Uppermost flow of 0.017 km3, West671

flow of 0.05 km3, and undifferentiated flows of 0.019 km3) and South Mono eruption (half of Upper Gray672

beds of 0.06 km3, half of Orange Brown beds of 0.02 km3, and half of the Basal beds of 0.005 km3). The first673

two of these eruptions occurred in 1338 AD ±13 separated by a ∼1-2 year gap, while the third eruption oc-674

curred in 621 AD ±13 ?. We also include Wilson Butte flow, of 0.04 km3, and occurred in 290 AD ±50. Vol-675

umes below 0.001 km3 are missing in our data set. Often, small deposits may not be preserved as they are676

prone to wash away, or because of the difficulty in distinguish among the ash layers. A table summary of677

these values is included in Supporting Information SI1. Because of their sparsity, these data represent a pre-678

liminary approximation to the real volume distribution of past flows.679

Given the local complex intercalation of fall, flow and surge deposits, making it difficult to trace dis-680

tinct beds, we applied a multiplicative corrector of 0.5 to the total volume published for the South Mono erup-681

tion flows and the Obsidian-Flow pyroclastic flows. Volumes below 0.001 km3 are missing in our data set.682

Deposits of such small volumes may not be well-preserved as they are prone to erosion and redeposition, and683

they are under-recorded because we have not separated them out for the South Deadman and South Mono684

flow deposits. The average value of measured Mono-Inyo PDC deposits is well-represented by a value of v ≈685

0.03 km3. Again, some of the PDC deposits are known to be a combination of two or three separate, sim-686

ilar PDCs in rapid sequence (minutes to hours), difficult to distinguish, and possibly from multiple sources.687

For this reason, in Figure 8, we detailed the scenario of a single flow with v = 0.01 km3.688

Although the volume of domes and the volume of related PDCs are very uncertainly related, dome col-689

lapse is certainly an initiation mechanism for LVVR flows. Hence, we tentatively inferred additional flow vol-690

umes from lava dome volumes, including those of the Mammoth Mountain domes. Results are included in691

figure A.1 and are collected from Bevilacqua et al. (2018); Burkett (2007); Bursik et al. (2014); Miller (1985);692

Sieh and Bursik (1986). Average dome volumes are about one order of magnitude larger than those obtained693

from measured PDC deposits. We applied a multiplicative corrector of 2.5 to pass from dense rock (DRE)694

to an equivalent pyroclastic volume. However, the resulting values may be overestimating those of actual dome695

collapse flows because domes usually only collapse partially. There are thus twenty-three additional volume696

estimates, ranging from 0.006 km3 to 0.96 km3. We rely on dome and lava flow volumes for the Inyo erup-697
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tion (Glass Creek dome of 0.25 km3, Obsidian Flow dome of 0.43 km3, South Deadman dome of 0.33 km3),698

the North Mono eruption (Cratered Dome of 0.005 km3, Panum Dome of 0.03 km3, Panum tephra ring of699

0.007 km3, North Coulee of 0.96 km3, Upper Dome of 0.093 km3, and Satellite Dome of 0.005 km3), the South700

Mono eruption (South Coulee 0.81 km3), Wilson Butte eruption (Wilson Butte of 0.13 km3), and twelve of701

the domes of the Mammoth Mountain dome complex, approximately erupted from 100 ka to 50 ka, and rang-702

ing from 0.025 km3 to 0.58 km3 in volume. These values are also summarized in Supporting Information SI1.703

The average value of tephra equivalent to the rock volume of measured domes is well represented by704

v ≈ 0.2 km3. However, in Figure 4, we detailed the scenario of a single flow with v = 1 km3, related to705

the total collapse of the largest domes and flows in the record (North Coulee and South Coulee). We remark706

that such an extremely large event is not assumed to be likely in the Long Valley volcanic region, but is con-707

sistent with the largest scale of the effusive phases of the most recent events. The chance of events more ex-708

treme in volume than the PDCs observed in the past is subject to great uncertainty, and strongly depends709

on the statistical model adopted for the extrapolation of the tail of the probability distribution of the PDC710

volumes reported in Figure A.1. For example, assuming a lognormal distribution, the 95th percentile of the711

volume is v ≈ 0.1 km3, but if the Pareto distribution is assumed, this value increases to v ≈ 1 or 2 km3.712

The 95th percentile values obtained from the lava domes are two orders of magnitude larger than these val-713

ues. However, lava domes of such sizes (>> 1 km) are almost completely unknown in the geologic record,714

and certainly unknown at LVVR. In general, the logarithm of the observed volumes is compatible with the715

null hypothesis of the Shapiro-Wilk test for a Gaussian distribution, and the maximum likelihood in the log-716

normal class is significantly higher than in the Pareto class (see figure A.1).717
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Figs/UQ_vol_vent_Mammoth-eps-converted-to.pdf

Figure 7. Histograms of probabilities of inundation at Mammoth reflecting epistemic uncertainties are depicted

above. In each figure, the blue histograms reflect uncertainty in the vent opening model and volume model (case 1),

the salmon histograms reflect uncertainty only in the volume model (case 2), the purple histograms fix both mod-

els, and the white bars represent the mean inundation probability in each case. Each figure above represents one

model/volume data set choice: (a) Pareto distribution, past dome data set; (b) Log-normal distribution, past dome

data set; (c) Pareto distribution, PDC data set; (d) Log-normal distribution, PDC data set.
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Figs/Fig7_R1.jpg

Figure 8. (a-b) mean probabilistic hazard based on the model of Bevilacqua, Bursik, et al. (2017) and conditioned

on a PDC event of volume of 0.01 km3 plotted over a topographic map in a, over a satellite image in b (note we are

presenting both as snow cover obscures some of the topography that drives inundation toward the southwest of Mam-

moth Mountain) , (c) the corresponding uncertainty index of the PHM. Black triangles mark past vent locations in the

last 180ka.

–36–

©2018 American Geophysical Union. All rights reserved.



manuscript submitted to Please set Journal Name by using \journalname

Figs/figure_OK.jpg

Figure A.1. (a, b) histograms of the volume of Mono-Inyo PDC deposits (blue), and lava domes (red). (c-d) Max-

imum likelihood pdf of the volume. (c) assumes log-normal and (d) Pareto distribution. Dashed lines show the 90%

symmetric confidence for the values of the pdf. Labels report the parameter values with 90% confidence interval.
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