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ABSTRACT: Predicting the binding affinity of peptides able
to interact with major histocompatibility complex (MHC)
molecules is a priority for researchers working in the
identification of novel vaccines candidates. Most available
approaches are based on the analysis of the sequence of
peptides of known experimental affinity. However, for MHC
class II receptors, these approaches are not very accurate, due
to the intrinsic flexibility of the complex. To overcome these
limitations, we propose to estimate the binding affinity of
peptides bound to an MHC class II by averaging the score of
the configurations from finite-temperature molecular dynam-
ics simulations. The score is estimated for 18 different scoring functions, and we explored the optimal manner for combining
them. To test the predictions, we considered eight peptides of known binding affinity. We found that six scoring functions
correlate with the experimental ranking of the peptides significantly better than the others. We then assessed a set of techniques
for combining the scoring functions by linear regression and logistic regression. We obtained a maximum accuracy of 82% for
the predicted sign of the binding affinity using a logistic regression with optimized weights. These results are potentially useful
to improve the reliability of in silico protocols to design high-affinity binding peptides for MHC class II receptors.

■ INTRODUCTION

The major histocompatibility complex (MHC) class II
molecules are key receptors involved in adaptive immunity.
MHC class II molecules respond against extracellular
proteins,1 in particular, small peptides to which they bind to
activate the immune system. Due to their role in the control of
infections caused by external pathogens,2 understanding the
MHC class II binding mechanisms, and predicting the binding
affinity to peptides, has become a priority.
The molecular mechanisms by which MHC class II

recognizes peptides has been investigated in detail.3 The
peptides bind to a groove exposed on the external regions α1
and β1 of the MHC class II receptor, which is characterized by
two α-helical walls and a β-sheet.3,4 The binding peptides can
have a length between 9 and 20 amino acids.4 However, the
complex is mainly stabilized by the interactions of 9 amino
acids, which are localized in four key pockets: P1, P4, P6 and
P9 (see Figure S1). The pockets are distributed between the
α1 and β1 regions, with the latter containing multiple
polymorphisms, associated with different MHC class II alleles.5

The flanking regions of the peptide, as well as the amino acids
that do not interact with the key pockets, are crucial to
facilitate the interaction with T-cell receptors (TCRs) after

migration of the peptide−MHC complex to the surface of
antigen-presenting cells.6

The identification of peptides that potentially trigger
immune responses against invading pathogens relies, in part,
on the binding affinity between the peptide and the MHC class
II receptor.7 If the binding affinity is high, the peptide has a
greater potential to trigger an immune response. This
hypothesis has been associated with antigenicity and
immunogenicity properties of the source peptides.8 However,
there are other factors that could affect the immunological
response of the peptides, such as the complementary of the
peptide−MHC complex with TCR loops, the stability of the
interaction between the peptide and the MHC class II, and the
facilitation of the editing process made by additional
proteins.9,10 With these premises, the area of immunoinfor-
matics has developed an extensive set of bioinformatics tools
(mainly sequence-based strategies) for predicting the affinity
between a peptide and MHC class I or class II molecules.11

These bioinformatics pipelines should detect if novel peptides
derived from pathogen proteins can be used as vaccine
candidates, or can help other antigens trigger the immune
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molecular machinery.12 These methods are widely used by the
community. However, the MHC class II molecules are flexible,
and the binding-affinity prediction for novel sequences is a
difficult task.13 Moreover, these approaches require extensive
training sets of peptides of different sizes assayed under
standardized competitive binding experiments, which might
not be available.
An alternative and a complement to the bioinformatics-

based approaches are structure and dynamic-based strategies.
This is made possible by the availability of MHC class II
structures in complex with peptides derived from pathogens, or
involved in autoimmune diseases.14,15 The inclusion of
structural information is crucial to explore relevant molecular
conformations of the peptide−MHC complex, and therefore,
key to understand its dynamic behavior.16 Methodologies
using regular or enhanced sampling approaches with molecular
dynamics (MD) simulations have been applied to predict the
free energy of binding between pathogen-derived peptides and
MHC molecules.17,18 Concerns about these strategies include
the required computational time, and the intrinsic errors of the
binding prediction.19 One way to solve these issues is through
integrative approaches, which in many cases are able to predict
accurately and efficiently the experimental binding data.20

These strategies may provide a rational way to modify the
amino acid sequence21 by improving the affinity of the
peptide−MHC complex.
A possible approach is to use MD to generate a realistic

ensemble of configurations of the complex, and then score it
with a scoring function for predicting the binding affinity.22−25

These combined approaches have been designed to make
virtual screening more reliable, accurate and fast,26,27 for
discriminating between binders and nonbinders, and between
binding poses of the same molecules.28 Although these
methods are less accurate than calculating the binding free
energy by molecular dynamics, they provide a viable
compromise between predictive power and computational
efficiency.29,30 A crucial step in these calculations is the
selection of the scoring functions, which can be knowledge-
based, physics-based, or a hybrid composite function.31

The purpose of this work is to refine this approach, with the
specific target of predicting the experimental binding affinity to
MHC class II. We considered a set of eight peptides of known
binding affinity. We modeled the complexes formed by the
peptides with an MHC class II molecule by accurate explicit-
solvent MD simulations, and then scored the conformations
from these simulations using 18 scoring functions. We assessed
the performance in predicting the experimental rank of the
peptides. Six scoring functions produced good predictions. We
then combined these scoring functions using linear regression
and logistic regression models. We show that combining
different scoring functions produced better results than any
individual score, and the best results are found using a logistic
regression model.

■ METHODS
MHC Class II Binding Data Set and Structure

Selection. A data set containing 44 541 measured affinities
covering 26 MHC class II alleles was chosen.32 The set
includes binding data of different HLA-DR, DP, and DQ
receptors obtained from experiments under equal conditions
for all the peptides. This information is part of the training data
implemented by prediction tools available at the IEDB
portal.33 Oligopeptides of different sizes are included, but

with a major proportion of 15-mer peptides bound to HLA-DR
receptors (∼95%).
Additionally, we looked in the Protein Data Bank (PDB)34

for protein structures of HLA-DR receptors in complex with
peptides. We focused on structural complexes that had
available binding affinities from the chosen data set. Only a
structure of the HLA-DRB1*15:01 allele cocrystallized with a
15-mer peptide derived from the myelin basic protein
(MBP)35 met the selection criteria (PDB id: 1BX2). This
structure was selected as the template to model different
peptides from the data set. The structure was subjected to
reconstruction of missing side chains using Scwrl4.36

Selection of the Peptides. The selected structure (1BX2)
is in complex with the peptide of sequence ENPVVHF-
FKNIVTPR. On the basis of this template, we selected
peptides sharing identical amino acids in the 9-mer core region
that interact with the HLA-DR pockets. Two methodologies
were used to predict the 9-mer core part of all the 15-mer
peptides available in the data set. One method is based on a
position-specific scoring matrix previously created for the
HLA-DRB1*15:01 allele using multiple sequence alignments
of known substrates.37 Specifically, the sequences were
analyzed using windows of nine amino acids, starting from
different initial positions, and each fragment was scored and
summed to obtain a ranked list for the position of the most
probable core region. The fragment with the highest score was
selected. The second method implements the NetMHCIIpan-
3.1 tool, which has been designed for the quantitative
prediction of peptide binding to MHC class II molecules,
and also for the prediction of the 9-mer core regions of any
peptide sequence.38

We filtered the peptides with identical core regions
predicted by both methods, and selected the peptides with
the highest scores in comparison to those calculated for the
reference sequence. We also filtered the peptides by the
maximum number of amino acids shared within the core
regions of the crystal, mainly sequences with identical amino
acids interacting in positions P1, P4, P6, and P9. This analysis
was done to avoid misalignment of the core region, and obtain
reliable starting models for the peptide−MHC class II
complexes. Moreover, we selected peptides with experimental
affinities differing in a wide range of IC50 values. The final list
of chosen peptides for the posterior modeling and evaluation
of the sampling/scoring approach are shown in the Results
section, Table 1.

Modeling of Peptides Bound to MHC Class II
Receptor. We selected as the template, over which to
model the seven selected peptides, the peptide-bound MHC
class II PDB structure (1BX2).35 The modeling protocol was
an iterative single-point mutation approach using the Rosetta
fixbb package,39 which was previously compared to other
available mutation protocols.40 Each amino acid position was
mutated using Rosetta fixbb with a subsequent relaxing phase
of the amino acid side chains with fixed backbone. Some
peptides had additional amino acids at the amino or carboxi
terminal positions of the core region. These were modeled
using the Rosetta Remodel package from RosettaCommons.41

The new amino acid, as well as the amino acids next to it were
subjected to the prediction of rotamers with relaxation of the
side chains.

Molecular Dynamics Simulations. Each protein−peptide
complex from the benchmark was subjected to 100 ns of MD
simulations with previous minimization and NVT/NPT
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equilibration phases. GROMACS v5.142 was used to perform
the MD simulations. The Amber99SB-ILDN protein force-
field43 and TIP3P water model44 were used. The protein was
solvated in a cubic box of water with periodic boundaries at a
distance of at least 8 Å from any atom of the protein. After
solvation, counterions of Na+ and Cl− were included in the
solvent to make the box neutral. The electrostatic interactions
were calculated using the Particle Mesh Ewald (PME) method
with 1.0 nm short-range electrostatic and van der Waals
cutoffs.45 The equations of motion were solved with the
leapfrog integrator46 using a time step of 2 fs.
The simulations were performed at a temperature of 350 K

to allow a fast exploration of the conformational space. We
used a modified Berendsen thermostat47 and a Parrinello−
Rahman barostat.48 To maintain the system stable at this
temperature, all the receptor atoms located in a distance
greater than 12 Å from any peptide atom were restrained. The
atoms from the receptor located in a distance lower than the
threshold remained flexible, as well as the peptide. The
convergence of the simulations was monitored by computing
the number of hydrogen bonds between the peptide and
protein, the number of heavy atom contacts,49 the all-atom
root mean-square deviation (RMSD) of the peptide and the
root mean-square fluctuation of both the protein and the
peptide.
Scoring Functions. A set of 18 different scoring functions

was used to score the conformations from the MD trajectories.
We selected the following: ROSETTA,50 PISA,51 FIRE-
DOCK,52 ZRANK,53 BACH,54−56 BMF,57 BLUUES,58 a
method combining the results of BMF and BLUUES (BMF-
BLUUES), HADDOCK,59 VINA,60 DFIRE,61 GOAP,62 the
combination of the results from DFIRE and GOAP (DFIRE-
GOAP), IRAD,63 ODA,64 PROPNSTS,65 SIPPER,65 and
PRODIGY.66 Details for each scoring function are provided
in the Supporting Information.
Most of the scoring functions are statistical and knowledge-

based potentials used for protein−protein and protein−ligand
docking. However, semiempirical approaches are also included.
The scores were calculated using the complete protein−
peptide complex conformations. We used the last quarter of
the MD trajectories to calculate the average score and the
standard deviation for each complex. Specifically, we used the
last 25 ns for the analysis, and we took snapshots of the system
every 50 ps, resulting in 500 structures for each peptide−MHC
class II complex. In the Supporting Information we also
provide the results using the last half of the trajectory. A
general schema of the protocol is provided in Figure 1.
Block and Spearman Correlation Analysis. A block

analysis approach was applied to estimate the statistical
reliability of the scores. Specifically, the last quarter of the
trajectory was split into four blocks of equal length, and the
mean and standard deviation of the scores were calculated in
each block. We then selected at random one of the four blocks
for each peptide, and computed the Spearman correlation
using only that block. We repeated this procedure 2000 times,
obtaining in this manner a probability distribution of the
Spearman correlation. The cumulative and the average of each
correlation distribution were used to rank and select the best
scoring functions for further analysis (see Results).
Pair Analysis and Consensus Strategies. For each

possible pair of peptides, we evaluated if the sign of the
difference between the predicted scores are in agreement with
the experimental activity difference (ΔΔG). On this basis, we

checked separately for each scoring function, and in a
consensus framework (see below), if a peptide compared to
another increases or decreases the activity as a dichotomous
response.
For the consensus strategies, we verified if the prediction

agrees with the sign of the experimental ΔΔG between peptide
A and peptide B (ΔΔGAB).
The first consensus strategy is based on a linear regression

model. In this case, the independent variables are the
differences of the scores for each pair of peptides, and the
response variable is the predicted ΔΔG. The prediction is
correct if the sign of the predicted ΔΔG is equal to the sign of
the experimental ΔΔG. To cross-validate the model, we
trained and tested it using a leave-out-one strategy. This
consisted of removing one peptide from the training set, and
building the test group with the possible pairs made between
the removed peptide and all the other peptides. The process
was repeated for all the available peptides. To assess the
robustness of the model, the final performance was averaged
between all the sets generated with the leave-one-out strategy.
The second consensus strategy is logistic regression of the

sign of the ΔΔGAB for each pair of peptides A and B. To
represent the data, we generated bitstrings (namely vectors
containing ones and zeros), where at each position a value of 0
or 1 was assigned according to the sign of Sk

A − Sk
B for each

scoring function k. Sk
A is the value of the average score for

peptide A, and Sk
B for peptide B. The bitstrings are given by

− = ΔΔl
m
ooo
n
ooo

sign S S sign G

otherwise

1, ( ) ( )

0,
k
A

k
B

AB

(1)

An advantage of these methods is the possibility to assign
different weights for each scoring function. The training and
validation strategy is the same as applied to the linear
regression model (i.e., the leave-one-out approach). The fitting
and validation of both the linear and logistic regression models
were implemented with the scikit-learn package.67

After running the two consensus strategies, we selected the
one with the highest performance to evaluate the errors using
the bootstrapping approach previously explained. We ran the
consensus strategy 2000 times using random blocks of the

Figure 1. Schematic representation of the sampling and scoring
strategy used to analyze the conformations from the finite-temper-
ature MD trajectories between the MHC class II and each peptide.
The converged last quarter of the trajectory is used to calculate the
average and standard deviation of the score.
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mean scores. The final accuracy was averaged across all replica,
and compared to the previous consensus results.

■ RESULTS

We modeled a set of peptides bound to a MHC class II
receptor which had available experimental binding data. The
models were generated using as template a crystal of a HLA-
DRB1*15:01 protein in complex with a 15-mer peptide (see
Methods). The conformations were sampled using all-atom
molecular dynamics. The last quarter of the trajectories were
scored, using different programs, and the correlations against
experimental activities were calculated. With this approach, we
use protein−peptide structural and dynamical information, as
well as consensus approaches for predicting the experimental
data.
Modeling and Simulation of the Bound Peptides. We

selected eight peptides (Table 1) bound to the MHC class II
receptor following the selection criteria described in the
Methods section. The binding affinity of these peptides has
been evaluated experimentally under the same conditions. A
crystal structure for one of these peptides bound to the
receptor is reported in the PDB (PDB id: 1BX2). This crystal
was used as a template to model the other structures. To align
and model the peptides to the target structure, we
implemented two programs (see Methods) that predicted
the core regions of the peptides. The prediction of the core

region was consistent in both methods, revealing the location
of the amino acids that interact with key pockets from the
protein receptor. All the selected peptides contain some amino
acids on the predicted core region that are conserved on the
peptide template. The experimental IC50 values vary in a range
from ∼3 to ∼8300 nM (Table 1)
Despite that the selected peptides belong to different protein

sources, crucial amino acids are conserved in the core region.
This allows us to use a modeling approach based on the
template structure, which maintains the peptide backbone fixed
and a polyproline-II like characteristic conformation.68 The
sequence alignment of the modeled peptides and their initial
structural models are available in Figure 2. After generating an
initial model for the peptides, we performed 100 ns MD
simulations at 350 K to sample the finite-temperature
conformational ensemble. The computational time required
to run the analysis was approximately 72 h per protein−
peptide complex in a 32-core CPU machine with GPU
acceleration. The models after the MD simulations are shown
in Figure S2. We calculated different observables (e.g., number
of hydrogen bonds, RMSD) over the conformations from the
MD simulation. We found that despite the intrinsic flexibility
of the peptides, the complexes remain stable, and part of the
interactions are made with key residues of the MHC class II β1
region such as Arg11, Phe24, Ala72, and Val84, which are
classified as polymorphisms among the reported alleles. A

Table 1. List of Selected Peptides with Core Predictions Similar to the Template Peptide (Bold Sequence)a

Full peptide Predicted core M1b M2c AA cored kAA coree IC50 [nM]

ENPVVHFFKNIVTPR VHFFKNIVT 17.68 0.61 9 4 3.73
GINITNFRAILTAFS ITNFRAILT 11.25 0.63 3 2 9.89
RPGVSKKFLSLLTSS SKKFLSLLT 8.29 0.64 2 2 19.96
SMVGLFSNNPHDLPL VGLFSNNPH 13.05 0.55 3 3 113.96
EICEVVLAKSPDTTC VVLAKSPDT 2.01 0.79 3 2 284.65
SLLVAPMPTASTAQI VAPMPTAST 5.34 0.56 2 2 537.75
AFALVLLFCALASSC VLLFCALAS 13.09 0.42 2 2 1489.02
VVLGLATSPTAEGGK VLGLATSPT 8.97 0.63 2 2 8320.10

aThe prediction scores per method (M1 and M2), the number of identical amino acids in the core region (AA core and kAA core), and the
corresponding IC50 values are shown. bMethod to predict the core region using the position-specific scoring matrix. cMethod to predict the core
region using the NetMHCIIpan-3.1 tool. dIdentical amino acids in the core region to the template. eIdentical amino acids in the core region
interacting with key pocket regions of the template.

Figure 2. Peptides bound to the MHC class II interface modeled using as template structure PDB: 1BX2. (A) Set of selected peptides. The
template peptide is shown in bold. The alignment of the peptide sequences in the core region is shown. The amino acids that interact with the
protein pockets are colored in purple (P1), blue (P4), orange (P6), and green (P9). (B) Logo of the predicted core fragments, with amino acid
properties colored in purple (positive charged), red (negative charged), green (small), fucsia (asparagine), and black (aliphatic). (C) Initial
conformations of the modeled peptides bound to the MHC class II interface.
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summary of these observables is available in the Supporting
Information (Figures S3 and S4). An additional indicator of
the stability of the peptides is the average number of contacts
(Figure S5 for peptides SLLVAPMPTASTAQI and VVLG-
LATSPTAEGGK). For the majority of peptides these
observables are stable.
Scoring the MD Conformations. Eighteen different

scoring functions for protein−protein interactions were used
to calculate scores over the conformations from the last quarter
of each MD trajectory. After running the block analysis (see
Methods), we find that depending on the peptide and on the
scoring function, the average scores can slightly deviate
between blocks, but in general, they maintain a stable behavior
(see Figures S6 and S7). However, some scoring functions are
more variable than others, which could affect the discrim-
ination between binders. In Figure 3, we show the correlation
of four different scoring functions to the experimental data.
The average-score for the peptides is ploted as a function of
the sorted experimental affinity. Thus, the peptide with the
higher affinity is located in the left of the plot, and the one with
the lowest affinity in the right.
The scoring functions HADDOCK, PISA, BLUUES, BMF-

BLUEES, VINA, FIREDOCK, and DFIRE-GOAP had
correlations above 0.5 with the experimental data. However,
many of the scoring functions were not able to predict
accurately the experimental rank of the peptides. This could be
associated with the nature of each scoring function. We note
that combining sampling with scoring methods improves the
robustness of the prediction by avoiding outliers due to the use
of a single conformation, which might not be representative of
the equilibrium ensemble.
Spearman Correlation Statistical Analysis. A statistical

analysis of Spearman correlation was used to compare the
predicted ranks to the experimental peptide ranks. For each
scoring function, we used the bootstrapping schema with 2000
replica (see Methods) to calculate the distribution of the
Spearman correlation. This strategy was motivated because of

the variability between the blocks (see Figure 3), and it was
developed to obtain a robust statistical measure of the peptide
rankings. The cumulative probabilities obtained after boot-
strapping for some of the scoring functions are shown in Figure
4.

The results show that there are some scoring functions that
predict well the experimental rankings. Scoring functions
HADDOCK and BMF-BLUUES are the ones with better
performances (correlations above 0.7). However, in other
cases, some scoring functions, such as BACH, had an average
performance (∼0.4). The statistical potentials ZRANK and
PRODIGY had poor performances with negative correlations.
The cumulative distributions for all the scoring functions are
shown in Figure S8, and a final list of the average scoring
correlations for the 18 scoring functions is available in Table 2.

Figure 3. Estimated affinity for four scoring functions: BMF-BLUUES (A), HADDOCK (B), PISA (C), and FIREDOCK (D) over the last quarter
of the MD trajectory divided in 4 blocks. The peptides are sorted from highest activity (left) to lowest (right). Each peptide is labeled by a color,
and the blocks are represented by the average score and standard deviation.

Figure 4. Cumulative probability distributions of Spearman
correlations calculated after bootstrapping with 2000 replica for the
scoring functions BACH, HADDOCK, FIREDOCK, ROSETTA,
PRODIGY, ZRANK, and the combination BMF-BLUUES.
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The Spearman correlation distributions for all the scoring
functions was also calculated using half of the MD trajectory
(see Figure S9 and Table 2). In general, the performance for
the best scoring functions was similar but slightly poorer than
the one obtained using the last quarter of the MD.
Ranking Using Consensus Approaches. We now assess

different consensus approaches that can improve the
predictability obtained by a single scoring function. Six scoring
functions with an average Spearman correlation higher than 0.5
were selected to evaluate various consensus approaches. From
the list described in Table 2, we selected HADDOCK, BMF-
BLUUES, DFIRE-GOAP, PISA, VINA, and FIREDOCK. We
use these scoring functions for predicting the sign of the
difference in experimental affinity between pair of peptides
(see Methods). Specifically, we tested the scoring functions on
eight different subsets, where each subset contains all the
possible peptide pairs made by one of the selected peptides
with respect to all the others. In Table 3, we show the
performance to predict the experimental sign of the binding
affinity for each scoring function for each subset. The last row
shows the averaged performance of each scoring function

among the eight subsets. We found that HADDOCK, BMF-
BLUUES, and DFIRE-GOAP are the ones with higher
accuracy (∼78−80%).
Subsequently, we evaluate the two proposed consensus

approaches (see Methods). The performances on the same
eight subsets of pairs of peptides are available in Table 4. The

first consensus strategy that we used was a linear regression
model, that assigns different weights to each scoring function.
To avoid evaluating the performance on a set used for training
the model, we implemented the leave-one-out strategy (see
Methods). In general, the linear regression had the worst
results, with an average performance of ∼59% (Table 4). The
low performance can be explained by the highly colinearity of
the predicted score differences (see Table S1), the presence of
outliers or, possibly, fitting-optimization issues derived from
the calculation of the parameters. For this model, we also
calculated the Spearman correlation coefficient to the ΔΔG.
The results per subset are included in the Supporting
Information Table S3. We note that because this model is
only trained to predict the sign, and not the exact score, for
some peptides its performance is not ideal.
Lastly, we considered the consensus approach to predict the

rankings between pairs with a logistic regression model (see
Methods). We used the same leave-one-out validation
protocol. We found the highest average performance in our
study: 82.14% (Table 4). An advantage of this model is the
assignment of weights that depend only on the combination of

Table 2. Average Spearman Correlation for Each Scoring
Function Obtained from the Boostrapping Analysis Using
the Last Quarter and Last Half of the Trajectory at 350 Ka

Scoring
function

Correlation last quarter,
350 K

Correlation last half,
350 K

HADDOCK 0.739 0.690
BMF-BLUUES 0.726 0.664
BLUUES 0.685 0.678
DFIRE-GOAP 0.645 0.648
PISA 0.581 0.566
VINA 0.577 0.465
FIREDOCK 0.571 0.569
GOAP 0.499 0.526
BACH 0.451 0.531
DFIRE 0.442 0.430
ODA 0.408 0.434
ROSETTA 0.325 0.406
BMF 0.314 0.349
PRODIGY −0.085 −0.179
PROPNSTS −0.174 −0.188
IRAD −0.211 −0.119
SIPPER −0.303 −0.303
ZRANK −0.427 −0.290
aThe results are sorted in descending order based on the correlations
of the last quarter of the trajectory at 350 K.

Table 3. Performance of Each Scoring Function (S1 to S6) in the Prediction of the Experimental ΔΔG Signa

Peptide for testing FIREDOCK HADDOCK PISA BMF-BLUUES DFIRE-GOAP VINA

ENPVVHFFKNIVTPR 85.71 100.00 85.71 85.71 100.00 71.43
GINITNFRAILTAFS 85.71 71.43 85.71 85.71 85.71 85.71
RPGVSKKFLSLLTSS 57.14 85.71 42.86 100.00 85.71 85.71
SMVGLFSNNPHDLPL 71.43 85.71 71.43 57.14 57.14 85.71
EICEVVLAKSPDTTC 71.43 71.43 57.14 71.43 71.43 71.43
SLLVAPMPTASTAQI 57.14 71.43 57.14 71.43 71.43 71.43
AFALVLLFCALASSC 42.86 71.43 42.86 57.14 71.43 28.57
VVLGLATSPTAEGGK 100.00 71.43 100.00 100.00 100.00 100.00
Average 71.43 78.57 67.86 78.57 80.36 75.00

aWe generated subsets of peptides-pairs, where each row corresponds to the subset of pairs made by the peptide with all the others. The
performance is shown for each subset, and the average for each scoring function is shown in the last row.

Table 4. Performance of Consensus Strategies by
Regression Models (Linear and Logistic) in the Prediction
of the ΔΔG Signa

Peptide for testing
Linear regression

model
Logistic regression

model

ENPVVHFFKNIVTPR 57.14 92.86
GINITNFRAILTAFS 85.71 100.00
RPGVSKKFLSLLTSS 42.86 92.86
SMVGLFSNNPHDLPL 57.14 57.14
EICEVVLAKSPDTTC 42.86 85.71
SLLVAPMPTASTAQI 85.71 85.71
AFALVLLFCALASSC 42.86 57.14
VVLGLATSPTAEGGK 57.14 85.71
Average 58.93 82.14

aWe generated subsets of peptides-pairs, where each row corresponds
to the subset of pairs made by the peptide with all the others. The
performance is shown for each subset, and the average for each
consensus method is shown in the last row.
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rankings and not on the predicted numerical values (see Table
S2). To statistically validate the logistic regression perform-
ance, we calculated the consensus results using the boot-
strapping strategy previously explained (see Methods). This is
crucial in order to include the variability of each scoring
function in different parts of the trajectory. We found an
average accuracy of 75.69% (Table 5), which is a high
correlation since it uses only blocks of the trajectory of 100 ns
that are ∼7% of the total.

■ DISCUSSION
We found that combining molecular dynamics sampling with
classical scoring functions is a suitable computational strategy
to obtain significant correlations (>0.7) with experimental
binding-data of MHC class II complexes. This method opens
the possibility to implement a structure and dynamic-based
approach for ranking novel peptides, which do not have
homologous counterparts in existing databases. The approach
does not require the use of machine learning methods to
predict binding affinities that are training-set dependent. We
envision the strategy useful for design protocols that use
iterative single-point mutations, which novel peptides can be
further evaluated as subunit vaccine candidates,69 or as
modulators of autoimmune diseases.70

An initial crucial step is the modeling of the starting
configuration of the peptide bound to MHC class II. We used a
crystal structure as a template, and a bioinformatics analysis to
predict the amino acid positions of the peptide in the binding
pocket. To facilitate the peptide modeling, we selected an
MHC class II structure bound to a peptide with reported
bioactivity data.32 However, we note that it is possible to
model the peptides using other reference structures. The first
step of our protocol is stabilizing the complex by using a long
MD simulation. Therefore, our approach can be applied also if
the structure of the complex is only approximately known. We
used an iterative single mutation approach to model the side
chains, motivated by a previous assessment of various
protocols to mutate amino acids in peptide chains.40 A
limitation during the initial modeling is not including the
entropic contributions required to potentially change the
peptide conformation. However, this is overcome by using
equilibrium distributions from molecular dynamics simula-
tions.
For the MHC class II, the identification of the core region is

crucial to know the most probable conformation of the

peptides bound to the MHC class II interface. Most of the
machine learning methods11,38 include the prediction of which
amino acids can interact with key pockets in the core. For our
assessment, we prioritized peptides having at least a few amino
acids identical to the target crystal to avoid wrong initial
peptide-binding configurations.
Moreover, we found that using MD simulations in

combination with the scoring functions can overcome the
limitations of discriminating between different peptide
sequences. This is difficult because the majority of scoring
functions have been developed to rank between poses of the
same molecules,71 not different sequences. For the MD
simulations, we controlled parameters such as the required
sampling time and the potential restrictions applied to the
system.72 We found that using a high temperature (350 K) to
sample the binding site is an efficient way to quickly obtain
representative conformations. However, to maintain the
system stable, it was necessary to restrict the movement of
atoms away from the binding region. We found that for
peptides that differ approximately in 10 amino acid
substitutions, a 100 ns sampling is enough time to have a
converged conformational ensemble. As a perspective, one
could try single-point mutations to a peptide, after a converged
trajectory, and observe how much required sampling time is
necessary to obtain a representative equilibrium distribution.21

Another crucial aspect is how to score the peptide−MHC
class II complexes. First, we found that the inclusion of
structural flexibility and the effect of a explicit solvent (through
MD simulations) can improve the prediction of binding
affinities.73 This overcomes the limitations commonly found in
molecular docking studies, where only a single conformation is
used. The analysis over the finite-temperature ensemble
showed that several scoring functions had performances with
Spearman correlations greater than 0.6. Moreover, we found
that such performances can be improved if multiple scoring
functions are combined with consensus strategies.23,74 The fit
of a generalized logistic regression model was useful to
improve the performances and calculate the weights of the
scoring functions. For example, we found that HADDOCK is
the scoring function that is less correlated to others functions,
and it has assigned one of the biggest weights in both the linear
or logistic models. However, we find that the results from the
individual scoring functions directly affect the consensus
models. In Table 3, we see that peptides SMVGLFSNNP-
HDLPL and AFALVLLFCALASSC are the ones with poorer
individual performance. This poor performance propagates to
the consensus model results shown in Table 4. This could be
associated with lack of full convergence of the MD simulations
(Figure S10).
The proposed protocol can be implemented with other

protein−peptide systems and assessed based on the availability
of binding data sets. We found in a previous study of
nanobody−protein interactions21 that a similar set of scoring
functions predicts rather reliably the binding data. However, it
is not guaranteed that the best scoring functions will be the
same for all the systems. In such cases, it would be ideal to run
a benchmark study as the one described in this work.
Finally, it is important to clarify that our method has a goal

similar to sequence-based approaches that rank peptides using
binding predictions.75 However, these sequence-based meth-
ods have the limitation that only when the peptides are in the
same chemical space used to train the model, the predictions
are successful. Moreover, the MHC class II poses larger

Table 5. Pairwise Analysis of the Performance in Predicting
the Experimental ΔΔG Sign (Average and Standard
Deviation) Using the Logistic Regression Model with
Bootstrapping (BS) after 2000 Replica

Peptide for testing Logistic with BSa Standard deviation

ENPVVHFFKNIVTPR 88.86 8.00
GINITNFRAILTAFS 84.80 10.92
RPGVSKKFLSLLTSS 75.51 16.81
SMVGLFSNNPHDLPL 62.95 9.10
EICEVVLAKSPDTTC 76.42 8.25
SLLVAPMPTASTAQI 79.20 6.57
AFALVLLFCALASSC 51.51 6.79
VVLGLATSPTAEGGK 86.30 12.09
Average 75.69

aLogistic regression with bootstrapping.
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challenges for methods that use training sets because the
binding data set is smaller in comparison to the MHC class I.76

Our approach can overcome such limitations, and provide
valuable insights for the de novo design of peptides from a
computational perspective. Nevertheless, our method requires
significant computational resources in comparison to immu-
noinformatics methods for massive high-throughput predic-
tions. In this case, our approach is suitable for improving
known promising peptides through modifications that can be
accepted or rejected based on the consensus-scoring strategy.

■ CONCLUSION
The design of peptides able to bind proteins remains a
challenge. Therefore, the development of novel methods for
specific complexes, for example MHC class II receptors, is a
necessity. In this work, we propose a molecular dynamics-
based protocol to rank peptides able to interact with an MHC
class II receptor. The integration of MD sampling with
different scoring functions allowed to benchmark a set of
prediction tools, that in consensus, have the potential to
generate average Spearman correlation around 0.8 against
available experimental data. Different consensus approaches
were tested, and a generalized logistic regression model has the
most promising results for further applications. An advantage
of our method is the implementation of a rational protocol
without involving machine learning approaches, which require
large training sets. However, depending on the number of
amino acid substitutions between the peptides, the required
computational time can increase. In our case, we used 100 ns
trajectories for peptides differing in ∼10 amino acids. All-in-all,
the modeling, sampling, and scoring strategies are suitable to
study and design novel peptides candidates that bind with high
affinity to MHC class II, using integrative and consensus
strategies.
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