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Existence of nuclei with unusual neutron excess?
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Abstract

A realistic model is suggested based on the quasiparticle Lagrange version of the self-consistent Finite Fermi Systems theory
supplemented with the microscopically calculated surface parameters of the Landau–Migdal interaction amplitude. The latter
are expressed in terms of the off-shell T -matrix of free NN-scattering and show a strong dependence on the chemical potential
of a nucleus under consideration in the drip line vicinity. This effect could result in shifting the neutron drip line position to
very large values of the neutron excess.

Up to now, all predictions on the location of
the nuclear drip line for heavy nuclei are based on
phenomenological approaches. All of them operate
with parameters adjusted to the properties of stable
nuclei. This point seems to be questionable for nuclei
far from the β-stability valley. In view of commonly
recognized importance of pairing for the drip line, the
main efforts in this field were focused to study the
superfluidity effects at small values of the chemical
potential µ [1–3]. Such problems were investigated as
a correct account of continuum, comparison of exact
Bogolyubov solutions versus those within the BCS
approximation, the surface pairing versus the volume
one, and so on. In this Letter we concentrate on the
examination of the neutron average potential well at
small values of µn. We give arguments in favour of
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significant variation, in the vicinity of the drip line,
of some parameters of the effective NN -interaction
which generates this potential well. It could result in
shifting the position of the drip line into the region
of large (or, maybe, very large) values of the neutron
excess.

The reason for such an effect can be readily
shown in terms of the simplest version of the self-
consistent (SC) Finite Fermi Systems (FFS) theory [4,
5], which is based on the simplified version of the self-
consistency relation of Ref. [6]:

(1)
∂U

∂r
=

∫
F(r, r′) ∂ρ

∂r′ dr′,

where F is the Landau–Migdal (LM) amplitude.
Obvious isotopic indices in Eq. (1) are omitted. Let
us for a while limit ourselves to the zero-range
components of F , which in the standard FFS theory
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notation has the form:
F(r, r′)= C0

[
f0(r)+ f ′

0(r)τ1τ2

+ (
g0(r)+ g′

0(r)τ1τ2
)
σ1σ2

]
δ(r − r′),

(2)

where the normalization factor C0 = (dn/dεF)
−1 is

the inverse density of states at the Fermi surface.
In the FFS theory, a strong dependence of the

scalar-isoscalar amplitude f0 on the observation point
r was introduced. In fact, in Ref. [4] a simple interpo-
lation form of such a dependence was suggested:

(3)f0(r)= f ex + (
f in − f ex)ρ+(r)

ρ0
.

Here ρ+(r) = ρn(r)+ ρp(r) is the nuclear density in
the point r, while ρ0 = ρ+(r = 0). The subscript “0”
for the zero Landau harmonics is for brevity omitted
in the r.h.s. of Eq. (3) and below.

It is worth to mention that the density dependence
of the phenomenological Skyrme force [7] agrees with
the ansatz of Eq. (3). There exist also alternative
versions of the interpolation formula for f0(r) by
means of the function (ρ/ρ0)

α,α �= 1, in the r.h.s. of
Eq. (3) or a more complicated density dependence [3,
8–10]. But all of them are characterized by a strong
difference between the dimensionless parameters f ex

and f in: f ex � −3, whereas f in is close to zero.1
It should be noted that the density dependent

scalar–isoscalar amplitude

(4)f ′
0(r)= f ′ ex + (

f ′ in − f ′ ex)ρ+(r)
ρ0

,

was used in a new version of the energy functional
method by S. Fayans et al. [3,10] based on a de-
tailed analysis of long isotopic chains. The difference
between the parameters f ′ in, f ′ ex is also significant,
though not so dramatic as in the isoscalar case. In prin-
ciple, relations similar to Eq. (3) can be written also for
the spin-dependent terms of Eq. (2), but up to now no
evidence of a noticeable difference between the inter-
nal and external values of these amplitudes was found.
Therefore, the equalities gin = gex, g′ in = g′ ex were
imposed in the FFS theory.

In Ref. [11] it was found that the external values
of the LM amplitudes can be calculated in terms of

1 The inequality f in > −0.5 should be fulfilled to avoid the
Pomeranchuck instability [4].

the off-shell T -matrix of free NN -scattering taken at
a negative energy E = 2µ, where µ is the chemical
potential of the nucleus under consideration. Stable
nuclei with µn = µp � −8 MeV were considered, and
a reasonable agreement with the phenomenological
values for the surface parameters of the LM amplitude
was obtained.2 It confirmed the relevance of the
asymptotic relation F → T (2µ) for the description of
the properties of stable nuclei.

Let us mention that, although the interpolation
ansatz of Eq. (3) looks very alike to the LDA prescrip-
tion, it cannot be obtained microscopically within the
LDA. Indeed, there is a domain of density values in the
surface region for which infinite nuclear matter is un-
stable. Within the Brueckner theory, a more consistent
way to obtain the LM amplitude in a form similar to
Eq. (3) should involve, first, a direct calculation of the
G-matrix for the non-uniform system in the coordinate
representation, and, second, application of some rea-
sonable localization recipe to the non-local G-matrix
(see, e.g., Refs. [13,14]). For the spin independent am-
plitudes under consideration the explicit form of these
relations is as follows:

(5)f ex
0 = 3

16
[
t0(E = 2µ)+ t1(E = 2µ)

]
,

(6)f ′ ex
0 = 1

16
[
t0(E = 2µ)− 3t1(E = 2µ)

]
,

where t0, t1 are the dimensionless values of the off-
shell T -matrix with the spin value S = 0 and S = 1,
respectively, taken at the zero value of all nucleon
momenta. In stable nuclei the isospin symmetry works
well and one has:

(7)f ex
nn = f ex

pp = f ex
0 + f ′ ex

0 = 1
4
t0(E = 2µ),

f ex
np = f ex

0 − f ′ ex
0 = 1

8
[
t0(E = 2µ)+ 3t1(E = 2µ)

]
.

(8)

In this Letter these relations are applied to nuclei
close to the drip line in which the neutron and proton
chemical potentials deviate significantly from each
other. As far as both amplitudes t0 and t1 at small
energy E depend on E rather sharply, the isospin

2 They depend a little on the type of the density dependence. The
best agreement was achieved with the spin independent parameters
of Ref. [3] and the spin dependent parameters of Ref. [12].
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Fig. 1. External LM amplitudes f ex
nn(E), f ex

pp(E), and f ex
np(E) (the

latter is divided by 10) taken with negative sign. The solid lines show
these amplitudes within the energy limits which are typical for tin
isotopes.

symmetry is destroyed. As a result, one deals with the
situation when f ex

nn �= f ex
pp . Both of these amplitudes

can be found from Eq. (7), but at E = 2µn for the
first one and at E = 2µp, for the second one. The
amplitude f ex

np can be obtained from Eq. (8) at E =
µn + µp . In the neutron drip line vicinity, only the
neutron chemical potential is close to zero, whereas,
on the contrary, |µp| increases with approaching the
boundary. Therefore, only the amplitude f ex

nn changes
significantly (see Fig. 1).

The SC relation, Eq. (1), with the amplitude F

given by Eqs. (2)–(4) can be readily integrated over
for a spherical nucleus yielding the following relation
for the neutron potential:

Un(r)= C0

[
f ex
nnρn(r)

+ (
f in
nn − f ex

nn

)ρn(r)
2ρ0

(
ρ+(r)+ ρp(r)

)
+ f ex

npρp(r)

+ (
f in
np − f ex

np

)ρp(r)
2ρ0

(
ρ+(r)+ ρp(r)

)]
.

(9)

A similar relation is obtained for the proton potential
Up(r) replacing the indices “n” and “p”.

To estimate the effects of the energy (or µ-)
dependence of the interaction amplitude f ex

nn , let us
find the value of Un(0). To simplify the expression,
we use the approximations ρn(0) = (N/A)ρ0 and

ρp(0)= (Z/A)ρ0. Then we get:

(10)

Un(0)= 1
2
C0ρ0

[
f ex
nn

N2

A2 + f in
nn

(
1 − Z2

A2

)

+ f ex
np

Z2

A2 + f in
np

(
1 − N2

A2

)]
.

Let us add a small number of neutrons to a heavy
nucleus. Then, neglecting for a while the pairing
effects, we obtain an approximate relation

(11)δµn = δUn(0)

for the change of the neutron chemical potential.3 The
variation of the expression (10) is a sum of two terms,

(12)δUn(0)= δU1 + δU2,

having different origin. The first term results from
variation of N and A while the second one,

(13)δU2 = 1
2
C0ρ0

N2

A2 δf
ex
nn,

is due to the µ-dependence of the amplitude f ex
nn . Ne-

glecting this µ-dependence one gets the accustomed
variation of the chemical potential

(14)δµ0
n = δU1.

But taking of the second term into account yields a
dramatic deviation from this traditional result when
nuclei with a big neutron excess are considered.

Indeed, at small values of µn, the amplitude f ex
nn ,

Eq. (7), taken at E = 2µn is singular:

(15)f ex
nn = α√

E
= α√

2µn
.

Here we neglected the small, compared to µn, value of
the virtual level energy of the T -matrix in the singlet
channel. The variation of Eq. (15) yields:

(16)δf ex
nn = −f ex

nn

δµn

2µn
.

Upon substituting Eqs. (12)–(14), and (16) into
Eq. (11) one finds

(17)δµn = δµ0
n

1 + V0/(2µn)
,

3 This equation contains also an additional term provided the
neutrons occupy a new j -level. All the consideration presented
below remains valid in this case, too.
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where a short notation V0 = 1
2C0ρ0

N2

A2 f
ex
nn for the first

term of Eq. (10) is introduced.
It can be easily seen that the denominator of the

relation (17) is noticeably greater than unit for nuclei
with small value of µn. Let us, for example, calculate
this quantity for two isotopes of tin in the vicinity of
the old drip line (Amax = 176 which is the common
value to all calculations for the tin isotopes as far as we
know). We use the values of µn which will be found
below and the corresponding values of the amplitude
f ex
nn taken from Fig. 1. We take also the standard values

of the normalization parameters: C0 = 300 MeV · fm3

and ρ0 = 0.16 fm−3. First, let us consider the 150Sn
nucleus. In this case, we have f ex

nn = −1.4, V0 =
−15 MeV, and µn = −3.4 MeV. The substitution of
these values into Eq. (17) yields δµn = δµ0

n/3.2. The
analogous calculation for the 200Sn isotope (µn =
−2.0 MeV, f ex

nn = −1.66, V0 = −22.4 MeV) results
in δµn = δµ0

n/6.5. We see that deviations from the
traditional scheme are really large and are growing as
soon as with the value of |µn| becomes less and less.
This explains qualitatively why nuclei (e.g., 200Sn)
which are strongly unbound in traditional calculations
could exist in our approach.

Going to the actual calculations incorporating the
effect discussed above, we start from an advanced ver-
sion of the SC FFS theory, the so-called quasiparticle
Lagrange method (QLM).4 It was devised in Ref. [8]
for magic nuclei and extended in Refs. [15,16] to in-
clude superfluidity. All necessary modifications in the
scheme can be explained for a simpler, nonsuperfluid
case. We present here only a brief sketch of the QLM
referring to Refs. [8,15,16] for details. The approach
utilizes the Lagrange formalism which is the most con-
venient when the energy dependence effects are con-
sidered explicitly. The effective Lagrangian is con-
structed in such a way that its variation results in the
Dyson equation,

(18)
(
ε− ε0

p −Σq

)
Gq = 1,

for the quasiparticle Green function Gq with the
quasiparticle mass operator

(19)

Σq(r,k, ε)=Σ0(r)+ 1
(k0

F)
2

kΣ1(r)k + ε

ε0
F
Σ2(r),

4 The term “quasiparticle” is used here in Landau’s (not Bo-
golyubov’s) sense.

where the normalization parameters are: k0
F = π/

(mC0), ε0
F = (k0

F)
2/(2m).

The first two terms of Σq are common to the
HF theory with effective velocity dependent forces
(e.g., Skyrme forces). The third term, Σ2(r), is due
to energy dependence. It determines the coordinate
dependent Z-factor:

(20)Z(r)= (
1 −Σ2(r)/ε0

F
)−1

.

The solution of the Eq. (18) can be expressed in
terms of the eigenfunctions Ψλ of the corresponding
homogeneous equation as:

(21)Gq(r1, r2, ε)=
∑
λ

Ψ ∗
λ (r1)Ψλ(r2)

ε− ελ + iδ sgn(ελ −µ)
,

where δ is small and positive. The functions Ψλ are
orthonormalyzed with the weight:

(22)
∫
drΨ ∗

λ (r)Z
−1(r)Ψλ′(r)= δλλ′ .

The quasiparticle density ν0(r) associated with the
Ψλ-functions is:

(23)ν0(r)=
∑
λ

nλ|Ψλ(r)|2,

where nλ = (0,1) are the quasiparticle occupation
numbers. It differs from the usual density ρ(r) nor-
malized to the total particle number by the Z-factor:

(24)ν0(r)=Z(r)ρ(r).

There are two additional densities introduced in
Ref. [8], the quasiparticle kinetic energy density

(25)ν1(r)= 1
(k0

F)
2

∑
λ

nλ|∇Ψλ(r)|2,

and the total quasiparticle energy density

(26)ν2(r)= 1
ε0

F

∑
λ

nλελ|Ψλ(r)|2,

The density ν1(r) is analogous to the quantity τ (r)
of the HF theory [7], whereas the density ν2(r) is a
new ingredient of the QLM, which does not appear in
the HF approach.
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In notation of Ref. [8], the density of the interaction
Lagrangian L′ is

(27)

L′(r)= −C0

[
λ00

2
ν2

0+(r)+
λ′

00
2
ν2

0−(r)

+ 2γ
3ρ0

0
ν0+(r)ν0n(r)ν0p(r)

+ λ01ν0+(r)ν1+(r)+ λ′
01ν0−(r)ν1−(r)

+ λ02ν0+(r)ν2+(r)

− λ00r
2
0

2
(∇ν0+(r)

)2
]

+L1,

where the normalization density is ρ0
0 = 2(k0

F)
3/(3π2),

and L1 includes the Coulomb and the spin-dependent
terms (mainly, the spin-orbit one). It is worth to men-
tion that the isotopic structure of the “triple” term in
Eq. (27) (proportional to γ ) is similar to that of the
Skyrme Hamiltonian of Ref. [7].

To extract from the Lagrangian L′ the LM ampli-
tude F , which, in accordance with the Landau pre-
scription, is the second derivative of the ground state
energy, one needs to find the corresponding Hamil-
tonian expressed in terms of the usual densities ρ(r)
and τ (r). Then it is necessary to calculate the second
variational derivative with respect to ρ. This leads to
a rather cumbersome expression which can be found
in Ref. [13]. However, the relation of the constants
λ00, λ

′
00 with the external LM amplitudes f ex, f ′ ex in

Eqs. (3), (4) can be understood without using any ex-
plicit formula. Indeed, in the asymptotic region outside
the nucleus the Z-factor is tending to unit and the den-
sities ν0(r) and ρ(r) coincide. Therefore, the variation
of L′ with respect to ρ can be replaced by the variation
with respect to ν0. The amplitudes under consideration
originate from the first three terms of Eq. (27). But the
second variation of the third term vanishes at large r
and one ends up with the following identities:

(28)λ00 = f ex, λ′
00 = f ′ ex.

Of course, they follow also from the explicit relation
for F of Ref. [13].

Dealing with superfluid nuclei, we utilize the mod-
ification of QLM developed for this case in Refs. [15,
16]. Although the method itself is, in principle, rather
general, the practical scheme of Refs. [15,16] is quite
simple. The main approximations are as follows. First,
the λ-representation with a limited λ-basis is used

(εmin < ελ < εmax, εmin = −(20−25) MeV, εmax =
5 MeV), with the discretization of the continuum.
Second, the δ-form density independent (“volume”)
pairing interaction is considered with the strength de-
pending on the basis, in accordance with the pre-
scription of Ref. [4]: Γξ = C0 ln−1(Cp/ξ), where ξ =√
(µ− εmin)(εmax −µ). At last, the diagonal approxi-

mation for the gap∆ is used:∆λλ′ =∆λδλλ′ . Thus, the
method of describing the pairing effects in Refs. [15,
16] in the main points coincides with the BCS approxi-
mation. Although such a scheme possesses some well-
known deficiencies for nuclei near the drip line and
there exist much more advanced approaches for this
case (see, e.g., Refs. [2,3]), we conserve here all de-
tails of the pairing scheme [15,16] (including the val-
ues of the pairing parameters) in order to separate the
effect of the energy dependence of the mean field more
clearly.

Our goal is to single out effects of the energy de-
pendence of the external values of the LM amplitude.
For convenience, let us rewrite the first three terms
of Eq. (27) substituting the quantities f ex, f ′ ex for
λ00, λ

′
00:

(29)

L0(r)= −C0

[
f ex

2
ν2

0+(r)+
f ′ ex

2
ν2

0−(r)

+ 2γ
3ρ0

0
ν0+(r)′, ν0n(r)ν0p(r)

]
.

If we consider f ex, f ′ ex as phenomenological para-
meters, there is no difference between this expression
and the initial one, just the physical meaning of the
constants λ00, λ

′
00 is more transparent. The next step is

the calculation of these parameters from Eqs. (5), (6).
They are f ex = −2.6 and f ′ ex = 1.56, Ref. [11], in-
stead of λ00 = −3.25 and λ′

00 = 2.4 of Ref. [8].5 Now
Eq. (29) contains only one adjustable parameter γ in-
stead of the three those of the corresponding part of
Eq. (27). We chose it in such a way to better repro-
duce the single-particle energy spectrum of the nu-
cleus 124Sn calculated in Ref. [15] where it was used
for fitting the parameters of the calculation scheme and
was found in a reasonable agreement with the experi-
mental one. It should be noted that we do not analyze
here the total binding energies and the density distri-
butions but concentrate on the single-particle spectra

5 These values of f ex, f ′ ex are closer to those of Ref. [3].
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Table 1
Single-particle spectrum of the 124Sn nucleus

λ ελ, MeV Eλ, MeV

[15] This work [15] This work Exp.

2p1/2 −16.86 −17.94 −16.96 −18.05
1g9/2 −15.15 −15.93 −15.29 −16.11
2d5/2 −10.19 −10.82 −10.42 −11.05
3s1/2 −9.53 −8.82 −9.97 −9.18 −8.64
1g7/2 −8.34 −8.32 −8.81 −9.19 −9.63
2d3/2 −8.08 −8.05 −8.68 −8.66 −8.52
1h11/2 −7.19 −6.87 −5.83 −5.08 −5.73
2f7/2 −2.34 −2.29 −2.24 −2.14
3p3/2 −0.97 −0.96 −0.94 −0.91
3p1/2 −0.42 −0.26 −0.39 −0.23

because they are mainly responsible for the position of
the drip line. We found that the spectrum obtained with
the ab initio constants f ex, f ′ ex and with the value of
γ = 1.6 (instead of γ = 3.2 in Refs. [8,15]) is in a rea-
sonable agreement with that of Ref. [15] (see Table 1),
where Eλ = µ±

√
(ελ −µ)2 +∆2

λ.
The generalization of Eq. (29) to nuclei with a

large neutron excess, where the isotopic symmetry is
violated, is quite obvious:

(30)

L̃0(r)= C0

[
1
2
f ex
nn(E = 2µn)ν2

0n(r)

+ 1
2
f ex
pp(E = 2µp)ν2

0p(r)

+ f ex
np (E = µn +µp)ν0n(r)ν0p(r)

+ 2γ
3ρ0

0
ν0+(r)ν0n(r)ν0p(r)

]
,

where the external interaction LM amplitudes f ex
nn , f

ex
pp,

f ex
np are energy dependent and should be calculated for

the nucleus under consideration in the same way as in
Eq. (9). Again the energy dependence of the first of
them only is essential in the case under consideration.
In the two next amplitudes, this dependence is retained
just for presenting a more general form which is essen-
tial, e.g., for nuclei near the proton drip line.

We made a series of the self-consistent calcula-
tions for the chain of the tin isotopes, first, with the
phenomenological Lagrangian, Eq. (27),6 and, second,
with the semi-microscopic one, Eq. (30). Results are
displayed in Fig. 2, together with the predictions of

6 They just repeat the calculations of Ref. [16].

Fig. 2. A half of two-neutron separation energy S2n/2 calculated for
even–even tin isotopes. Results of the semi-microscopic calculations
of this work (solid line) are displayed together with predictions of
Ref. [16] (dashed line), Ref. [2] (triangles) and Ref. [3] (squares).
Experimental values of S2n/2 are shown by circles.

Dobaczewski et al. [2] and Fayans et al. [3]. The latter
two approaches, just as the one of Ref. [16], use the
phenomenological energy-independent forces.7 The
results of the three phenomenological calculations are
quite close to each other. Qualitatively, they could be
considered as one “phenomenological” curve which is
in very good agreement with available experimental
data. At small and intermediate values of the asymme-
try parameter y = (N −Z)/A the results of our semi-
microscopic calculation deviate from the phenomeno-
logical curve (and, consequently, from the experimen-
tal data), but not significantly. The reason of this de-
ficiency is quite simple. The matter is that the one-
parameter Eq. (30) does not permit to obtain simulta-
neously reasonable values of the two “inner” ampli-
tudes, f in and f ′ in. It is well known that the Skyrme
prescription of the isotopic structure of the “triple”
term used in Eq. (30) is not obligatory for the effec-
tive force. The simplest two-parameter generalization
is:
2γ
3ρ0

0
ν0+(r)ν0n(r)ν0p(r)

(31)→ 1
6ρ0

0

[
γ ν3

0+(r)+ γ ′ν0+(r)ν2
0−(r)

]
,

7 The trivial, linear energy dependence, taken into account in
Ref. [16], which is incorporated into Eq. (27) via the density ν2(r),
is not important for the effect under consideration.
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which reduces to Eq. (30) at γ ′ = −γ . The ansatz
of Eq. (31) seems to be more adequate to ideas un-
derlying the approach suggested. Such a generaliza-
tion, with a new adjustment of the parameters, will be
carried out in a separate work. Preliminary estimates
show that in this case the “semi-microscopic” results
for stable nuclei become much closer to the phenom-
enological ones. On the other hand, the behaviour at
large values of N − Z is insensitive to possible mod-
ifications of the energy-independent parameters. In-
deed, in terms of the qualitative consideration based
on the SCR, such a variation results only in a change
of the numerator of Eq. (17), whereas the denomina-
tor, which is responsible for the effect under consider-
ation, remains unchanged. When we approach to the
drip line, deviations grow, the semi-microscopic curve
being significantly higher than the phenomenological
one. It is remarkable that our calculation predicts the
existence of nuclei beyond the commonly admitted
end of the tin chain, Amax = 176. It is worth to men-
tion that this value of Amax corresponds to the value
of y = 0.43 which exceeds the critical value y0 = 0.37
predicted for the asymmetric nuclear matter [17]. The
energy dependence effects under consideration make
this difference between finite nuclei and nuclear mat-
ter more pronounced. We interrupted our calculations
at A= 208 just because we are conscious that the de-
ficiencies of the approach become more serious with
the value of |µn| becoming less. One of them is too
schematic consideration of pairing. Then, corrections
to the standard FFS theory could appear when the en-
ergy dependence of the LM amplitude is significant.

It is worth to note that the two recipes of taking
into account the energy dependence effects, Eqs. (9)
and (30), are not identical. Indeed, in the first one the
amplitudes f in, f ′ in are completely energy indepen-
dent. As to the second recipe, the parameter γ is sup-
posed to be energy independent that leads to some en-
ergy dependence of the quantities f in, f ′ in evaluated
via the procedure described above. In the framework
of a pure phenomenology, it is difficult to choose be-
tween the two ansatz. In our regular calculations, we
use the second choice just because we have a well
developed calculation scheme for this case. A more
consistent microscopic theory for solving this problem
is necessary. Such an approach based on the Brueck-
ner theory for finite nuclei is now in progress [13,14],
but it is yet far from to be completed. A semimicro-

scopic model for the scalar–isoscalar LM amplitude
f (r) suggested in Ref. [13] on the base of an approxi-
mate calculation of the G-matrix for a slab of nuclear
matter [14] shows some energy dependence of the pa-
rameter f in, but it is rather smooth. Evidently, the truth
is somewhere between the two ansatz discussed above.
What is important for our preliminary analysis, that
both of them predict qualitatively the same. Namely,
the energy dependence of the external LM amplitude
f ex
nn makes the neutron potential well deeper when the

absolute value of µn becomes less. This effect could
help nuclei with a huge neutron excess to survive.

The calculation scheme proposed in this Letter pos-
sesses some evident deficiencies partially discussed
above. Improvement of them could make the effect
less pronounced. That is the reason why the title of the
Letter is formulated as a question. However, the ef-
fect itself is based on a transparent physical phenom-
enon. Therefore, we expect that it should remain, at
least qualitatively, after all necessary corrections to the
approximate calculation presented in this Letter.
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