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A B S T R A C T

Sediments play a fundamental role in the aquatic environment, so that the presence of contaminants poses severe
concern for the possible negative effects on both environmental and human health. Sediment remediation is thus
necessary to reduce pollutant concentrations and several techniques have been studied so far. A novel approach
for sediment remediation is the use of Advanced Oxidation Processes, which include ultrasound (US). This paper
focuses on the study of the ultrasonic effects for the simultaneous reduction of both organic and inorganic
contaminants from sediments. To this end, the US technology was investigated as a stand-alone treatment as well
as in combination with an electro-kinetic (EK) process, known to be effective in the removal of heavy metals
from soil and sediments. The US remediation resulted in higher organic compound degradation, with an average
88% removal, but promising desorption yields (47–84%) were achieved for heavy metals as well. The combined
EK/US process was found to be particularly effective for lead. Experimental outcomes highlighted the potential
of the ultrasonic technology for the remediation of contaminated sediments and addressed some considerations
for the possible scale-up.

1. Introduction

Over the years, different polluting compounds have affected the
aquatic environment because of either improper anthropogenic activ-
ities or accidental release. These compounds have different sources and
reach the water bodies through various pathways, but the end-point is
often represented by the sediments [1-3], where they tend to accumu-
late.

Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are
among the most detected contaminants in the sediments, due to their
high persistence in the environment [4-7]. The main concern is related
to the toxic and carcinogenic effects that they can display towards the
environment and the human health [8,9]. Since sediments represent a
potential reservoir of contaminants, the variation of environmental
conditions may promote the release of these hazardous compounds
from sediments, turning them into a secondary source of contamination
[10,11].

Such issue is particularly relevant during dredging operations in
port areas, which are becoming more and more common either to adapt
the navigation depth to the increasing maritime traffic or for re-
mediation purposes. Bortone et al. [12] reported that about 200 million

m3 are moved each year and part of them is contaminated, posing the
issue of their proper handling.

Traditional management strategies of dredged sediments include
the replacement in water bodies or the landfill disposal, depending on
the contamination level. Nevertheless, these strategies are not eco-
nomically viable nor environmentally sustainable, so that in situ re-
mediation approaches have also been proposed to avoid dredging,
when not necessary for maintenance operations. Such approach relies
on the use of either inert or reactive capping [13], but the wider ap-
plication of in situ capping has been hindered by the uncertainties of its
long-term stability under different environmental conditions.

In this context, the identification of alternative systems for the re-
mediation of contaminated sediments has to be addressed towards
sustainable solutions. Notwithstanding the advantages related to in situ
remediation technologies, the treatment of dredged sediments for their
possible use is particularly attracting, fitting the principles of the cir-
cular economy.

The remediation of sediments usually relies on the same technolo-
gies used for the treatment of contaminated soil [14], although the
prevalence of the fine fraction and higher organic matter content in
sediments can influence process yields [15,16]. Chemical methods are
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among the mostly applied techniques for sediment remediation and
include the use of washing solutions as well as electro-kinetic (EK)
processes [13,17]. The latter involves the direct application of low in-
tensity electric into the sediments that, in turn, produce the electrolysis
of the water, with the generation of an acid front (H+) at the anode side
and an alkaline one (OH–) at the cathode. The process is particularly
effective towards heavy metals [18] because the acid front tends to
move toward the cathode thus promoting the solubilisation of the metal
species and their precipitation at the cathode [19]. Several studied have
also demonstrated EK effectiveness towards organic contaminants
[20,21]. Nevertheless, when a multiple contamination occurs, the
presence of organic compounds may results in the decrease of the
electric field, which may condition the treatment efficiency [19].

A novel approach relies on the use of Advanced Oxidation Processes
(AOPs). Following their successful use for the treatment of aqueous
solutions [22], they have been recently considered for the treatment of
contaminated solid matrices [16,23-25]. AOPs include ultrasound (US)
based technologies, which are widely employed in different areas of
science and technology [26,27]. In the environmental engineering field,
US has been used for the treatment of different matrices, as wastewater,
organic waste and sludge [28-31,58,60]. The mechanism of US treat-
ment is based on the cavitation phenomenon, which takes place in
aqueous medium and involves both chemical and physical effects [32].
The chemical effects lead to the generation of hydroxyl radical (OH•),
which are potent chemical oxidants, allowing the mineralization of
organic pollutants or their degradation into less harmful compounds
[33,59]. The physical effects mainly result in the fragmentation of solid
particles, promoting the contaminants desorption [34-36].

The advantages of US processes against conventional treatments lay
in the speed of reactions as well as in the possibility to avoid or reduce
the use of chemical solvent [35,37-39]. Due to its operational features
and reported advantages, the ultrasonic treatment represents a pro-
mising technique for the sediment remediation.

Although some experiences have already been reported [35,36]
these mainly focus on single classes of pollutants. Nevertheless, con-
tamination phenomena usually imply the presence of a wide range of
contaminants, characterized by specific chemical-physical properties
and differently bound to the sediments. Their effective remediation may
thus require rather specific actions. Based on the reported versatility of
the ultrasonic technology, it has been investigated both as a stand-alone
process and as a treatment prior to the EK remediation for the si-
multaneous reduction of both organic and inorganic contaminants from
the sediments.

2. Materials and methods

2.1. Sediment sample and spiking procedure

Fine silica sand was selected as model sediment and the particle size
distribution was analyzed according to ASTM D422-63 (Fig. 1). Then,
the samples were spiked in order to simulate a simultaneous con-
tamination from polycyclic aromatic hydrocarbons (PAHs) and heavy
metals. To this end, benzo(a)pyrene (B(a)P) and benzo(a)anthracene (B
(a)A) were considered as representative PAH target compounds,
whereas the selected inorganic compounds, added in the form of ni-
trates, were cadmium (CdN2O6 + H2O), lead (N2O6Pb) and zinc
(ZnN2O6 + 6H2O) [7,9].

All the contaminants were purchased from Sigma Aldrich and used
to prepare spiking solutions. Due to analytical requirements, the desired
concentration of each compound was established as the double value of
the threshold limit concentration set by the Italian legislation for con-
taminated soil in industrial and commercial sites.

2 mg of each selected organic contaminant were dissolved in 10 mL
of dichloromethane (VWR Chemicals). The resulting solution was
poured onto 100 g of dried sediment samples and the whole was mixed
to obtain a final concentration of 20 mg/kgDW. As described by Russo

et al. [40], the samples were then placed under hood for three days, at
ambient temperature, in darkness, in order to promote the complete
evaporation of the solvent used to prepare the organic spiking solution.

The heavy metal contamination was carried out as reported in the
study of Rozas and Castellote [41]. To this end, 8.22 mg of Cadmium
nitrate, 320 mg of Pb nitrate and 1365 mg of Zn nitrate were dissolved
into 50 mL of deionized water to reach final concentrations of 30 mg/
kgDW of Cd, 2000 mg/kgDW of Pb, 3000 mg/kgDW of Zn, respectively.

The solution was then left in contact with the sediments for one
hour and it was subsequently evaporated in the oven (Inter Continental
Equipment) at 105 °C for 24 h.

2.2. Ultrasound treatment set up

Ultrasound (US) treatment was carried out using an ultrasonic bath
(Elma TI-H 10) with a power of 200 W. The tests were performed by
varying both the treatment time in the range 5–60 min and the ultra-
sonic frequency from 35 to 130 kHz, based on previous studies
[34,36,42].

Sand slurry samples were prepared in 250 mL beaker, adding 20 gr
of artificially contaminated sand to 40 mL of deionized water (w/w 1:2)
(Milli-Q system from Millipore) [43]. Each sample was sonicated at
110 W/L ultrasonic density. In order to avoid overheating during the
treatment, a cold-water recirculation system was realized with two
peristaltic pumps (323 S/D Watson-Marlow, UK) to keep the tempera-
ture in the beaker below 30 °C.

Each test run as well as all the analytical determinations were re-
peated at least twice, to evaluate the reproducibility of the results. The
outcomes were presented as average values.

2.3. Electrokinetic treatment set up

The electrokinetic (EK) process used a glass electrokinetic cell [44],
composed by a central tube (100 mm length and 32 mm of internal
diameter) and two electrode chambers, each with a 300 mL working
volume. The central tube contained approximately 200 g (dry weight)
of sample; the electrode chambers were filled with a process fluid,
consisting of a solution of 0.1 M sodium sulphate (Na2SO4) (Sigma
Aldrich) and 0.1 M citric acid (C6H8O7), in order to maintain the acid
environment in the cathode chamber [45,46]. Filter paper and porous
stones avoided the direct contact between the process fluid and the
sample. Two graphite electrodes connected with power supply (Agilent
6634b) were placed in the electrode chambers to apply a constant po-
tential difference of 30 V [19,44]. Further three electrodes were placed
in the central tube to monitor the electric field. The EK-Data software
was used for the acquisition of the electrical parameters and electrodes
pH over time.

The EK treatment was carried out for 20 days on samples sonicated
at 35 kHz for 10 min, in accordance with the outcomes of the previous
part of the work.

2.4. Analytical set up

In order to determine the organic contaminant concentration, a
solid–liquid extraction procedure was performed in accordance with
the standard method US EPA 3550b. The extracted liquid fraction was
then analyzed by gas chromatography coupled with a mass selective
detector (GC–MS Thermo- Finningan DSQ Trace), based on the method
US EPA 8270.

For the analytical determination of heavy metals, the extraction was
accomplished by microwave assisted acid digestion in accordance with
the method US EPA 3051a and the concentration measurement was
carried out by an inductively coupled plasma optical emission spec-
trometry (ICP-OES Thermo electron corporation-Icap6000 series), in
accordance with the Standard Method US EPA 6020a.

After the EK treatment, each sample was divided into three section,
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namely Sec.1, Sec.2 and Sec.3, from the anode chamber to the cathode
chamber, and the heavy metals extraction was carried out for each
section.

The remediation yield was evaluated in terms of contaminant re-
moval from the solid matrix, expressed according to the following
formula:

=

−

∗Removal
C C

C
(%) 100i f

i

where:

- Ci is the initial contaminant concentration in the sediment samples;
- Cf is the final contaminant concentration in the sediment samples,
obtained at the end of the US treatment.

The concentration of the selected contaminant in the liquid matrix
was not determined because this work focused on their removal from
the solid matrix, with the main aim to propose a suitable solution for
the remediation of sediments.

3. Results and discussion

3.1. US focused study

The effects of the US treatment were referred to the reduction of
both organic and inorganic contaminants from the sediment samples.

Experimental results are plotted in Fig. 2. They show that US pro-
vided good performances in terms of contaminant removal, notwith-
standing the sonication time and frequency.

After only 5 min of treatment, an average 88% organic contaminant
removal occurred; the increase in sonication time did not result in any

further degradation of the target PAHs. This outcome should be re-
garded in the light of the contaminant aging processes. As a spiking
procedure had been applied to contaminate the samples, the sorption of
the contaminants onto the sediment surface was likely weaker than the
one occurring in actually contaminated samples. This condition, in
turn, may have affected the degradation response under different so-
nication time. Several studies show that the contamination aging in-
creases the persistence of the polluting compounds, thus reducing their
availability [47,48].

The organic matter of sediment samples is another aspect influen-
cing the removal performances of the target contaminants. Organic
compounds tend to create bonds with organic matter, thus making the
removal more difficult [49,50].

It is worth underlining that the negligible effect of the treatment
time is in accordance with the previous study of Shrestha et al. [43] that
reported the negligible effect of sonication time on the removal per-
centage of hexachlorobenzene and phenanthrene from natural soil
samples.

In most cases, the lower frequency was slightly more effective. This
behavior can be explained with the prevalent mechanical effects oc-
curring at low frequencies, as confirmed by several scientific works
[35,38]. Such effects promote indeed the desorption of the con-
taminants from the solid surface of sediments making them more easily
available for further degradation through hydroxyl radicals in the liquid
matrix [36,51].

Promising results were also obtained in terms of heavy metal des-
orption. Frequency and sonication time did not show to influence sig-
nificantly the treatment effects, whereas different desorption yields
were reached for single inorganic compounds (Fig. 3). Cd and Zn
showed the best desorption yields with average values around 84% and
71%, respectively. Pb desorption was observed to reach average values
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Fig. 1. Grading curve of the model sediment.

Fig. 2. Removal percentage of PAHs after treatment at 35 kHz (a) and 130 kHz (b).
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of 49% (Fig. 3 a) and 45% (Fig. 3 b) for the treatment at 35 kHz and
130 kHz, respectively.

The behavior of each heavy metal should be regarded in the light of
the strong influence of pH [52]. It is worth pointing out that the ex-
periments were carried out in deionized water, at a pH around 6, which
is the preferred condition for both Cd and Zn solubilisation. Conversely,
Pb mobilization from solid to liquid matrices is promoted by acidic
conditions [53]. US waves applied in the aqueous medium do not allow
the development of H+ or OH– ions [43] and the consequent change of
pH, that in this case could have been useful to enhance heavy metal
desorption.

These outcomes pointed out that ultrasound is potentially effective
for the treatment of contaminated sediments, allowing the reduction of
compounds of different nature in a sole stage. For both organic and
inorganic contaminants, experimental results showed that both lower
frequency and short sonication time can be effective, suggesting the
possibility to limit the energy consumption for US generation. This
aspect is of particular importance when considering the process scale-
up, since the implementation of a technological solution should pursue
both its technical and economic feasibility.

This study represents a first attempt highlighting the effectiveness of
US treatment towards a multiple contamination of sediment samples as
well as the possibility to pursue relevant removal yields with a rela-
tively low energy input, posing US as a promising technology for se-
diment remediation.

3.2. US as pretreatment for the EK remediation

The EK process is well known to be effective towards metal species;
conversely as PAH are non-polar species they are not involved in
electro-migration mechanisms. EK application to untreated control
samples was thus used to depict its remediation yields towards heavy
metals, in order to better understand the contribution of the US pre-
treatment on the sole target inorganic contaminants.

The EK treatment of untreated samples reduced Cd concentration
below the instrumental detection limit (0.005 mg/l) and provided a Zn
removal as high as 99.63 ± 0.06%. (Fig. 4a).

These results are in good agreement with the work of Camesselle
et al. [54], reporting the best EK efficiencies for Cd and Zn. In their
study, the authors estimated an average 70% removal, lower than the
one observed in the present work, likely due to the presence of clay in
the sediments. As indicated by Alcántara et al. [20], the clay negative
superficial charge is able to retain positive ions, like the metal ones,
playing a key role in determining remediation results.

Different consideration raises for Pb, as the EK process resulted in
increasing desorption profile across the sample, with an efficiency as
high as 29.44 ± 2.96% obtained in section 3. The acid process fluid
used to keep pH below 4 at the cathode, mobilized the metal at the
cathode side, likely forming negative complexes that migrated towards
the anode [54]. Such mechanism could explain the higher desorption
efficiency at the cathode (Fig. 4a).

The US treatment of the samples prior to EK was particularly ef-
fective on the organic compounds, which were almost completely re-
moved, with percentages of 91.39 ± 5.29% and 97.29 ± 2.29% for
benzo(a)anthracene and benzo(a)pyrene, respectively. Therefore, the
subsequent EK treatment was evaluated with reference to heavy metal
desorption. After the EK treatment, the best removal efficiency was
obtained again for Cd and Zn, with the same removal percentages
across the sample (Fig. 4b). Conversely, Pb final concentration de-
creased across the sonicated sample sections in the EK cell, when
moving from the anode to the cathode, with overall removal yields of
59.78 ± 2.82% and 63.64 ± 0.33% in section 1 and 2, respectively.
When considering the Pb concentration after the US pretreatment, it is
possible to estimate the contribution of the sole EK, which further in-
creased Pb desorption yields by approximately 19%.

The Pb desorption profile is in good agreement with the slight dif-
ferent pH values across the sediment sample (Fig. 4b): the higher effi-
ciencies were, indeed, observed in the sections closer to the anode,
where the pH was lower than 3 and the formation of positive complexes
likely occurred [54].

It is worth pointing out that the average pH values in sonicated
sample sections is below 3, whereas those observed for the untreated
sample sections are slightly higher. As the tests were performed under
the same operating conditions, this evidence accounts for the US

Fig. 3. Desorption percentage of heavy metals after treatment at 35 kHz (a) and 130 kHz (b).

Fig. 4. Desorption percentage of heavy metals and pH profile after the EK treatment of untreated (a) and sonicated (35 kHz, 10 min) samples (b).
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pretreatment effect on the samples. US action mechanisms are based on
the cavitation phenomena, which generate shock waves and microjets,
which may destroy the structure of the sediment and promote the
contaminant desorption. Notwithstanding the partial desorption pro-
vided by US, its mechanical effects led to the reduction of the grain size
and to the increase of the surface area in contact with the process so-
lution [55]. The US induced homogenization of the sample further
promoted the circulation of the process fluid, which results in the
overall improvement of the contact between the contaminated sedi-
ments and the acid solution, with a consequent enhancement of metal
desorption. In this view, Wang et al. [56] found that a 10 min US
pretreatment enhanced acid soil washing by about 20% and 30% for Pb
and Zn, respectively. The hypothesis of a uniform acidification of the
sample may also influence the EK mechanisms, thus justifying the de-
creasing trend of Pb removal yield across the sample sections with re-
gard to the increasing one observed for untreated samples.

An additional aspect that contributed to the effectiveness of US as
pretreatment of EK lays in the removal of the organic compounds,
whose presence may hinder EK remediation results. For this reason, in
the case of matrices with simultaneous contamination of organic and
inorganic compounds, a sequential treatment is desirable [57].

4. Conclusions

This study considered the potential of ultrasound application for the
simultaneous reduction of the concentration of both organic and in-
organic compounds from contaminated sediments. To this end, the US
technology was tested as stand-alone treatment as well as in combi-
nation with an electro-kinetic (EK) process.

US proved to be particularly effective towards organic compounds.
Average removal of 88% was obtained after only 5 min of sonication
and increasing treatment time up to 10 min, an almost complete re-
moval was observed. Under the same experimental conditions, deso-
rption yields of 84%, 47% and 71% were achieved for Cd, Pb and Zn,
respectively. The lower average value observed for lead should be at-
tributed to the neutrality of the aqueous medium, which does not
promote the solubilisation of this metal, usually occurring in acid
condition. The percentage of heavy metal desorption was almost con-
stant in all experiments, despite the sonication frequency as well as the
treatment time.

Based on these outcomes, 10 min, low frequency US treatment was
applied prior to an EK process. Experimental results suggest that the
removal of the organic compound as well as the homogenization of the
sediment samples provided by US accounted for the high metal removal
efficiencies obtained after the EK of sonicated samples. The average
desorption yield of lead increased from 29.44% to 63.64% when ap-
plying the EK on untreated and sonicated samples, respectively.

The application of ultrasonic waves led to a considerable reduction
of different polluting compounds from the sediments, with relatively
low energy input, that need to be optimized and probably further re-
duced when US technologies are combined with EK processes. Further
tests are necessary to characterize the degradation kinetics for both
organic and inorganic contaminants: mass balances should be provided
for each selected contaminant to quantify its distribution between the
liquid and the solid phase. The optimization of operating conditions for
the process scale-up could be then better addressed. Nevertheless, ex-
perimental outcomes clearly point out the potential of US for the re-
mediation of sediments characterized by multiple contamination.
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