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Within the complex pathological picture associated to diabetes, high glucose (HG) has “per se” effects on cells and
tissues that involve epigenetic reprogramming of gene expression. In fetal tissues, epigenetic changes occur
genome-wide and are believed to induce specific long term effects. Human umbilical vein endothelial cells
(HUVEC) obtained at delivery from gestational diabetic women were used to study the transcriptomic effects
of chronic hyperglycemia in fetal vascular cells using Affymetrix microarrays. In spite of the small number of
samples analyzed (n = 6), genes related to insulin sensing and extracellular matrix reorganization were found
significantly affected by HG. Quantitative PCR analysis of gene promoters identified a significant differential
DNA methylation in TGFB2. Use of Ea.hy926 endothelial cells confirms data on HUVEC. Our study corroborates
recent evidences suggesting that epigenetic reprogramming of gene expression occurs with persistent HG and
provides a background for future investigations addressing genomic consequences of chronic HG.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Sustained hyperglycemia (HG) has important effects at different
levels. At the cellular level, HG imposes a significant derangement of
normal metabolic homeostasis [1]. In tissues, long term HG is responsi-
ble for a large number of diabetes side effects ranging, amongst others,
from vascular to immune system failure [2,3]. Gestational diabetes (GD)
is a specific form of diabetes affecting about 8% of pregnant women and
caused by a relative failure of pancreatic β-cells to produce extra insulin
necessary to overcome the physiological increase of insulin resistance
taking place throughout pregnancy [4]. GD usually reverses after
delivery, but altered glucose homeostasis harms the mother and can
lead to health consequences in the fetus. In fact, untreated GD is associ-
ated to a spectrum of neonatal pathologies, ranging from overweight at
delivery, hypoglycemia, macrosomia, cardiac dysfunction and congeni-
tal malformations [5]. In spite of this wide spectrum of complications,
no specific genetic factors associated to GD have been identified yet
[6]. However, available reports, together with the observation that GD
displays in daughters of affected mothers an incidence higher than
one would expect from a canonical Mendelian inheritance, strongly
support the hypothesis of an epigenetic basis for GD [7].

Epigenetic reprogramming of genes is a crucial event in particular
during fetal development, where genome-wide epigenetic changes
occur. In fact, recent observations indicate that diabetes is associated
to epigenetic reprogramming of gene expression [8], possibly due to
HG that triggers specific molecular effects during prenatal growth
then fixed in the fetus genome. In order to test this hypothesis, we
have analyzed the transcriptome of human umbilical vein endothelial
cells (HUVEC) obtained from the vein of umbilical cords collected
from GD patients, and compared to control cells obtained from healthy
donors. These cells are an expedient ex vivo model for the study of the
molecular consequences of chronic HG. In fact, it is well known that
primary endothelial cells in culture have a special sensitivity to high
glucose and cannot be cultured for more than a few passages without
losing their specific characteristics.

Our data indicate that a significant up-regulation of several genes
encoding for growth factors linked to insulin sensing and extracellular
matrix (ECM) occurs in GD-HUVEC cells. Microarray data, confirmed
by RT-qPCR, strongly suggest that GD-HUVEC faithfully recapitulate
several molecular changes previously reported in GD patients and
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associated to HG. Moreover, qPCR analysis of genomic DNA digested
with methylation-dependent or sensitive restriction enzymes was
used to identify differential promoter methylation in a subset of genes.
Differential expression of transforming growth factor β 2 (TGFB2),
found in GD-HUVEC, correlates with differential promoter methylation,
suggesting an important role in the set up and propagation of a “glyce-
micmemory” in endothelial cells. Finally, utilizing the stable endothelial
cell line Ea.hy926, we have confirmed the existence of an HG-driven
methylation mechanism leading to an epigenetic modulation of TGFB2
expression.

2. Materials and methods

2.1. Ethics statement

Umbilical cords were obtained from randomly selected healthy and
gestational diabetic mothers delivering at the Pescara Town Hospital
(Italy). All procedures were in agreement with the ethical standards of
the Institutional Committee on Human Experimentation (“University
G. d'Annunzio Ethics Committee review board”, Reference Number:
1879/09COET) and with the Declaration of Helsinki Principles. After
approval of the protocol by the Institutional Review Board, a signed
informed consent form was obtained from each participating subject.

2.2. HUVEC primary endothelial cells

Primary cultures of endothelial cells (HUVEC) were set after enzy-
matic digestion of endothelial tissue of umbilical cord vein as previously
reported [9]. Umbilical cords were collected immediately after delivery
(39 to 41 weeks), from 3 Caucasian GDwomen (GD diagnosed not later
than 28th gestational week, GW, and fully recovered after delivery) and
from 3 Caucasian nondiabetic (C) women randomly selected matching
for age (35.6 ± 4.0 and 34.4 ± 4.5, respectively) and pre-gestational
weight (kg, 62.1± 13.7 and 67.9± 29.3). Basic anthropometric param-
eters did not differ significantly between the groups: height (mt)
1.66 ± 0.04 (C) and 1.62 ± 0.09 (GD) and pre-gestational body mass
index: 22.5± 3.7 (C) and 25.5± 2.4 (GD). Routine and clinical analyses
were similar in both GD and control subjects (data not shown)with the
exception of the biochemical fasting glycemia (4.33 ± 0.66 and 5.16 ±
0.48 mM, in control and GD group respectively). Nucleic acids were ex-
tracted fromHUVEC strains after 4 passages in normal glucose (5.5mM)
M199 endothelial growth medium (BioWhittaker) supplemented with
20% FBS, 10 μg/mL heparin, and 50 μg/mL ECGF (Sigma), in order to
discard genes whose expression should not depend on epigenetic
changes during gestational growth.

2.3. Ea.hy926 cells and HG treatment

The stabilized cell line Ea.hy926 is constituted of endothelial cells
derived from the fusion of HUVEC with the human lung carcinoma
cell line A549 [10]. Cells were cultured in 5.5 mM glucose DMEM
(EuroClone) supplemented with 10% FCS, 100 IU/mL penicillin,
0.1 mg/mL streptavidin, 2 mM L-glutamine and 2% HAT (hypoxanthine,
amnopterin, thymidine). HG condition was obtained treating cells for
24 h in 25.5 mM glucose. For the normal-glucose recovery condition,
cells were synchronized by starvation using 0.1% FBS media, starting
from 12 h from seeding, in order to avoid artifacts in the quantification
of methylation due to DNA duplication, which is especially relevant in
non-synchronized cell populations.

2.4. RNA extraction and cDNA microarray experiment

Total RNA from GD-HUVEC and HUVEC was extracted using RNeasy
PlusMini Kit (Qiagen,Hilden, Germany), according to themanufacturer's
instructions. Isolated RNA samples were sent to ServiceXS BV (Leiden,
The Netherlands) to be processed according to Affymetrix protocols.
Briefly, total RNA was labeled with the Affymetrix Eukaryotic One-
Cycle Target Labeling and Control reagents to generate biotin-labeled
anti-sense cRNA. Labeled cRNAs were hybridized on custom Affymetrix
chips (NuGO_Hs1a520180) containing 23,941 probesets including 71
controls (for details http://www.ebi.ac.uk/arrayexpress/arrays/A-AFFY-
111/). Graphic files obtained following chip hybridizationwere analyzed
using the R package oneChannelGUI. Raw signalswere normalized utiliz-
ing the GCRMA algorithm. The list of differentially expressed genes was
obtained applying a linear and moderated T-statistic model that imple-
ments empirical Bayes regularization of standard errors. According to
the statistical test we selected only genes with a Benjamini–Hochberg
corrected p-value b 0.05 and a Log2 ratio (FC) between mean values of
expression of GD-HUVEC vs control cells greater than 1 or below−1. Ac-
cording to the microarray analysis a total number of 127 genes resulted
in being significantly modulated in GD-HUVEC compared to control
cells (see the Result section). Among those, 29 have a FC greater or
lower than±2,while 55 genes have a FC greater or lower than±1.5. Be-
cause of the small number of samples analyzed, we thought of calculat-
ing the probability to detect false positive differentially expressed
genes, estimating the statistical power of the microarray experiment at
different thresholds of FC with the R package “size-power” [11]. Statisti-
cal power of genes above the±2 FC thresholdwas 0.95. Genes below the
threshold of ±1.5 had a power of 0.70 and those with a threshold of ±1
showed a 0.30 power value. As the functional analysis of the BP enrich-
ment performedwith genes from every threshold yielded similar results,
annotation and data-mining were carried out with the complete list of
genes, i.e. those produced according to the ±1 FC threshold (see
Results).

2.5. RT-qPCR

Total RNA was extracted from HUVEC and Ea.hy926 cells using
RNAeasy Plus Mini kit (Qiagen) according to the manufacturer's proto-
col. Purity, integrity and concentration were analyzed using the Agilent
2100 Bioanalyzer (Agilent Technologies). RNA was reverse transcribed
and amplified using the Power SYBR Green RNA-to-CT 1-Step Kit (Life
Technologies) according to manufacturer's instructions and applying
the following thermal protocol: reverse transcription for 30 min at
48 °C; Taq activation for 10 min at 95 °C; 40 cycles of denaturation for
15 s at 95 °C and annealing/extension for 1min at 60 °C. Finally, melting
curve analysis was performed in order to verify the proper product am-
plification. Optimal input RNA concentration for each gene was chosen
using standard curve analysis of a pool of samples or treatments.
Ribosomal protein RPS9 was selected as an internal standard. Primer
sequences are listed in Table 2. Measurements were performed in
technical triplicate and repeated at least three separate times. Data in
figures are expressed in Log2 in order to provide symmetrical distribu-
tion of gene expression effects. All data are expressed as the ratio to
the reference gene RPS9. Statistical significance was determined by
unpaired Student's t test.

2.6. DNA extraction and qPCR analysis of promoter methylation

Genomic DNA was extracted using Qiagen Puregene Core Kit A ac-
cording to the manufacturer's protocol and quantified using NanoDrop
1000 Spectrophotometer (Thermo Fisher Scientific). CpG island DNA
methylation of individual genes was analyzed using the EpiTect Methyl
qPCR Assay (Qiagen). The method, referred as “qAMP”, is based on the
detection of DNA remaining after cleavage with methylation-sensitive
and/or methylation-dependent restriction enzymes. This method has
been already reported to provide accurate and reproducible results
without the requirement for sodium bisulfite treatment of DNA [12].

After digestion of unmethylated andmethylatedDNAsbymethylation-
sensitive and methylation-dependent restriction enzymes, residual DNA
was quantified by qPCR using primers flanking the promoter region
of interest. The relative fractions of hypermethylated (HM) and
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unmethylated (UM) and intermediately methylated (IM) DNAs were
subsequently determined by comparing the amount in each digest
with a control untreated sample. The reactionmix was prepared accord-
ing to manufacturer's instructions: briefly, four 50 ng of genomic DNA
samples were digested at 37 °C for 16 h either with methylation-
sensitive, methylation-dependent, mock or both restriction enzymes.
Reactions were blocked by heat-inactivation at 65 °C for 20 min
and PCR performed applying the following thermal protocol: 95 °C
for 10 min; 3 cycles at 99 °C for 30 s and 72° for 1 min; 40 cycles at
97 °C for 15 s and 72 °C for 1 min. Ct values were used to calculate the
percentage of HM, UM and IM DNAs using the datasheet provided at
http://www.sabiosciences.com/dna_methylation_data_analysis1.php
(Individual EpiTect Methyl qPCR Assay).

3. Results

3.1. Microarray analysis and annotation

The microarray analysis identified 127 genes differentially
expressed in GD-HUVEC in comparison to HUVEC control cells obtained
from non-diabetic mothers. The data discussed in this publication have
been deposited in NCBI's Gene Expression Omnibus [13] and are acces-
sible through GEO Series accession number GSE49524 (http://www.
Fig. 1. (a) — Gene ontology. Representation (white nodes) of the biological processes and cellu
modulated genes (green nodes: up-regulated genes; red nodes: down-regulated genes). The si
sition of genes in the network is determined by the number of connections and therefore by th
search for direct relationship betweenmodulated genes produced a very low relational graph, an
Green nodes: up-regulated genes; red nodes: down-regulated genes. The intensity of color is p
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49524). Statistical enrichment
of specific biological processes, cellular compartments and molecular
functions annotated in Gene Ontology (GO http://www.geneontology.
org/) was assessed by the “clustering tool” included in the DAVID server
(http://david.abcc.ncifcrf.gov/). For each GO category cluster provided
by DAVID, a representative category was selected having the lowest
p-value, corrected using the Benjamini–Hockberg method. Only
non-redundant categories having a p-value lower than 0.05 were con-
sidered significant. 59 (47%) out of 127 differentially expressed genes
were clustered into 7 main GO categories of Biological Processes (BP).
Namely: organ development (GO: 0048513), anatomical structuremor-
phogenesis (GO: 0009653), regulation of cell differentiation (GO:
0045595), response to external stimulus (GO: 000009605), cell com-
munication (GO: 000007154), positive regulation of biological process
(GO: 0048518) and regulation of immune response (GO: 0050776)
(Fig. 1a). 27 genes (about 21% of the total) over represent the extracel-
lular region part category (GO: 0044421), belonging to the cellular com-
ponent (CC) GO ontology (Fig. 1a). No significant categories belonging
to themolecular function (MF) ontologywere found. Pathways analysis
of differentially expressed genes strongly highlights the up-regulation
of genes involved in organ development in GD-HUVEC. Some of them
specifically encode for growth factors (BDNF, FST, TGFB2), protein con-
stituents of the extra cellular matrix (COL1A1, COL3A1, FBN1, FBN2,
lar component highlighted by the enrichment analysis. Each GO term is connected to its
ze of the GO terms is proportional to the number of modulated genes. The topological po-
e number of GO terms in which the gene is involved. (b)— Directly connected genes. The
dmadeof only 9 genes: FBN1, FBN2, COL1A1, COL3A1, DDR2, IGFBP3, IGFBP5, FN1 and FST.
roportional to gene regulation level.
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Table 1
Abbreviations of terms depicted in networks.

Terms Descriptions

Act Activin, inhibin beta E chain
AKT Protein kinase B alpha
ADH1A2 Aldehyde dehydrogenase 1 family, member A2
ADH1A3 Aldehyde dehydrogenase 1 family, member A3
Ang Angiopoietins
ARID5B AT rich interactive domain 5B (MRF1-like)
bCas Beta casein
BCHE Butyrylcholinesterase
BDNF Brain-derived neurotrophic factor
C/EBP CCAAT/enhancer binding protein (C/EBP), beta
CARD11 Caspase recruitment domain family, member 11
CCND2 Cyclin D2
CCRL2 Chemokine (C–C motif) receptor-like 2
CDKN2B Cyclin-dependent kinase inhibitor 2B (p15)
CFI Complement factor I
C-MYC V-myc myelocytomatosis viral oncogene homolog
COL1A1 Collagen, type I, alpha 1
COL3A1 Collagen, type III, alpha 1
COL4A1 Collagen, type IV, alpha 1
COL5A2 Collagen, type V, alpha 2
COL8A1 Collagen, type VIII, alpha 1
CYTL1 Cytokine-like 1
CytR Cytokine R
CytR-J Cytokine R and JAK2 complex
DDR2 Discoidin domain receptor tyrosine kinase 2
DMD Dystrophin
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
F11R F11 receptor
FBN1 Fibrillin 1
FBN2 Fibrillin 2
FGF2 Fibroblast growth factor 2
FGF2R Fibroblast growth factor receptor 2
FN1 Fibronectin 1
FOSL2 FOS-like antigen 2
FOXF1 Forkhead box F1
FOXO1 Forkhead box O1
FST Follistatin
FSTL3 Follistatin-like 3
FZD2 Frizzled family receptor 2
GH1 Growth hormone 1
GHR Growth hormone receptor
GJA5 Gap junction protein, alpha 5, 40 kDa
GLUT4 Glucose transporter type 4
GRB2 Growth factor receptor-bound protein 2
HMOX1 Heme oxygenase (decycling) 1
ICAM1 Intercellular adhesion molecule 1
IGF1,2 Insulin-like growth factors 1 and 2
IGF1R Insulin-like growth factor 1 receptor
IGFBP3 Insulin-like growth factor binding protein 3
IGFBP5 Insulin-like growth factor binding protein 5
IkB Inhibitor of kappa B
IL15 Interleukin 15
IL32 Interleukin 32
INS Insulin
IR Insulin receptor
IRS1 Insulin receptor substrates 1 and 2
ITG2 Integrin, beta 2 and alpha L, complex
JAK2 Janus kinase 2
LIPG Lipase, endothelial
LNPEP Leucyl/cystinyl aminopeptidase
LOXL1 Lysyl oxidase-like 1
LTBP1 Latent TGFB binding protein 1
LY75 Lymphocyte antigen 75
MATN2 Matrilin 2
MBNL1 Muscleblind-like splicing regulator 1
MIZ1 Zinc finger, MIZ-type containing 1
MME Membrane metallo-endopeptidase
MMP Matrix metallopeptidase
mTOR Mechanistic target of rapamycin
NAMPT Nicotinamide phosphoribosyltransferase
NDRG1 N-myc downstream regulated 1
NEUROD1 Neuronal differentiation 1
NF-κb Nuclear factor of kappa B
NLRP1 NLR family, pyrin domain containing 1

Table 1 (continued)

Terms Descriptions

NMI N-myc (and STAT) interactor
N-MYC V-myc myelocytomatosis viral related oncogene
p21 Cyclin-dependent kinase inhibitor 1A
p300 E1A binding protein p300
p53 Tumor protein p53
PDGFB Platelet-derived GF beta polypeptide
PDGFbR Platelet-derived GF receptor, beta polypep.
PDLIM3 PDZ and LIM domain 3
PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase
PKP2 Plakophilin 2
Plas Plasmin
PLAT Plasminogen activator, tissue
PLAU Plasminogen activator, urokinase
PLG Plasminogen
PSMB8 Proteasome subunit, beta type, 8
PTGS1 Prostaglandin-endoperoxide synthase 1
RC3H1 Ring finger and CCCH-type domains 1
RNP Heterogeneous nuclear ribonucleoproteins H
RPS9 Ribosomal protein S9
SERP1 Plasminogen activator inhibitor type 1
SHANK3 SH3 and multiple ankyrin repeat domains 3
SHC1 SHC transforming protein 1
SIRT1 Sirtuin 1
SIX2 SIX homeobox 2
SMAD Small mother against decapentaplegic
SOS SOS–Ras–Raf–MEK–ERK pathway
SP1 Sp1 transcription factor
STAT1 Signal transducer and activator of transcription
TAF8 RNA pol II TBP-associated factor
TAGLN Transgelin
TFAP2A Transcription factor AP-2 alpha
TGFB2 Transforming growth factor, beta 2
TGFBR Transforming growth factor, beta receptor
TNF-a Tumor necrosis factor
TNFR1,2 TNF receptor superfamily, members 1A and 1B
TNFSF18 TNF (ligand) superfamily, member 18
TNS3 Tensin 3
TPST1 Tyrosylprotein sulfotransferase 1
TRADD TNFRSF1A-associated via death domain
TRAF2 TNF receptor-associated factor 2
TrkB Neurotrophic tyrosine kinase, receptor, type 2
ZC3H8 Zinc finger CCCH-type containing 8
ZFP36L1 Zinc finger protein 36, C3H type-like 1

Approved gene symbols for the following genes are shown in parentheses: Act (INHBE),
ADH1A2 (ALDH1A2), ADH1A3 (ALDH1A3), bCas (CSN2), C/EBP (CEBPB), C-MYC (MYC),
FGF2R (FGFR2), IR (INSR), N-MYC (MYCN), PDGFbR (PDGFRB), Plas (PLG), TNF-a (TNF),
TrkB (NTRK2).
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FN1) and factors stabilizing insulin-like growth factors (IGFBP3,
IGFBP5) (see Table 1 for abbreviations).

3.2. Data-mining and network construction

A network of the interactions of genes differentially expressed in
GD-HUVEC, and hence in the presence of long term HG in comparison
with controls, was built using the MIMI plugin of the freely available
software Cytoscape (http://www.cytoscape.org/) [14]. When address-
ing the pathways analysis, because of the small number of samples an-
alyzed, we firstly verified that results generated with the whole set of
genes (including those with a (Log2) FC of expression between the
±1 and ±2 thresholds, see Materials and methods) were significantly
not different from that obtained by genes reaching the statistical
power of 0.95 (above the ±2 FC threshold). The search for direct pro-
tein–protein and protein–gene interactions produced a very weak rela-
tional graph,made of only 9 genes (Fig. 1b, Table 1 for abbreviations and
Table 2). Therefore, we thought to expand the network by including
“neighboring” genes, factors, molecules or complexes (nodes) that con-
nect differentially expressed genes. These connections were identified
by a data-mining approach interrogating public databases with
different bioinformatics tools (http://www.genome.jp/kegg/pathway.
html, www.genego.com, http://www.sabiosciences.com, http://www.

http://www.cytoscape.org/
http://www.genome.jp/kegg/pathway.html
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Table 2
RT-qPCR and primer sequences of arraying-data-mining (d + a) or data-mining (d) genes.
Primer sequences are from 5′ to 3′.

Genes Origin Confirmed RefSeq Forward primer Reverse primer

Act d nd NM_031479 ACT ACA GCC AGG GAG TGT GG GAA AAG TGA GCA GGG AGC TG
ARID5B d + a nd NM_001244638 GGG GAG GGG AGT TGT AAG CA ATT TGG CGC CAT TCC AGT CG
BDNF d + a nd NM_170734 GTC TCT GGG GAT GCA GAG C AGC CTT CAT GCA ACC AAA GT
CARD11 d + a y NM_032415 CTG GTC GCC TGG AGG AA CGT TGC ATC TGG ACT TGC
CCND2 d + a y NM_001759 AGC TGC TGG CTA AGA TCA CC ACG GTA CTG CTG CAG GCT AT
CDKN2B d + a y NM_078487 TAC AGG AGT CTC CGT TGG C GTG AGA GTG GCA GGG TCT G
COL1A1 9 genes y NM_000088 AAG AGG AAG GCC AAG TCG AG CAC ACG TCT CGG TCA TGG TA
COL3A1 9 genes y NM_000090 AGG GGA GCT GGC TAC TTC TC AGG ACT GAC CAA GAT GGG AA
DDR2 9 genes y NM_006182 AGG ATC CTG CTC CAC AGA GA AGG AAC AGC ACC AAG AGC AT
EGF d nd NM_001178131 TCT GCG TGG TGG TGC TTG TC CCT GCG ACT CCT CAC ATC TC TG
EGFR d n NM_005228 GAG GGT GAG CCA AGG GAG TTT G GGC AGG TCT TGA CGC AGT GG
F11R d + a nd NM_144502 TCG AGA GGA AAC TGT TGT GC GAA GAA AAG CCC GAG TAG GC
FBN1 9 genes y NM_000138 TCA ATG GAG GAA GGT GTG TG AAA CAT GGG CCT GTC CTG TA
FBN2 9 genes y NM_001999 CCG TGT GCT TGT GTT TAT GG CTT GGC ACA TCT GGT TGT TG
FGF2 d + a y NM_002006 GGA GAA GAG CGA CCC TCA C AGC CAG GTA ACG GTT AGC AC
FGF2R d nd NM_000141 CCC ACC GCA GGC TGA AGG CAC GAC CAG GCA GAT GAA ACG
FN1 9 genes y NM_002026 CCA TAA AGG GCA ACC AAG AG ACC TCG GTG TTG TAA GGT GG
FOSL2 d + a y NM_005253 GGA ACT TTG ACA CCT CGT CC TGA GCC AGG CAT ATC TAC CC
FST 9 genes y NM_006350 TCT GCC AGT TCA TGG AGG A TCC TTG CTC AGT TCG GTC TT
FSTL3 d y NM_005860 CCA CTC TGG CCT CTG CC CTG GAG CCA GCA AAC ACC
GH1 d nd NM_000515 CCG ACA CCC TCC AAC AGG GA CCT TGT CCA TGT CCT TCC TG
GHR d n NM_001242399 GGT GAA GGA TGG CGA CTC TG TGG ATA ACA CTG GGC TG CTG AG
HMOX1 d + a y NM_002133 GCC AGC AAC AAA GTG CAA G GAG TGT AAG GAC CCA TCG GA
ICAM1 d + a y NM_000201 TGA TGG GCA GTC AAC AGC TA AGG GTA AGG TTC TTG CCC AC
IGF1 d y NM_000618 TGG ATG CTC TTC AGT TCG TG TCA TCC ACG ATG CCT GTC T
IGF1R d y NM_000875 GTA CAA CTA CCG CTG CTG GA TGG CAG CAC TCA TTG TTC TC
IGF2 d y NM_000612 GTT CGG TTT GCG ACA CG AGA AGC ACC AGC ATC GAC TT
IGFBP3 9 genes y NM_000598 CTC TGC GTC AAC GCT AGT GC CGG TCT TCC TCC GAC TCA C
IGFBP5 9 genes y NM_000599 GGT TTG CCT CAA CGA AAA GA GAG TAG GTC TCC TCG GCC AT
IL15 d + a y NM_000585 TGT TCC ATC ATG TTC CAT GC TCC ACG ATG CCT CCT ACA A
INS d n NM_000207 TTC TAC ACA CCC AAG ACC CG CAA TGC CAC GCT TCT GC
IR d n NM_000208 GTC ATC AAC GGG CAG TTT G GGT GCA GCC GTG TGA CTT AC
IRS1 d y NM_005544 TAT GCC AGC ATC AGT TTC CA GGA TTT GCT GAG GTC ATT TAG G
IRS2 d n NM_003749 ACC TAC GCC AGC ATT GAC TT CAT CCT GGT GAT AAA GCC AGA
LIPG d + a y NM_006033 GCT GTG GAC TCA ACG ATG TC GTC AAC AAA GAG GTG GAC GG
MBNL1 d + a n NM_021038 AAT GGA CGA GTA ATC GCC TG CGT TTT TAA ATG TGG GGG TG
mTOR d y NM_004958 CGA GCA TAT GCC AAA GCA CT TCC GGC TGC TGT AGC TTA TTA
NAMPT d + a n NM_005746 GAG TTC AAC ATC CTC CTG GC TTC TAC ACA CCC AAG ACC CG
NDRG1 d n NM_006096 GTG GAG AAA GGG GAG ACC AT ACA GCG TGA CGT GAA CAG AG
NEUROD1 d + a n NM_002500 GCC CCA GGG TTA TGA GAC TAT ATC AGC CCA CTC TCG CTG TA
NMI d nd NM_004688 GGG GGT TCG CGT TTC AG TAT CAG CTT CCA TGA TCC CC
N-MYC d + a n NM_005378 CAC AAG GCC CTC AGT ACC TC CAC AGT GAC CAC GTC GAT TT
PDGFB d n NM_002608 CAA GAC GGC ACT GAA GGA GAC C CAA GAC GGC ACT GAA GGA GAC C
PDGFbR d y NM_002609 GCA GCA GTG AGA AGC AAG C TAG TCC ACC AGG TCT CCG TAG C
PLAT d + a y NM_000930 CTG GAG AGA AAA CCT CTG CG GCA GAG CCC TCT CTT CAT TG
PLG d nd NM_000301 CTG CCA TCC CCA AAT TAT GT AGA AGG CCA GCT CCA AAA GT
PSMB8 d + a n NM_148919 TCT CCA GAG CTC GCT TTA CC CAT GGG CCA TCT CAA TCT G
RPS9 NM_001013 CTG CTG ACG CTT GAT GAG AA CAG CTT CAT CTT GCC CTC AT
SERP1 d y NM_000602 ACA ACA GGA GGA GAA ACC CA AGC TCC TTG TAC AGA TGC CG
SIRT1 d y NM_012238 TAC CGA GAT AAC CTT CTG TTC G GTT CGA GGA TCT GTG CCA AT
SIX2 d + a y NM_016932 CAC CAC ACA GGT CAG CAA CT CGG GTT GTG GCT GTT AGA AT
STAT1 d + a y NM_007315 AGG AAG ACC CAA TCC AGA TGT TGA ATA TTC CCC GAC TGA GC
TFAP2A d + a n NM_003220 ATG CTT TGG AAA TTG ACG GA ATT GAC CTA CAG TGC CCA GC
TGFB2 d + a y NM_003238 ATA GAC ATG CCG CCC TTC TT CTC CAT TGC TGA GAC GTC AA
TNF-a d n NM_000594 CTG CTG CAC TTT GGA GTG AT AGA TGA TCT GAC TGC CTG GG
TNFR1 d n NM_001065 GGA GTG AGA GGC CAT AGC TG ATA TTC CCA CCA ACA GCT CC
TNFR2 d n NM_001066 CGT CGG ACT GGA GCT CTG TAT TCT CTG AGC CGG CAT GT
TRADD d n NM_153425 TGC CCA GAC TTT TCT GTT CC GCC ATT TGA GAC CCA CAG AG
TRAF2 d y NM_021138 CCC TTA ACT TGT GAC GGC TG ATC TGC AAG GGA CTC GAC AC
ZFP36L1 d + a nd NM_004926 GTC TGC CAC CAT CTT CGA CT CTT TCT GTC CAG CAG GCA AC
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genecards.org), integratedwith interactionswith genes recently report-
ed in the literature and not yet annotated in interaction databases. Ac-
cording to this data-mining procedure, we were able to add 83 more
nodes to the 9-gene network, Out of these, 23 were genes already in-
cluded in the Affymetrix chips (“d+ a”, in Table 2) while the remaining
60were new nodes (Fig. 2 and Table 1 for abbreviations). The statistical
enrichment of GO biological processes of the resulting network,
performed by the application of filtering parameters as described
above, allowed the clustering in 7main categories, identical or closely re-
lated to those found when considering the 127 genes differentially
expressed solely on the basis of the arrays, i.e. organ development (GO:
0048513), response to external stimulus (GO: 0009605), immune
system process (GO: 0002376), regulation of cellular process (GO:
0050794), embryonic morphogenesis (GO: 0048598), protein metabolic
process (GO: 0019538) and enzyme linked receptor protein signaling
(GO: 0007167).

3.3. RT-qPCR confirmation of microarray and data-mining

In order to confirm the pivotal role of specific genes in the adaption
to HG associated to GDwe proceeded to the confirmation by RT-qPCR of
59 genes originating from cDNA arraying-data-mining (9 genes plus 23
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Fig. 2.Network building after data-mining. The 9-gene network of directly connected genes was expanded by data-mining and 83 “neighboring” nodes (genes, factors, molecules or com-
plexes) were included, connecting a total of 32 modulated genes according to microarrays. Green nodes: up-regulated genes; red nodes: down-regulated genes. The intensity of color is
proportional to gene regulation level. Gray nodes are nodes inferred by data-mining and lacking array data. Different types of interactions between nodes are colored as indicated.
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genes from data-mining, “d+ a” in Table 2, column “Origin”) or among
those obtained solely by data interrogation (27 genes, “d”) chosen
according to the rationale of being “first-degree neighbors” or because
of a known association with diabetes or hyperglycemia. The ribosomal
protein RPS9 gene was included for data normalization. The alternative
methodology ofmeasurement allowed to confirm the differential expres-
sion of 22 out of 32 genes identified by arraying-data-mining (Table 2 “d
+ a” and “y”, Fig. 3), 6 genes were found unchangedwith respect to con-
trol (“n”) and 4 genes were “non-detectable” (“nd”) under our analytical
conditions. The differential expression of 10, out of 27 genes identified by
data-mining and not included in arrays was confirmed (Table 2 “d” and
“y”, Fig. 3). On the other hand, 11 genes were found not differentially
expressed (“n”) and six genes were “non-detectable”.

3.4. Analysis of methylation status of promoters

Seeking for an epigenetic mechanism able to determine the differen-
tial gene expression observed in GD-HUVEC, we analyzed the methyla-
tion status of the promoters of 5 genes arbitrarily selected among those
significantly affected by HG, namely COL1A1, IGFBP3, IGFBP5, FGF2 and
TGFB2 in the individual samples of GD and control subjects. No differ-
ences within CpG islands of FGF2 (island 06727), IGFBP5 (island 04169)
and COL1A1 (island 22299) were found (data not shown). On the other
hand, we found a 44.2 ± 8.9% reduction of the hypermethylated (HM)
fraction of genomic DNA in the CpG island 28545 of the TGFB2 promoter
of GD-HUVEC correlating with the observed up-regulation of the gene in
two out of three GD subjects (strains H46D and H64D, Fig. 5). This effect
apparently depends on the emerging intermediately methylated (IM)
fraction which was lacking in the third GD subject (H50D, Fig. 5). With
respect to IGFBP3, qAMP analysis indicates that the up-regulation of this
gene is associated to changes in the methylated fractions within CpG
island 28250. However, the effect was not statistically significant (data
not shown).

3.5. HG induced up-regulation of TGFB2 gene in Ea.hy926 endothelial cells

In order to corroborate the epigenetic effect of long termHGon TGFB2
observed in vivo, we assessed the expression and the methylation status
of the same gene in immortalized Ea.hy926 cells cultured in a high glu-
cose concentration, mimicking pathological hyperglycemia (25.5 mM
glucose). 24 hour treatment in HGwas associated with increased expres-
sion of TGFB2 gene (Fig. 6a, unrecovered). The analysis of themethylation
of the promoter indicates that TGFB2 up-regulation is associated with a
96.6% reduction of the hypermethylated fraction of genomic DNA
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Fig. 3. RT-qPCR summarized. Expression of genes in GD-HUVEC. Results are expressed as geometric mean of Log2 ratios (values of control HUVEC: 0). Values are means ± SD. Statistical
significance was calculated using the unpaired t test (*p b 0.05, **p b 0.005, ***p b 0.001, n = 6; #p b 0.05, n = 5).
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(Fig. 6b). TGFB2 “glycemic memory”was tested by analyzing the expres-
sion of the gene after a 24 hour recovery in normal (5 mM) glucose con-
centration. Also in this case, the expression of TGFB2 gene significantly
increased (Fig. 6a, recovered). At the same time, a 70.8% decrease of the
HM fraction was observed in comparison to control (Fig. 6b, recovered),
supporting the existence of a methylation-dependent HG-induced
memory effect. With respect to IGFBP3 (CpG island 28250), we were
unable toquantifyDNAmethylationbecause the cell starvationprocedure
was associated to a complete “switch off” of the expression of the gene,
independently of HG (data not shown). However, at the end of 24 hour
incubation in non-starving medium after HG treatment, we found a 3.3-
fold increase in IGFBP3 gene expression along with a 6.8-fold decrease
in promoter methylation (data not shown).
4. Discussion

It has been proposed that HG induces genome-wide epigenetic
changes, especially during fetal development, where a profound gene
reprogramming occurs [15]. Chronic deregulation of glucose homeosta-
sis can trigger, on the long term, a large number of effects, including
diabetes. Within this perspective, HUVEC collected from the umbilical
cords of babies delivered by GD mothers have been considered an
expedient ex vivo model for the study of the molecular consequences
of long term, chronic HG. In our study, we have demonstrated
that, chronic hyperglycemia in vivo is “stabilized” by a specific
reprogramming of gene expression in endothelial cells of the infant
cords, supporting the existence of a metabolic “glycemic memory”, i.e.
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Fig. 4. Summary of GD-HUVECmajor changes. Interaction network between genes, receptors andmolecules obtained by RT-qPCR confirmation of data-mining andmicroarray findings in
GD-HUVEC. Focus is on genes involved in insulin sensing, ECM reorganization and cell cycle. The intensity of color is proportional to gene regulation level. Gray nodes are nodes inferred by
data-mining and lacking array data. Different types of interactions between nodes are colored as indicated.

344 R. Ambra et al. / Genomics 103 (2014) 337–348
a glucose-dependent epigenetic reprogrammingof gene expression [16]
(and references cited herein).

mRNA of GD-HUVEC cultures were subjected to transcriptome
analysis utilizing a Affymetrix 3′ microarray platform. 127 genes were
found differentially modulated in GD endothelial cells in comparison
to controls. The reconstruction of the network of direct interactions of
modulated genes allowed the construction of a very low relational
graph (Fig. 1b). The bolstering of the network analysis, by means of a
data-mining approach, allowed the inclusion of 83 more nodes in the
9-gene graph (Fig. 2), inclusive of 23 genes already identified by arrays.
Among the identified genes, a total of 59 genes were arbitrarily selected
for RT-qPCR quantification of gene expression (Fig. 3), 32 included in
chips and 27 identified by data-mining alone (Table 2). Themodulation
of 32 genes was confirmed (“y”), 22 from arraying-data-mining
(“d + a”) and 10 from data-mining (“d”), respectively (Fig. 4 summa-
rizes GD-HUVEC major changes).

Hereinafter, gene expression profile identified by our analyses
grouped by different functional categories will be described and
discussed, mainly addressing the differential expression of genes
displaying a (Log2) FC above the ±2 threshold (0.95 of power), in
order to ensure higher statistical significance.

4.1. Growth factors and proteins linked to insulin sensing (IGFBP3, IGFBP5,
IRS1, SIRT1, mTOR)

The increased expression of insulin-like growth factor binding pro-
teins IGFBP3 and IGFBP5 in GD-HUVEC, as detected with microarrays
(two of the 9-gene network genes, Fig. 1b) and further confirmed by
RT-qPCR (Table 2, Figs. 3 and 4) is consistentwith previous observations
on pregnancies complicated with hyperglycemia [17] and GD [18]. GD
women also show increased protein levels of insulin receptor
substrate-1 (IRS1) in the placenta [19]. The gene, identified as a “neigh-
bor” in our data-mining analysis, was found up-regulated in GD-HUVEC
by RT-qPCR (Fig. 3). This observation suggests the existence of an HG-
dependent epigenetic regulation mechanism involving the receptor.
This hypothesis is supported by others who previously reported an
HG-dependent increase of insulin-sensitiveness in human aortic
endothelial cells [20].
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Fig. 5. Expression and promoter methylation of TGFB2 in GD-HUVEC. (a) Expression of
TGFB2 in GD-HUVEC strains (H46D, H50D, H64D) and in control HUVEC strains (H256,
H355, H379). Results are expressed as percent values of H355, H379, H46D, H50D and
H64D expression with respect to that of H256, arbitrarily set equal to 100. Values are
means ± SD from qPCR run in technical triplicates. H46D and H64D GD-HUVEC samples
displayed differential expression compared to HUVEC controls by unpaired t test at
p b 0.05 level. (b) TGFB2 promoter methylated fractions within CpG island 28545 in the
same HUVEC strains as in Fig. 5a quantified by qAMP. Results are expressed as percent
values of H256, H355, H379, H46D, H50D and H64D hypermethylated (HM),
unmethylated (UM) and intermediately methylated (IM) DNA fractions. Values are
means from qAMP run in technical triplicates.
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SIRT1, a NAD-dependent protein deacetylase that links the regula-
tion of gene expression to the energetic status of the cell by “sensing”
glucose availability andmetabolism [21] is another “neighbor” of IGFBPs
identified by data-mining (Fig. 2). Bymeans of RT-qPCR, we assessed an
up-regulation of SIRT1 in GD-HUVEC (Figs. 3 and 4). This observation
apparently mismatches the down-regulation induced by glucose re-
ported by others [22]. On the other hand, it is possible to hypothesize
that SIRT1 acts by “sensing” the environment shift from maternal HG
to the in vitro normal glucose. The hypothesis of a HG-dependent regu-
lation of SIRT1 expression is consistentwith the epigenetic properties of
deacetylases. A similar hypothesis has been already proposed formTOR,
as a placental sensor of maternal nutrients availability, hence regulating
nutrient transport and fetal growth [23]. Notably, the up-regulation of
SIRT1matches with mTOR up-regulation (Figs. 3 and 4). This candidate
role ofmTOR is supported bydata frompregnancies characterized by in-
trauterine growth restriction (a situation opposite to that occurring in
GD) in which mTOR was found reduced at the protein level. mTOR
also links the insulin cascade to the PI3K–AKT kinase [24], and the
PI3K gene was reported down-regulated in HUVEC temporarily treated
with pharmacologic doses of insulin [25]. The lack of PI3K mRNA mod-
ulation in our model could rely on the different and more physiological
condition of GD-HUVEC cells. On the other hand, at the protein level,
AKT phosphorylation can be triggered by SIRT1–mTOR signaling, and
this regulation triggers the phosphorylation of AKT (and FOXO1)
leading to a decreased transcription of gluconeogenic genes [26] and
increased glucose uptake due to the translocation of the glucose
transporter 4 (GLUT4) to the plasma membrane [27]. All the above
mentioned responses result in an increased conversion of glucose to
glycogen, a situation similar to that taking place in vitro in GD-HUVEC.

4.2. Factors involved in ECM reorganization (TGFB2, FBN1, FBN2, COL1A1,
COL3A1, DDR2, FN1, FST, FSTL3, CARD11, LIPG, ICAM1)

We found a strong up-regulation of transforming growth factor β 2
(TGFB2) in two out of three samples of GD-HUVEC (strains H46D and
H64D). This condition was associated to decreased hypermethylation
of the promoter (Fig. 5). A different methylation pattern was found in
the third strain (H50D) that showed a lower up-regulation of TGFB2
in comparison to the other two. The direct correlation between promot-
er methylation status and expression level supports an epigenetic regu-
lation mechanism, and also indicates a complex regulation mechanism
that surely needs further investigations to be fully elucidated. However,
our observation is corroborated by the in vitro confirmation in Ea.hy926
cells, and is the first report describing a glucose-dependent epigenetic
mechanism regulating TGFB2 gene expression by a differential methyl-
ation of its promoter.

TGFBs are secreted cytokine involved in several cellular responses
and have crucial roles during development but also in the homeostasis
of most human tissues. Disruption of TGFB homeostasis affects different
cellular functions, from proliferation to differentiation, eventually lead-
ing to vascular remodeling and tumor formation [28]. In non-tumor
cells, upon ligand binding, TGFB receptors dimerize and activate a sig-
naling cascade involving SMAD proteins and finally the transcription
of TGFB dependent genes [29]. In cancer cells, TGFB pro-metastatic
and pro-inflammatory effects are regulated via nuclear factor kappa B
(NF-κB) [30]. It is possible to hypothesize that the effects of hyperglyce-
mia in GD-HUVEC could involve NF-κB-dependent activation of TGFB2.
This hypothesis is supported by several evidences, namely: i) a specific
up-regulation of TGFB2 has been recently found associated to hypergly-
cemia in retinal pericytes [31]; ii) a putative NF-κB site within TGFB2
promoter has been identified by sequence analysis of TGFB2 regulatory
regions [32]; iii) TGFB2 has been reported to be responsible for NF-κB
activation [33], and iv) transient HG has been found to induce the
expression of the gene coding the p65 subunit of NF-κB both in vivo in
mice, and in vitro, in aortic endothelial cells [34]. In the latter study,
the effect of HG on p65 expression was persistent after the restoration
of normoglycemia and depended on increased methylation of the
histone H3K4 by the methyltransferase Set7, demonstrating that HG is
able to trigger an epigenetic regulatory mechanism [34]. According to
these reports, cancer cell lines expressing high levels of secreted
TGFB2 also show a constitutive activation of NF-κB, considered essential
for the escape of tumor cells from apoptosis. Finally, the hypothesis of a
NF-κB-dependent activation of TGFB2 in GD-HUVEC is supported by the
up-regulation of the expression of genes located both downstream and
upstream to NF-κB, namely: ICAM1, CARD11, LIPG, IL15 and TRAF2 [35]
(Figs. 3 and 4).

The involvement of NF-κB is further supported by the strong up-
regulation of Fibronectin (FN1), an ECM glycoprotein (Figs. 1b and 4).
FN1 induces the activation of MMP2 and MMP9, triggering the proteo-
lytic process required for TGFB release and activation [36]. Similarly, in
colon cancer cells, the activation of MMP2 by FN1 depends on NF-κB
[37]. Moreover, the up-regulation of FN1 has also been reported
by others in endothelial cells exposed to HG [38]. Notably, FN1
up-regulation was shown to persist in cultured cells for several cell
divisions after the restoration of normoglycemia corroborating the hy-
pothesis of a “phenomenon with a memory” [39]. Increased expression
of FN1 was also observed in rat embryos from diabetic mothers [40], a
condition analogous to GD.More recently, HG has been shown to be as-
sociated to an increase of the binding of the epigenetically regulated
transcriptional coactivator p300 to the FN1 promoter in the same exper-
imental model (HUVEC) [41].
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Fig. 6. Expression and promoter methylation of TGFB2 in Ea.hy926. Ea.hy926 cells were
treated for 24 h with 25.5 mM glucose (unrecovered) or for 24 h followed by a 24 hour re-
covery in normal glucose (recovered) in order to test the “glycemic memory”. (a) Expres-
sion of TGFB2 by RT-qPCR. (b) Quantification of the HM DNA fraction within CpG island
28545 of TGFB2 promoter qAMP. UM and IM fractions were omitted because these were
found equal to 0. Gene expression and promoter HM are expressed as percent values
with respect to unrecovered control cells, arbitrarily set equal to 100. Values are
means ± SD from three independent experiments. Statistical significance was calculated
using the unpaired t test (*p b 0.05, **p b 0.005, ***p b 0.001).
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Downstream to FN1, GD-HUVEC displayed a high expression of
Follistatin (FST) and FST like-3 (FSTL3) (Fig. 4) according to array anal-
ysis (Fig. 1b) and by data-mining (Fig. 2), respectively. These proteins
are antagonists of TGFB2 ligands, like Activin (Fig. 4), which modulate
glucose homeostasis, islet function and contribute to the regulation of
body composition [42]. Maternal and placental concentrations of
FSTL3 in GD women have been found reduced in comparison with
normal pregnant women, indicating that FSTL3 is implicated in GD
[43]. Also in this case, more studies are mandatory for a better
understanding of the occurrence of opposite effects on FSTL3 expression
and about the role of FST in hyperglycemia. Similar to the up-regulation
of the glucose sensor SIRT1, the up-regulation of FSTL3 in GD could
be interpreted as the consequence of a shift from a hyper- to a
normoglycemic milieu in culture medium after the isolation of HUVEC
from umbilical cords.

As mentioned above, TGFBs induce the accumulation of collagen
proteins COL1A1 and COL3A1 (collagen, type I and III, alpha 1), that
were foundup-regulated inGD-HUVEC, according to both array analysis
(Fig. 1b) and RT-qPCR (Fig. 3), together with FBN (Fibrillins 1 and 2).
Both FBNs and COL1A1 and COL3A1 have been recognized to be epige-
netically regulated [44,45]. However, no differential methylation of the
CpG 22299 island of COL1A1 promoter was found in the present study,
suggesting that other islands sensitive to methylation are possibly
involved. Even though COL3A1 specifically activates DDR2 (Fig. 4), a
tyrosine kinase involved in ECM remodeling [46] through MMP2 [47]
we observed a down-regulation of this kinase by arrays (Fig. 1b) and
by RT-qPCR (Fig. 3). We can speculate that the down-regulation
of DDR2 is the consequence of a negative feedback operated in GD-
HUVEC by the protein on themessenger, as already proposed for dermal
fibroblasts [48].

Centrally in our study, the up-regulation of TGFB2 in the presence of
a long termHGwas fully confirmed in a different endothelial cellmodel,
the Ea.hy926 cells (Fig. 6). Importantly, the up-regulation was not
reverted by the return to normoglycemic conditions and itwas associat-
ed with a reduction of the hypermethylated fraction of genomic DNA
within TGFB2 gene promoter (Fig. 6). Also in this case more specific
studies are needed in order to verify the occurrence of NF-κB activation
as the result of epigenetic changes induced by HG.
4.3. Non-insulin growth factors (FGF2, PDGFbR)

GD is characterized by macrosomia. In agreement with this
phenotype, high concentrations of several non-insulin associated
growth factors and receptors have been observed in the serum and in
the placenta of GD women and in their offspring, namely: GH1, EGF,
FGF2, VEGF, ET-1 (EDN1), PDGFB, GHR, EGFR and PDGFbR [49,50]
(and references cited herein). In our study no differences were found
in PDGFB, GHR and EGFR expression associated to GD-HG, while we de-
tected a significant up-regulation of FGF2 and PDGFbR (Fig. 3). The in-
crease of FGF2 expression observed in our study is consistent with
previously published data showing that HG is associated with an in-
crease of this membrane-associated protein in endothelial cell base-
ment, in a time-dependent fashion and persistently, even after the
recovery to normoglycemia [51]. We found no differences in the meth-
ylation of FGF2 promoter (CpG island 06727) in GD-HUVEC in compar-
ison to controls (data not shown). Inaba and coworkers reported that
HG increases the expression of PDGFbR in human capillary endothelial
cells [52] and in rat vascular smooth muscle cells [53]. The up-
regulation of PDGF receptor in GD-HUVEC is likely to be due to reduced
levels of the growth factor or to a cellular set up mimicking the effect of
a previous hyperglycemic condition that remained fixed, possibly by an
epigenetic mechanism. In agreement with this hypothesis, the demeth-
ylation of a specific region of PDGFbR promoter has been recently corre-
lated to the up-regulation of PDGFbR expression during the
differentiation of human embryonic stem into fibroblasts [54].
4.4. Cell cycle genes (CCND2, CDKN2B)

By means of population studies, the epigenetically regulated cyclin-
dependent kinase inhibitor 2B (CDKN2B; p15INK4b) [55] has been re-
cently linked to T2D in several European and Asiatic populations [56]
(and references cited herein). Moreover, using antisense oligonucleo-
tides, Chen et al. revealed a role of the gene in HG-induced endothelial
cell growth inhibition [57]. Even if more experiments are required for
the comprehension of the role of CDKN2B (and similarly cyclin D2,
CCND2) in T2D, the observed up-regulation in GD-HUVEC (Fig. 3)
supports the idea of an epigenetical regulation by chronic HG during
gestational diabetes.

4.5. Final considerations

Even if a small number of samples were analyzed, data presented
here, supported by strong statistical analysis, provide a set of novel in-
formation and an original database addressing the effects of long term
hyperglycemia on fetal tissues, potentially contributing to long term
health consequences. Moreover, we have generated a background that
contributes to a better understanding of the molecular mechanisms
responsible for the specific fixation of HG phenotype in the genome
during fetal development. In particular, we focused on the existence of
an epigenetic mechanism regulating TGFB2 expression by glucose,
confirmed in vitro by HG treatment on Ea.hy926 cells.
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Our study highlights the candidate role of proteins linked to insulin
sensing and ECM reorganization (Fig. 4). We suggest that the activation
of the insulin signaling pathway by hyperglycemia could depend up-
stream on NF-κB, SIRT1 and mTOR and, downstream, on an epigenetic
modulation of TGFB2 through a reduced hypermethylation of the
promoter.

Our data also confirm that GD-HUVEC are an expedient model for
the study of the molecular mechanisms involved in endothelial
dysfunction resulting from HG occurring during gestational diabetes.
In fact, gene expression profile observed in GD-HUVEC recapitulates
almost all findings that have been reported in GD and in endothelial
cells challenged with HG. However, the HG-dependent mechanism re-
sponsible for the observed epigenetic modification of TGFB2 expression
yet remains to be elucidated.
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