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A B S T R A C T   

The recent development of small form-factor (<6 kg), full range (400–2500 nm) pushbroom hyperspectral im
aging systems (HSI) for unmanned aerial vehicles (UAV) poses a new range of opportunities for passive remote 
sensing applications. The flexible deployment of these UAV-HSI systems have the potential to expand the data 
acquisition window to acceptable (though non-ideal) atmospheric conditions. This is an important consideration 
for time-sensitive applications (e.g. phenology) in areas with persistent cloud cover. Since the majority of UAV 
studies have focused on applications with ideal illumination conditions (e.g. minimal or non-cloud cover), little is 
known to what extent UAV-HSI data are affected by changes in illumination conditions due to variable cloud 
cover. In this study, we acquired UAV pushbroom HSI (400–2500 nm) over three consecutive days with various 
illumination conditions (i.e. cloud cover), which were complemented with downwelling irradiance data to 
characterize illumination conditions and in-situ and laboratory reference panel measurements across a range of 
reflectivity (i.e. 2%, 10%, 18% and 50%) used to evaluate reflectance products. Using these data we address four 
fundamental aspects for UAV-HSI acquired under various conditions ranging from high (624.6 ± 16.63 W⋅m2) to 
low (2.5 ± 0.9 W⋅m2) direct irradiance: atmospheric compensation, signal-to-noise ratio (SNR), spectral vege
tation indices and endmembers extraction. For instance, two atmospheric compensation methods were applied, a 
radiative transfer model suitable for high direct irradiance, and an Empirical Line Model (ELM) for diffuse 
irradiance conditions. SNR results for two distinctive vegetation classes (i.e. tree canopy vs herbaceous vege
tation) reveal wavelength dependent attenuation by cloud cover, with higher SNR under high direct irradiance 
for canopy vegetation. Spectral vegetation index (SVIs) results revealed high variability and index dependent 
effects. For example, NDVI had significant differences (p < 0.05) across illumination conditions, while NDWI 
appeared insensitive at the canopy level. Finally, often neglected diffuse illumination conditions may be bene
ficial for revealing spectral features in vegetation that are obscured by the predominantly non-Lambertian 
reflectance encountered under high direct illumination. To our knowledge, our study is the first to use a full 
range pushbroom UAV sensor (400–2500 nm) for assessing illumination effects on the aforementioned variables. 
Our findings pave the way for understanding the advantages and limitations of ultra-high spatial resolution full 
range high fidelity UAV-HSI for ecological and other applications.   

1. Introduction 

In many regions of the world, persistent cloud cover poses significant 
challenges for the acquisition of useful terrestrial optical remotely 
sensed imagery (e.g. Asner, 2001; Basnet and Vodacek, 2015; Sano et al., 

2007). Globally, the average daily cloud fraction over land estimated 
from the Moderate Resolution Imaging Spectroradiometer (MODIS) over 
12 years of continuous observations from Terra and over nine years from 
Aqua is ~55%, with a distinct seasonal cycle (King et al., 2013). As a 
result, methodologies for the detection and masking of clouds and cloud 
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shadows, including accounting for haze, are required but can greatly 
reduce the area suitable for analyses in a given image (Frantz et al., 
2018; Richter, 1996; Zhu and Woodcock, 2012). The recent imple
mentation of unmanned aerial vehicle hyperspectral imaging systems 
(UAV-HSI) (e.g. Arroyo-Mora et al., 2019; Lucieer et al., 2014; Zarco- 
Tejada et al., 2013) allows for the possibility of acquiring ultra-high 
spatial (cm) and temporal resolution imagery at low altitudes below 
low-level cloud formations (Wang et al., 2019), providing novel op
portunities for optical remote sensing studies. 

While many studies list the range of applications to which the rapidly 
growing field of UAV imagery has been applied, recent work with UAV 
platforms has also investigated foundational aspects of application in
dependent, assessments of vegetation properties and acquisition pa
rameters, at ultra-fine spatial scales, such as the Bidirectional 
Reflectance Distribution Function (BRDF) (e.g. Burkart et al. (2015)), 
albedo (e.g. Levy et al. (2018)), and leaf-area-index (LAI) (Potgieter 
et al., 2017; Yao et al., 2017). However, these studies are similar to the 
majority of optical remote sensing studies in that they have been ac
quired under ideal clear sky conditions. As a result of the near exclusive 
use of clear skies, the potential utility of HSI collected under non-ideal 
conditions (i.e. cloudy conditions when diffuse skylight dominates), 
requires further study. Because consistent, direct illumination has been 
considered essential for several optical remote sensing applications, the 
main limiting factor for UAV data acquisition has remained variable 
weather conditions (Banerjee et al., 2020; Hakala et al., 2013; Ranquist 
et al., 2017). However, the few studies which investigate HSI acquired 
under diffuse illumination conditions below clouds have shown great 
potential; for example, the BRDF reduces to a hemispherical-directional 
observation situation (i.e. Hemispherical-Directional Reflectance Fac
tor: HDRF. Nicodemus et al. (1977)) at almost isotropic illumination 
conditions. 

The majority of studies assessing the impact of illumination condi
tions due to differences in cloud cover on UAV acquired imagery data 
have used RGB Structure-from-Motion photogrammetry. For example, 
Wierzbicki et al. (2015) found that while cloudy conditions with fog 
deteriorate the quality of the digital elevation model and orthomosaics, 
a modified flight plan increasing photograph overlap could mitigate the 
problems reasonably well. Ruwaimana et al. (2018) found improved 
classification of mangrove species from RGB mosaics acquired under 
cloudy conditions than from high spatial resolution satellite imagery due 
to reduced glare from the water, higher spatial resolution (cm vs 2 m) 
and homogenous illumination with minimal shadows. Notably fewer 
studies have examined UAV multispectral or HSI under cloudy or vari
able irradiance. For example, Wang et al. (2019) developed a tensor 
decomposition to produce repeatable reflectance time series under 
variable and low irradiance conditions from UAV multispectral imagery 
with applications to high latitudes and persistently cloudy tropical re
gions. Some of the earliest studies examining HSI under non-ideal illu
mination conditions are Hakala et al. (2013), Honkavaara et al. (2013) 
and Honkavaara and Khoramshahi (2018) who implemented and 
refined a radiometric block adjustment using in -situ irradiance mea
surements to produce normalized imagery across flight lines collected 
under varying illumination conditions due to persistent and variable 
cloud cover with a tunable Fabry-Pérot Interferometer. Similarly, Li 
et al. (2015) found that an irradiance sensor based atmospheric 
compensation of a pushbroom VNIR (380 and 1000 nm) UAV-HSI pro
duced better results in comparison to a radiative transfer model-based 
approach when the aerosol type was difficult to determine. However, 
additional studies addressing variable illumination conditions of full 
range (400–2500 nm) pushbroom UAV-HSI of natural targets and real 
in-situ conditions are required for understanding the full potential these 
systems have for a wide range of applications. Because HSI resolves the 
electromagnetic spectrum at a finer detail than multispectral imagery (i. 
e. larger number of narrower bands), residual features can remain in the 
data after pre-processing (e.g. errors in radiometric or atmospheric 
compensation or incomplete removal of atmospheric scattering or 

absorption features). From multispectral imagery the broader bands 
may not acquire data spanning specific atmospheric absorption features 
or if they do, the features may not be visible in the spectra due to the 
relatively wide bands. As such, the pre-processing of HSI is more sen
sitive to the environmental conditions under which it was acquired. 
Moreover, for better implementation in many applications, the ultra- 
high spatial resolution and high dimensionality of UAV-HSI requires 
revisiting foundational aspects of passive remote sensing (e.g. illumi
nation, instrument signal-to-noise ratio (SNR), vegetation indices, etc.). 

In this study, our objective was to analyze the effects of various 
illumination conditions due specifically to cloud cover on four aspects of 
full range (400–2500 nm) pushbroom UAV-HSI: determination of bot
tom of the atmosphere reflectance, the signal-to-noise ratio (SNR), 
spectral vegetation indices (SVIs) and scene derived endmembers. First, 
with the increasing availability of UAV-HSI, there is a need to determine 
the utility of low altitude full range HSI acquired under cloudy condi
tions for which no accurate physical inversion based on radiative 
transfer models alone is feasible. Use of in-situ reflectance measure
ments of calibrated field panels (e.g. Arroyo-Mora et al., 2019; Lucieer 
et al., 2014) and downwelling irradiance sensors (Hakala et al., 2013; Li 
et al., 2015) have been shown to mitigate the effect of the atmosphere on 
surface reflectance estimation by reducing residual atmospheric arti
facts (Soffer et al., 2019; Wang et al., 2019). Second, larger SNR results 
in more useful information that can be differentiated from the noise 
inherent in all electro-optical instruments. For many applications, a 
minimum SNR is required to draw inferences based on the signal orig
inating from the material of interest (e.g. relationship between SVIs and 
foliar biochemistry, classification, etc.) (Goetz and Calvin, 1987; Moses 
et al., 2012; Smith and Curran, 1996). Third, commonly used SVIs such 
as NDVI reduce atmospheric and illumination effects due to the division 
of spectral bands (Meyer et al., 1995; Rouse Jr. et al., 1974). However, 
because the most common SVIs were developed for satellite-based Earth 
observation, the illumination effects they intend to minimize are due to 
changes in solar zenith angles across latitudes (Rouse Jr. et al., 1974), 
rather than the differences in direct and diffuse illumination encoun
tered under varying cloud cover. Finally, many conventional endmem
ber identification techniques do not account for major contributing 
factors to the spectral variability induced by canopy architecture, leaf 
orientation, irradiance geometry and residual absorption and scattering 
properties of the atmosphere due to imperfect atmospheric compensa
tion (Adams et al., 1995; Zare and Ho, 2014; Zhang and Du, 2012). 
There are usually more endmembers than materials in an HSI, due to 
both environmental/biophysical variations (e.g. different pigment con
centrations) as well as illumination (and atmospheric) induced differ
ences and BRDF effects. This property can be exploited to reveal 
differences in the proportional contribution of environmental/bio
physical versus illumination/atmospheric drivers of multiple endmem
bers within the scene (Gruninger et al., 2004) as a result of irradiance 
conditions. 

To quantitatively assess the effect of various illumination conditions 
(e.g. clear sky, cloudy and variable cloud cover) on the aforementioned 
variables, we acquired UAV-HSI during a three day period that were 
complemented with downwelling irradiance measurements (i.e. pyran
ometer) for quantifying irradiance, as well as measurements of cali
brated standard reference targets of different reflectance levels (Soffer 
et al., 2019). Our study leads to an improved understanding of how 
environmental acquisition conditions impact image quality for vege
tated areas, especially when considering the VNIR and SWIR spectrum 
(400–2500 nm). This is especially important for broadening the acqui
sition window to acceptable (though non-ideal) atmospheric conditions, 
for time-sensitive, short-lived ecological phenomena of endangered 
species (e.g. flowering) or environments with persistent cloud cover (e. 
g. high latitudes, tropical forests, etc.). 
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2. Methods 

2.1. Study area 

Garry Oak (Quercus garryana Douglas ex Hook.) ecosystems are 
highly endangered with only 1–5% remaining in a near-natural condi
tion, with a very high diversity of associated plants, (694 plant taxa 
recorded to date) (Fuchs, 2001). Invasive species, fire suppression re
gimes, disease and habitat loss are major threats to the survival of Garry 
Oaks in their natural habitat (Fuchs, 2001; McCune et al., 2013). Our 
study site is the Cowichan Garry Oak Preserve (CGOP) near Duncan, 
British Columbia, Canada. The weather here is considered cool and 
cloudy as is common in the coastal lowlands (McMinn et al., 1976). The 
CGOP is characterized by a Garry Oak meadow, with a relatively open 
forest and an understory composed of native grasses and herbaceous 
vegetation, which follow a distinct phenological pattern with a very 
short flowering period during the month of May (Supplementary Video 
1). Mapping this short flowering event is important to assess the extent 
of the fragile and endangered herbaceous vegetation and overall 
ecosystem health. In addition, tree bark and branches are covered by 
bryophytes and lichen at different densities and form an important 
component of the tree structure. Because many of the rare herbaceous 
species (e.g. Castilleja levisecta, Triteleia howellii) have short flowering 
periods (1–2 weeks), the persistent cloud cover presents a challenge to 
conventional remote sensing approaches. 

2.2. Mission planning and ancillary data acquisition 

Given the time sensitive nature of the flowering period at the CGOP, 
a flight plan was developed to maximize UAV-HSI acquisition for spe
cific areas of interest encompassing both Garry oak trees and herbaceous 
vegetation field plots. UAV-HSI imagery was acquired under various 
illumination conditions including sunny, homogenous cloud cover and 
variable cloud cover encountered from May 15th - 17th, 2019. For the 
meadow, all HSI imagery was acquired at 60 m AGL with a 1 m/s flight 
speed. Three flight lines were acquired on both May 15th (3500 m2), and 
16th (4700 m2), with two lines acquired on May 17th (3700 m2) 
(Table 1). For the boresight calibration area (see Section 2.3) four flight 
lines were acquired on May 14th, 2019 at 120 m altitude AGL and 1 m/s 
flight speed (Fig. 1 inset B). The geocorrected and mosaicked (see Sec
tion 2.3) flight lines from the meadow are shown in Fig. 1. 

A range of cloud cover conditions are typically encountered in May 
at the CGOP, therefore, in order to characterize illumination conditions, 
global and diffuse downwelling irradiance (W⋅m− 2) measurements were 
acquired with an SPN1 Sunshine Pyrometer (Delta-T Devices, Cam
bridge, UK) (spectral range: 400–2700 nm), mounted on a horizontal 
aluminum bar on a tripod at approximately 140 cm above the ground 
(Fig. 2). The SPN1 has a resolution of 0.6 W⋅m− 2, and an overall accu
racy of ±8%. The measurement interval for the SPN1 was set to 10 s to 
capture fine temporal variations in illumination conditions. A Canon 
EOS60D camera with an ultra-wide-angle lens (Sigma 4.5 mm F2.8 Ex 
DC Hyper Sonic Motor Circular Fisheye lens) on an intervalometer was 
also affixed to the opposite end of the horizontal tripod bar to acquire 
photographs of the sky conditions (Fig. 2). The pyranometer data were 
collected only to quantify and describe the overall illumination condi
tions, but were not used in the atmospheric compensation methods 
(Section 2.5). 

Four standard reference panels consisting of 2% and 50% Spec
tralon™ (25 × 25 cm), a 10% Permaflect™ (50 × 50 cm) panel, and an 
18% Flexispec™ (50 × 50 cm) sheet, (Arroyo-Mora et al., 2019; Soffer 
et al., 2019) (Fig. 2) were set up in the meadow in open areas as far from 
the trees as possible. However, given the fragile nature of the herbaceous 
vegetation and the time constraint of the UAV-HSI flights, complete 
isolation of the panels from in-scattering was not possible (Fig. 2, Sup
plementary Videos 2 and 3). An ASD FieldSpec 3 (Malvern Panalytical, 
Boulder, CO, USA) spectroradiometer (2 m fiber extension) was used to 
measure the in-situ reflectance of the panels relative to a new 99% 
reflective Spectralon™ panel which had been characterized with respect 
to a NIST traceable standard and processed via the panel substitution 
method (Soffer et al., 2019). The estimated absolute reflectance of the 
panels was calculated via a custom MATLAB toolbox (Elmer et al., 
2020). Unfortunately, on May 15th, (sunny conditions) there was no 
suitable location for the panels within the planned flight lines and 
therefore, they were placed outside (Fig. 1). 

Digital surface models (DSM) were created through Structure-from- 
Motion Multiview Stereo photogrammetry (SfM-MVS) (Arroyo-Mora 
et al., 2019; Kalacska et al., 2017; Kalacska et al., 2020) for use in the 
boresight calibration and geocorrection of the meadow imagery (see 
Section 2.3), following the methodology described in Kalacska et al. 
(2020) and Lucanus and Kalacska (2020). 

2.3. UAV hyperspectral system (UAV-HSI) and processing to 
geocorrected radiance 

The hyperspectral system consisted of a Mjolnir VS-620 (HySpex 
NEO, Skedsmokorset Norway) mounted on an octocopter with an H16 
XL gimbal (Gremsy, Ho Chi Minh City, Viet Nam) for stabilization. The 
Mjolnir VS-620 is comprised of two pushbroom hyperspectral imagers 
(V-1240 and S-620 combined spanning the 400–2500 nm range) 
(Table 2, Fig. 3), an Inertial Navigation System (INS) (APX-15, Applanix, 
Richmond Hill ON, Canada), a data acquisition unit (DAU), a data link to 
a ground station and a custom printed circuit board to control the 
components including the mechanical shutters, triggering, events, INS 
interface and external system control. To minimize coregistration errors 
in the along-track direction the two optical axes are co-aligned. A 
common trigger is used for both imagers, scaled down by a factor 2 for 
the S-620, resulting in a VNIR image with twice the resolution. The INS 
is boresight calibrated, meaning that the translation (xyz) and rotation 
(wpk) between the imagers’ coordinate system and the IMU coordinate 
system have previously been determined, simplifying direct georefer
encing (i.e. no ground control points). Dark current pixels are acquired 
before and after each imaging flight line and interpolated in processing 
for every frame (row) in the image. 

Direct georeferencing of the imagery (i.e. from position and attitude 
data rather than ground control points) (e.g. Arroyo-Mora et al., 2019; 
Freitas et al., 2018), was possible due to 1) accurate time recording of 
every frame, 2) good INS solution, which includes to a pixel-level or 
better, fast INS alignment and results minimally impacted by vibration 
from the UAV or pulse width modulation (PWM) noise, 3) use of a high 
spatial resolution DSM (see Section 2.2), 4) high accuracy sensor model 
which is the off-nadir look angle of each pixel determined with a reso
lution of 0.79 arcsec, and 5) an automatic boresight calibration (Freitas 
et al., 2018) following (Schläpfer, 2018; Schläpfer and Richter, 2002) 
carried out in PARGE v3.5®(ReSe, Wil, Switzerland). 

Table 1 
UAV-HSI meadow flight line characteristics across dates. The illumination condition acronyms refer to SUN for clear sky conditions (May 15th), DIFF for cloudy 
conditions (May 16th) and VAR for variable illumination (May 17th) during HSI data acquisition.  

Date Illumination condition Area (m2) V-1240 int. time (ms) S-620 int. time (ms) Speed (m/s) Altitude (m) Solar zenith (◦) Solar azimuth (◦) 

May 15 High Direct (SUN) 3500 15.5 31.8 1 60 33.3 212.7 
May 16 High Diffuse (DIFF) 4700 15.5 31.8 1 60 30.6 162.2 
May 17 Variable (VAR) 3700 15.5 31.8 1 60 56.7 98.5  
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The workflow used to generate radiance and surface reflectance 
orthorectified images integrates three software modules unique to the 
manufacturer’s systems (HySpex AIR, HySpex NAV and HySpex RAD) 
with three system independent commercial software packages (PosPac, 
PARGE and ATCOR-4).The overall data processing for Hyspex HSI can 
be found in Koirala et al. (2017). The HySpex AIR module captures the 
data in a raw format. The HySpex RAD module converts the raw data to 
at-sensor radiance in units of W/m2 sr nm. POSPac (Applanix, Rich
mond Hill, ON, Canada), is used to process the INS data to extract po
sition and attitude at 200 Hz, as well as the GPS times for all the events. 
The HySpex NAV module utilizes the output from POSPac to generate 
INS data for each frame of the flight lines. PARGE utilizes the output 
from the NAV module to georeference and orthorectify the at-sensor 
radiance imagery (nearest neighbour interpolation to retain spectral 
fidelity) using the high-resolution DSM, sensor model, boresight offsets 
and INS file as inputs., PARGE merges the separate VNIR and SWIR flight 
lines into single full-range images and generates mosaics. ATCOR-4 is 
used for atmospheric compensation. 

2.4. Atmospheric compensation 

The conversion from the orthorectified at-sensor radiance imagery to 
surface reflectance was undertaken using either a radiation transfer 
model atmospheric compensation or an empirical line correction 
depending on illumination conditions. For the SUN imagery (direct 
illumination conditions, Fig. 4a, Supplementary Video 4), ATCOR-4, an 
atmospheric compensation software based on the MODTRAN®-5 radi
ation transfer code was used. ATCOR-4 has been shown to generate 
accurate surface reflectance imagery from a range of hyperspectral 

sensors (e.g. Black et al., 2014; Giardino et al., 2015; Markelin et al., 
2017; Richter and Schläpfer, 2002) including low altitude UAV data (e. 
g. Aasen et al., 2018; Arroyo-Mora et al., 2019). The SUN imagery was 
processed to surface reflectance based on the sensor laboratory cali
bration information and physical modeling of the irradiance conditions 
with the parameters in Table 3. The parameters were chosen based on 
recommended settings for MODTRAN taking into account the latitude, 
average air temperature of the site and proximity to urban centers 
(Manolakis et al., 2016). 

Terrain-dependent illumination correction is not applicable to this 
high spatial resolution UAV imagery due to the high variations of irra
diance at the leaf level, which cannot currently be parameterized 
(Richter and Schlapfer, 2019). Small spectral shifts are common to high 
spectral resolution UAV hyperspectral instruments. Therefore, a spectral 
recalibration was performed based on atmospheric absorption features 
(Richter et al., 2011). This processing was purely model based (i.e. no 
reference panel targets were used for data recalibration). 

Currently, physical inversion based on radiative transfer models 
alone is not feasible for scenes acquired under cloudy or variable con
ditions (Richter and Schlapfer, 2019; Wright et al., 2020). For the DIFF 
and VAR imagery (Fig. 4B, Supplementary Video 4), an empirical line 
correction (ELM) (Smith and Milton, 1999) was carried out using two 
reference panels (10% Permaflect™ and 50% Spectralon™). Because the 
field measurements of the reference panels showed considerable in- 
scattering from nearby vegetation (see results, Section 3), laboratory 
reflectance spectra of these panels were used instead of the in-situ ac
quired panel spectra. The panels had been characterized in the lab 
following field deployment with estimated absolute reflectance 
following (Elmer et al., 2020; Soffer et al., 2019). Estimated absolute 

Fig. 1. Meadow section of the Cowichan Garry Oak Preserve (CGOP) with hyperspectral mosaics (true color band combination R: 641 nm, G: 549 nm, B: 461 nm) for 
imagery acquired May 15–17, 2019. Green squares correspond to the location of reference targets. Inset A shows location of study site in Duncan, British Columbia, 
Canada. Inset B shows the boresight calibration ground control point setup. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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reflectance is independent of illumination intensity or conditions. An 
independent laboratory assessment of their uniformity indicates that all 
panels are within 0.02–0.2% deviation from the reflectance of the center 
point across the 400-2500 nm range. 

Because diffuse illumination conditions are relatively homogenous 
across the small area covered by the flight lines (Fig. 1, Table 1) no direct 
reflection processes are contributing to the adjacency effects. It is 
therefore possible to assume a fairly constant adjacency effect across the 
image. This same effect also reduces the impact of BRDF effects on the 
panel reflectance accuracy. In the field, the panels are used under a 
hemispherical-directional illumination-viewing geometry (Milton et al., 
2009; Nicodemus et al., 1977) that reduces the bidirectional effects 
especially from the illumination side, whereas on the observation side, 
the observation zenith angle is close to nadir and as such is comparable 
to laboratory measurements. 

In both cases (radiative transfer model and ELM) the spectral range 
of the fully absorbing water vapor bands at 1400 and 1900 nm and 
above 2450 nm where minimal radiance is recorded were omitted for 
spectral evaluation. A spectral polishing filter (Savitzky Golay filter) 
with a factor of 5 was applied to smooth small-scale spectral variations. 

2.5. Data analysis 

2.5.1. Illumination conditions 
To characterize the sky conditions from the SPN1, the total, direct 

and diffuse irradiance were extracted for each entire day as well as for 

Fig. 2. Example of the reference panel setup at CGOP in support of UAV-HSI acquisition. The tripod with the SPN1 and camera with fisheye lens can be seen in the 
background. The tripod system used for the ASD spectroradiometer is implemented specifically to avoid operator influences on the measurements and to maintain 
consistent viewing conditions to mitigate the complications due to the spectral and angular properties of reference panels (Elmer et al., 2020; Soffer, 2014). 

Table 2 
Summary of the main specifications of the Mjolnir VS-620 used for the UAV-HSI 
acquisition.   

V-1240 S-620 

Spectral range 400–1000 nm 970–2500 nm 
Combined spectral range 400–2500 nm 
Spatial pixels 1240 620 
Combined spatial pixels 620 
Spectral channels and 

sampling interval 
200 bands @ 3.0 
nm 

300 bands @ 5.1 nm 

Combined spectral channels 490 
F-number f1.8 f1.9 
FOV 20◦ 20◦

Combined FOV 20◦

IFOV across/along track 0.27 /0.54 mrad 0.54 /0.54 mrad 
Bit resolution 12 bits 16 bits 
Noise floor 2.37 e− 80 e−

Dynamic range 4400 10,000 
Peak SNR (at full resolution) > 180:1 > 900:1 
Max speed (a full resolution) 285 fps 100 fps 
Detector type Silicone CCD Mercury Cadmium Telluride 

(MCT) FPA 
Smile and keystone < 10% per pixel per band 
Radiometric calibration 

traceability 
To a Physikalisch-Technische Bundesanstalt (PTB) 
standard 

Power consumption* 50 W 
Dimensions (l-w-h) 374–202–178 mm 
Weight* < 6.5 kg including standard battery  

* Includes INS and DAU. 
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the period of UAV-HSI acquisition. Summary statistics were calculated 
to describe the variability between dates and a non-parametric Kruskal- 
Wallis test was applied to examine statistical differences between dates 
in terms of total, direct and diffuse illumination. 

2.5.2. Surface reflectance spectra 
The in situ spectroradiometer measurements of the reference panels 

were compared to those collected under laboratory conditions. Simi
larly, the surface reflectance spectra of the reference panels following 
the ELM atmospheric compensation were compared to the known 
reflectance of the panels to assess the quality of the atmospheric 
compensation under diffuse and variable irradiance conditions. 

2.5.3. Signal to noise ratio (SNR) 
The SNR is the ratio of the signal to the sum of all sources of noise 

(Giles et al., 1998). From the raw digital number of the HSI detectors, an 
accurate evaluation of the SNR in every pixel can be calculated. The 
peak SNR of a system (Table 1) characterizes the full-well of the detector 
(i.e. number of photoelectrons a photodiode can hold) (Giles et al., 1998; 
Lambert and Waters, 2014). In contrast, the SNR as a function of 
wavelength illustrates the efficiency of the system under specific at- 
sensor radiance conditions and target radiance. Most modern detectors 
are dominated by photon noise (shot noise), which is due to the random 
generation of electron-hole pairs in the detector. This noise can be 
described by a Poisson distribution (Heli, 2006). For the number of 

Fig. 3. Dark current determined noise floor 
from an integration time of 1001 μs for the 
V-1240 and 982 μs for the S-620 (A) and 
photon noise (B), determined from a Labo
ratory integrating sphere using integration 
times of 8.5 ms for the V-1240 and 33.99 ms 
for the S-620. Native pixel SNR by wave
length (C) for both sensors. For the V-1240 
there are 1392 (native spatial) x 488 (native 
spectral) pixels that are written to disk. 
These are resampled and binned to make a 
1240 (spatial) x 200 (spectral) product. For 
the final imagery which is merged with the 
S-620, the spatial pixels are binned off chip 
(in software) to produce 620 pixels across 
track. This results in an increase by a factor 
of 3.3 in SNR according to: (1392*488*2/ 
620/200)0.5 = 3.3. For the S-620 imagery 
there are 640 (native spatial) x 460 (native 
spectral) pixels. These are resampled to 
produce an image with 620 spatial × 300 
spectral pixels. Accordingly, in the final 
image product there is an increase in the 
SNR by a factor of 1.6 according to: 
(640*460/620/300)0.5 

= 1.6. The SNR 
shown in (C) is prior to any binning, there
fore the factors of 3.3 (VNIR) and 1.6 (SWIR) 
have not been applied. (D) Spectral response 
functions of the VNIR and SWIR sensors.   
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randomly generated electron-hole pairs, N, the SNR can be described as 
a function in relation to the photon shot noise (Eq. (1)): 

Noise =
̅̅̅̅
N

√
(1) 

The SNR as a function of the full-well (FW) and noise floor (Nf) is 
calculated as Eq. (2): 

SNR =
FW

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
FW + N2

f

√ (2) 

The number of electrons-hole pairs per digital number (Sf) is a 
function of the full-well and the radiometric resolution (Res) in analog- 
to-digital units (ADU) calculated as (Eq. (3)): 

Sf = FW/Res (3) 

During calculation of the at-sensor radiance, the dark current is 
subtracted from the raw signal; for MCT detectors the dark current can 
be high and can contain some noise. Dark current is the creation of 
electron-hole pairs from the system itself rather than exposure to an 
incident photon (i.e. signal) (Giles et al., 1998). Dark current is influ
enced by temperature and therefore, detectors, especially in the SWIR 
need to be cooled in order to minimize it. The photon noise can also have 
a large contribution to the dark current due to thermally excited 
electron-hole pairs. The total noise in the dark current is also dependent 
on how many frames of dark current (DF) have been averaged during an 
acquisition sequence. Therefore, the total noise in the dark current 
(Ndark) for a given digital number (DN) is (Eq. (4)): 

Ndark =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
N2

f +
(
DN∙Sf

) )
√

̅̅̅̅̅̅̅
DF

√ (4) 

The total maximum SNR in a single pixel is then given by the raw 
digital number, DNraw, of the signal and the digital number of the dark 
current, DNdark, as follows (Eq. (5)): 

SNRmax =
DNraw∙Sf − DNdark∙Sf
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N2

f +
(
DNraw∙Sf

)
+ N2

dark

√

=
DNraw∙Sf − DNdark∙Sf

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

N2
f +

(
DNraw∙Sf

)
+

⎛

⎝√
(

N2
f +(DNdark∙Sf )

)

√DF

⎞

⎠

2
√
√
√
√
√

(5) 

Using the S-620 as an example, Nf, was determined in the laboratory 
to be 80 electrons (Fig. 3A) (Nicolas and Baarstad, 2019) with a peak 
SNR for the system of approximately 900 (Table 2, Fig. 3C). From Eq. (2) 
we estimate a full-well of approximately 810,000 electrons. The detector 
has a 16-bit radiometric resolution (65,535 ADU) and 200 dark frames 
were acquired and averaged. Therefore, following Eq. (3), Sf is 12.36. 
Eq. (6) is an example maximum SNR (SNRmax) for a pixel with raw 
digital number of 30,000 DN and a dark current of 10,000 DN: 

SNRmax =
30000∙12.36 − 10000∙12.36

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

802 + (30000∙12.36) +

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(802+(10000∙12.36) )

√

̅̅̅̅̅
200

√

⎞

⎠

√
√
√
√
√

=
247800

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
802 + (371400) + 25.52

√ ≈ 403 (6) 

Eq. (5) was applied to the flight lines (V-1240 and S-620 separately) 
for all three dates. Pixels of SNRmax representing tree canopies and 
herbaceous vegetation were extracted by generating a random sample 
and adjusting sample locations that were located in areas outside the 
classes of interest. For the SUN image a direct shadow class cast by the 
trees onto the herbaceous vegetation was also included. A total of 
41,000–156,000 pixels per class were extracted for all three dates. Best- 
fit probability density functions based on the Akaike Information Cri
terion (AIC) were calculated to compare the distributions of SNRmax 
across varying illumination conditions. The mean SNR of all pixels for all 

Fig. 4. Main differences to contributions to the at-sensor radiance from various physical processes including direct solar illumination, diffuse atmospheric illumi
nation, and in-scattering that is reflected from the ground/objects to the sensor and scattered radiation that does not interact with the surface (i.e. scattered from 
atmosphere) on a sunny day (A) versus with cloud cover (B). Low altitude UAV-based sensor is shown acquiring HSI below the cloud deck. 

Table 3 
Atmospheric compensation parameters applied in ATCOR-4 for the SUN 
imagery acquired under direct illumination conditions.  

Parameter Value 

Model type Flat terrain 
MODTRAN reference atmosphere Mid-latitude 
Aerosol model Rural 
Visibility 60 km 
Water vapor absorption band 820 nm  
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wavelengths was also determined for each date. 

2.5.4. Spectral vegetation indices 
In order to assess the potential impact of variable illumination con

ditions on spectral vegetation indices (SVIs) of canopy leaves and her
baceous vegetation, three SVIs from the VNIR region and three from the 
SWIR region were calculated (Table 4). The selected SVIs in the VNIR 
are related to leaf pigments such as chlorophyll, carotenoids and an
thocyanins, and have been commonly use in vegetation studies from 
different latitudes (Beamish et al., 2018; Gamon et al., 1995; Gitelson 
et al., 2001). SVIs using the SWIR region were selected to cover a wide 
range of biochemical constituents such as cellulose, lignin and water, 
which are important for vegetation stress studies and non- 
photosynthetic vegetation determination (Gao, 1996; Nagler et al., 
2003; Serrano et al., 2002). Based on the proportion of canopy and 
herbaceous vegetation within each mosaic (estimated from the DSM) we 
selected 20–50 9 × 9 cm pixel windows (1200–1500 pixels per class per 
date) to calculate the SVIs and relate them to the direct and diffuse 
illumination conditions. Differences between SVIs from different illu
mination conditions and classes were compared based on a non- 
parametric ANOVA (Kruskal-Wallis test) with a Dunn’s multiple com
parison test. 

2.5.5. Endmember identification 
Endmembers are commonly used to identify multiple constituent 

materials within mixed pixels. A spectral endmember is a theoretical 
representation of the spectral albedo (i.e. the bi-hemispherical reflec
tance) of a pure material within a scene. Often, the nadir reflectance at 
the time of data acquisition of a material is taken alternatively as an 
endmember. Mapped in n-dimensional space, mixtures of endmembers 
fall within a simplex formed with the pure materials at the vertices and 
therefore, regardless of the dimensions of the data (i.e. number of 
bands), the dimensionality of the HSI is the number of distinct materials 
in the scene (Eismann, 2012). Because endmembers can represent not 
only pure ‘materials’ but also both environmental/biophysical varia
tions (e.g. different pigment concentrations) and illumination (and at
mospheric) induced differences, endmember identification can reveal 
differences in the proportional contribution of environmental versus 
illumination/atmospheric origins within the scene (Gruninger et al., 
2004) as a result of irradiance conditions. For two dates with different 
illumination conditions (i.e. high direct irradiance and high diffuse 
irradiance) the Sequential Maximum Angle Convex Cone (SMACC) 
endmember model was used to extract the most distinct spectral end
members in the atmospherically corrected mosaics (SUN and DIFF, 
respectively). This algorithm locates endmembers that account for 
environmental and biophysical conditions representing the spectral 

variability of the materials in the scene as well as illumination effects 
which often can be seen as extreme spectra (Gruninger et al., 2004). A 
positivity constraint was used (i.e. the abundance images cannot contain 
negative values). The first endmember identified by SMACC is the 
spectrum from the brightest pixel in the image, followed by the one that 
is most different (Gruninger et al., 2004). It iteratively adds the most 
different spectrum from those included in the set. An assumption for 
SMACC is that each pixel contains a high percentage of a single material 
with unique combinations of others. In this case, ‘material’ does not only 
correspond to physical materials (e.g. flowers, leaves from an herba
ceous species) or biophysical differences, but can include endmembers 
that are due to illumination conditions as well. 

3. Results 

3.1. Illumination characterization 

Downwelling irradiance results from the SPN1 pyranometer reveal 
significant illumination variability as a consequence of different cloud 
cover conditions for the three data collection dates (Fig. 5, Table 5, 
Supplementary Video 4). As expected, the highest values of total and 
direct irradiance were recorded during clear sky conditions (Fig. 5A). 
Results from the 91/2-min-long UAV-HSI acquisition, reveal homoge
neous illumination conditions (i.e. low standard deviation), where total 
irradiance ranged from 785.7 W⋅m− 2 to 850.7 W⋅m− 2 (x‾ Tot-SUN =

852.4.5 W⋅m− 2, σ Tot-SUN = 16.38 W⋅m− 2), direct irradiance ranged from 
574.4 W⋅m− 2 to 646.6 W⋅m− 2 (x‾ Dir-SUN = 624.6 W⋅m− 2, σ Dir-SUN =

16.63 W⋅m− 2), and diffuse irradiance ranged from 190.3 W⋅m− 2 to 
223.3 W⋅m− 2 (x‾ Dif-SUN = 200.8 W⋅m− 2, σ Dif-SUN = 9.4 W⋅m− 2) (Fig. 5A, 
Table 5). DIFF measurements were taken under overcast conditions and 
for the 91/2-min-long UAV-HSI acquisition (Fig. 5B, Supplementary 
Video 4). Thus, DIFF measurements show total irradiance ranged from 
191.3 W⋅m− 2 to 241.1 W⋅m− 2 (x‾ Tot-DIFF = 217.1 W⋅m− 2, σ Tot-DIFF =

16.79 W⋅m− 2), with very low direct irradiance ranging from 0.8 W⋅m− 2 

to 4.6 W⋅m− 2 (x‾Dir-DIFF = 2.5 W⋅m− 2, σ Dir-DIFF = 0.9 W⋅m− 2), with a 
higher diffuse component than for SUN (min Dif-DIFF = 189.8 W⋅m− 2, 
max Dif-DIFF = 239.2 W⋅m− 2, x‾ Dif-DIFF = 214.6 W⋅m− 2, σ Dif-DIFF = 16.61 
W⋅m− 2). Finally, irradiance VAR measurements (Fig. 5C), reveal larger 
range values in SUN or VAR (Range Tot-VAR = 118.2 W⋅m− 2, Range Dir- 

VAR = 109.8 W⋅m− 2 and Range Dif-VAR = 79.4 W⋅m− 2) (Table 5). 
Results from the Kruskal-Wallis non-parametric test show a signifi

cant difference (p < 0.0001) for total (n = 186, H = 135), direct (n =
186, H = 139.7) and diffuse (n = 186, H = 37.97) irradiances across the 
various illumination conditions. However, the multiple comparison test 
(Dunn’s test) revealed significant differences for total, direct and diffuse 
irradiances between SUN vs DIFF measurements, and SUN vs VAR, but 
no significant difference was found between DIFF and VAR (Table 6). 

3.2. Reference panels 

As expected, reference panels measured in the field near- 
coincidentally with the UAV-HSI, differ from their laboratory charac
terization (Fig. 6). The three darkest panels (2%, 10%, 18%) exhibit 
strong in-scattering from nearby vegetation for SUN measurements 
(high direct illumination, Fig. 5A-B). In contrast, the 50% panel is more 
consistent in the VNIR range across the three dates with its laboratory 
characterization. Its in-situ measured spectrum also has in-scattering 
effects from the vegetation but are less apparent than in the darker 
panels. We refer to these results as ‘apparent reflectance’ from here-on 
because the 2–5 min required to complete a measurement sequence (i. 
e. 99% Spectralon normalization panel measurement followed by 
acquisition of spectra of each of the four panels) led to the measurements 
being affected by the variability of irradiance between the normalization 
step and the panel measurements. The low SWIR reflectance observed in 
the raw digital count from the 99% panel (Fig. 6E) for DIFF measure
ments (lowest total and lowest direct irradiance, Figs. 6 and 7) is 

Table 4 
Narrowband spectral vegetation indices calculated for canopy and herbaceous 
vegetation for the three sampling dates. ρ represents reflectance at the given 
wavelength (in nm).  

Index Formula Reference 

Normalized Difference Vegetation 
Index (NDVI) 

ρ750 − ρ680
ρ750 + ρ680  

Rouse Jr. et al., 
1974 

Carotenoid Reflectance Index 1 
(CRI1) 

1
ρ510

−
1

ρ550  
Gitleson et al., 
2002 

Anthocyanin Reflectance Index 2 
(ARI2) ρ800 ×

(
1

ρ550
−

1
ρ700

)
Gitelson et al., 
2001 

Cellulose Absorption Index (CAI) 
0.5 ×

(
ρ2000 − ρ2200

ρ2100

)

Nagler et al., 
2003 

Normalized Difference Lignin Index 
(NDLI) 

log
1

ρ1754
− log

1
ρ1680

log
1

ρ1754
+ log

1
ρ1680  

Serrano et al., 
2002 

Normalized Difference Water Index 
(NDWI) 

ρ860 − ρ1240
ρ860 + ρ1240  

Gao, 1996  
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indicative of the cloudy conditions under which most irradiance in the 
SWIR wavelengths is attenuated. The low irradiance in the SWIR for 
DIFF is also reflected in the substantial noise of the apparent reflectance 
spectra of the panels, especially from those with low reflectance (2%, 
10%). For the 2% panel all three dates exhibit prominent contamination 

from vegetation in-scattering, however this effect decreases under 
cloudy conditions with the panels of higher reflectance (i.e. 10% to 
50%). As described in Section 2.5, the variability in irradiance over a 
measurement sequence, in-scattering and high noise in the SWIR under 
cloudy conditions precluded the use of these in-situ measured panel data 
in the atmospheric compensation (ELM applied for DIFF and VAR 
images). 

Comparison of the reflectance of the reference panels extracted from 
the imagery against the laboratory derived spectra of the panels (Fig. 7) 
indicates consistency in shape and amplitude (i.e. brightness) for the 
10%, 18% and 50% panels for both SUN and VAR (< 5% deviation 
outside of the noise in the SWIR). For the 2% panel the vegetation in- 
scattering results in a deviation from the pseudo-invariant feature 
spectrum expected of the reference panel. The considerable noise in the 
SWIR due to low irradiance under diffuse conditions (Fig. 4B) can be 
seen in the image panel spectra (Fig. 7A and C) from DIFF, specifically 
for the 2% panel that noise extends to the 1500–1700 nm range in 
addition to the >2000 nm range. It is also notable in the low reflectance 
targets (2% and 10%) from VAR show a lower magnitude in the two 
brighter panels (18% and 50%). Despite the noise in the SWIR range in 
the 10% and 18% panels, the absorption feature around 2300 nm of the 
Permaflect (10%) and Flexispec (18%) panels can be readily seen from 

Fig. 5. SPN1 pyranometer profiles the time period where HSI was acquired for three different illumination conditions, SUN (A), DIFF (B) and VAR (C). Vertical lines 
designate the effective image acquisition outside of transit to and from the takeoff/landing area. 

Table 5 
Total, direct and diffuse irradiance (W⋅m− 2) measured with the SPN1 pyranometer for the three sampling days (UAV-HSI flight).   

Total Direct Diffuse Total Direct Diffuse Total Direct Diffuse 

Minimum 785.7 574.4 190.3 191.3 0.8 189.8 203 0 198.4 
Maximum 850.7 646.6 223.3 241.1 4.6 239.2 321.2 109.8 277.8 
Range 65.0 72.2 33.0 49.8 3.8 49.4 118.2 109.8 79.4 
Mean 825.4 624.6 200.8 217.1 2.5 214.6 235.6 13.0 222.6 
Std. deviation 16.38 16.63 9.4 16.79 0.9 16.61 39.96 23.22 28.22  

Table 6 
Dunn’s multiple comparisons test for direct, total and 
diffuse irradiances across dates.  

Total Mean rank diff. 

SUN vs. DIFF* 97.83 
SUN vs. VAR* 87.99 
DIFF vs. VAR − 9.840  

Direct 
SUN vs. DIFF* 104.9 
SUN vs. VAR* 80.67 
DIFF vs. VAR − 24.23  

Diffuse 
SUN vs. DIFF* − 44.41 
SUN vs. VAR* − 53.61 
DIFF vs. VAR − 9.203  

* Difference is significant (p < 0.05). 
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the pixel spectra (Fig. 7). 
Representative canopy leaf and herbaceous vegetation pixel spectra 

for the three dates illustrate the impact of the illumination conditions 
(Fig. 8). Under high direct illumination (Fig. 5A) the increased ampli
tude of the reflectance across the full spectral range can be seen (Fig. 8). 
In addition, a residual O2 band at 760 nm, which is incorrectly 
accounted for, is indicative of small pixel radiative transfer model based 
atmospheric compensation resulting in an anomaly within the SUN 
spectra (high direct illumination), but is not apparent in the two mosaics 
acquired under diffuse illumination corrected with the ELM. Despite 
overall magnitude differences being greater in the NIR and SWIR, the 
inset illustrates differences also in the visible wavelengths (< 700 nm) 
(Fig. 8). Importantly, the chlorophyll absorption feature in the red is 
more clearly defined from the imagery collected under direct illumina
tion (SUN). Spatially across the flight lines (Fig. 9), the ELM atmospheric 
compensation normalized the differences in brightness due to temporal 
variation in irradiance (DIFF and VAR). Similarly, minor differences in 
brightness between flight lines from SUN were also minimized through 
the radiative transfer model atmospheric compensation. The low SNR in 

the SWIR can also clearly be seen in the imagery from DIFF in com
parison to the other two dates. 

3.3. SNR 

The overall shape of SNR by wavelength resembles the spectral 
radiance of vegetated pixels (Fig. 10). The average SNR of the raw pixels 
across all dates illustrates the wavelength dependent impact of illumi
nation across the VNIR-SWIR range with decreased atmospheric trans
mission at longer wavelengths (Nann, 1990). The SNR in the SWIR at 
wavelengths > 2000 nm is the lowest as expected under diffuse illu
mination (Fig. 5B). Less than 5% apparent transmission under moderate 
to heavy cloud cover is expected in that wavelength region (Evans and 
Puckrin, 2003). In the imagery from SUN and VAR conditions, the CO2 
doublet at ~2013–2060 nm can be seen, but this is absent in the low 
signal from DIFF. The major atmospheric water absorption features 
centered at 900, 1100, 1400 and 1900 nm are prominent in the imagery 
from all three illumination conditions. The SNR decreases at 776 nm 
from 196:1 (high direct irradiance, SUN) to 140:1 and 103:1 on VAR and 

Fig. 6. Comparison of the apparent reflectance of the reference targets across dates as measured in-situ with the spectroradiometer and the UAV-HSI (A, B, C, D). In- 
situ measurements were done near-coincidentally with UAV-HSI acquisition. E shows digital number (DN) raw values from the 99% Spectralon™ reference panel. 
Notable contamination from in-scattering from vegetation can be seen in the panel spectra in figures A-D. 
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DIFF respectively, indicative of the higher proportion of diffuse irradi
ance from DIFF measurements (Fig. 5B); the atmosphere is relatively 
transparent at 776 nm because there is no gaseous absorption and less 

aerosol scattering, therefore decreases in intensity are attributable to 
increased cloud cover (Miyauchi, 1985). 

When partitioned by vegetation class, SNRmax results reveal higher 
values for both canopy and herbaceous vegetation pixels collected under 
the highest irradiance conditions (SUN) (Fig. 11). For all illumination 
conditions, the SNRmax of the SWIR exceeds the VNIR (e.g. μSUN-SWIR =

463:1 vs μSUN-VNIR = 200:1 for canopy vegetation under the highest 
irradiance). It is important to note SNRmax represents raw pixel geom
etry, prior to binning. Only the day with high direct illumination 
resulted in a distinct shadow class for which the SNRmax is compara
tively lower. However, for both the VNIR and SWIR, the shadow class 
has a higher SNRmax (μSUN-VNIR = 80:1 and μSUN-SWIR = 157:1, respec
tively) than the herbaceous vegetation class observed under diffuse 
illumination (μDIFF-VNIR = 73:1 and 53:1 and μDIFF-SWIR = 142:1). Canopy 
vegetation under diffuse illumination was found to have marginally 
higher SNRmax (μDIFF-VNIR = 74:1 and μDIFF-VNIR = 110:1, and μDIFF-SWIR 
= 249:1 and μDIFF-SWIR = 210:1 in the SWIR) than shadow pixels under 
direct illumination. When comparing canopy versus herbaceous vege
tation in terms of SNRmax, our results reveal consistently higher values of 
SNR for canopy pixels than for herbaceous pixels in both VNIR and SWIR 
(Figs. 10, 11). 

3.4. Spectral vegetation indices (SVIs) 

Fig. 12 shows that the impact of illumination conditions on SVIs is 
index dependant. Across dates, NDVI is significantly higher (p < 0.0001) 
for canopy pixels than for herbaceous vegetation (Table 7, Fig. 12A). For 
both classes, we found non-significant difference in NDVI between SUN 
and VAR despite a significant difference in total illumination between 

Fig. 7. 2%, 10%, 18% and 50% resampled reference laboratory spectra vs image pixel extracted panel reflectance following atmospheric compensation (ELM 
method) of the UAV-HSI (DIFF and VAR). Dark gray lines represent one standard deviation for the extracted panel reflectance after atmospheric compensation. 

Fig. 8. Canopy (CA) and herbaceous (HE) vegetation spectra comparison across 
dates following atmospheric compensation of the UAV-HSI. Inset A shows 
spectra between 400 and 690 nm. 
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those dates (Table 6). However, in comparison to DIFF measurements 
(highest diffuse irradiance with negligible direct irradiance), we found 
significant differences in NDVI from SUN and VAR conditions for both 
classes. For CRI, under highly variable illumination, we found no sig
nificant difference between canopy and herbaceous vegetation (p >
0.99) (Fig. 12B). For canopy vegetation we found CRI to be sensitive to 
illumination conditions with significant differences across three dates (p 
< 0.0001), while for herbaceous vegetation we found that SUN and DIFF 
conditions are not significantly different (p > 0.99) (Table 7). For ARI we 
found significant differences across dates and illumination conditions, 
with higher ARI values for herbaceous vegetation than canopy 
(Fig. 12C). Also, across illumination conditions, ARI was found to be 
non-significantly different for canopy pixels collected under predomi
nantly diffuse irradiance (DIFF) and variable irradiance (VAR), as well 
as for herbaceous vegetation between direct (SUN) and diffuse condi
tions (DIFF). Despite the apparent overlap between canopy and 

herbaceous CAI values (Fig. 12D), they are significantly different across 
classes as well as illumination conditions (p < 0.0001) (Table 7), which 
can be explained by the spatial variability of CAI in the herbaceous class, 
and in both classes under diffuse illumination (DIFF). NDWI is different 
between canopy and herbaceous vegetation across all three dates 
(Fig. 12E), however, under diffuse illumination (DIFF), herbaceous 
vegetation has the greatest difference in values (x‾ = 0.11) than the 
canopy (x‾ = 0.06) (Table 7). Finally, NDLI shows significant differences 
between canopy and herbaceous vegetation across illumination condi
tions (p < 0.0001), but non-significant differences within canopy and 
within herbaceous vegetation under direct illumination (SUN) and 
variable illumination (VAR) (p = 0.932 and p > 0.99, respectively). 

3.5. Endmember extraction 

The endmember extraction results for the two contrasting 

Fig. 9. Illustration of the UAV-HSI as sepa
rate VNIR and SWIR flight lines as non- 
geocorrected radiance (left) and orthor
ectified reflectance following atmospheric 
compensation (right). VNIR imagery is 
shown as R: 632 nm G: 542 nm B: 454 nm. 
SWIR imagery is shown as R: 2192 nm G: 
1614 nm B: 1246 nm. All lines have been 
enhanced with a linear 2% stretch. The 
average pixel size of the non-geocorrected 
flight lines is approximately 1 cm, and the 
resampled pixel size for the geocorrected 
mosaics is 3 cm.   

J.P. Arroyo-Mora et al.                                                                                                                                                                                                                        



Remote Sensing of Environment 258 (2021) 112396

13

illumination conditions (predominantly direct illumination – SUN, 
versus predominantly diffuse illumination – DIFF) highlight different 
components of the scene (Fig. 13). With predominantly direct illumi
nation, the endmember with the highest abundance highlights the 
directionality of the illumination (solar azimuth = 212.7◦) with sunlit 
and shadowed sides of the tree canopies clearly differentiated. The 
abundance of the “green vegetation” endmember incorrectly varies with 
canopy position with values >0.75 on the side of the canopy facing the 
illumination versus values <0.6 on the opposite side. In addition to the 
shadow specific endmember, three of the main endmembers are specific 
to pixels within the shadowed components of the mosaic differentiating 
gradations from the umbra to the penumbra. An additional three end
members extract various aspects of the non-photosynthetic components 
of the vegetation, mosses and lichens visible on the branches. Only one 
endmember is specific to the herbaceous vegetation of the meadow. In 
contrast, under diffuse illumination, five of the most predominant end
members separate components of the meadow herbaceous vegetation 
and two are specific to the non-photosynthetic vegetation components 
(Fig. 13). The abundance of the non-photosynthetic components, mosses 
and lichens are greater (0.40–0.83) than under direct illumination 
(maximum abundance of 0.2) despite those pixels being entirely 
composed of those materials. The dominant ‘green leaf’ endmember il
lustrates an even illumination of the canopy without BRDF effects. 
Furthermore, there no differentiation between gradations of shadow as 
seen on the SUN conditions. 

4. Discussion 

We demonstrate that atmospherically corrected low altitude UAV- 
HSI acquired under cloudy conditions (Supplementary Video 4) is use
ful for vegetation analyses as long as the unique challenges imposed by 
the illumination conditions are considered. Users must be aware of how 
such conditions increase the dynamic illumination variation (Wendel 
and Underwood, 2017) and importantly, their effects on the HSI 
products. 

4.1. Illumination conditions 

Downwelling irradiance measurements from the pyranometer 
ranged from predominantly collimated direct illumination (SUN: 825.4 
W/m2 total irradiance of which 76% was direct), to predominantly 
diffuse skylight and very low direct irradiance (DIFF: 214.6 and 2.5 W/ 
m2, respectively). Cloud Optical Depth (τ) and Cloud Particle Size (CPS) 
(GOES-R Algorithm Working Group and GOES-R Program Office, 2018; 

Mecikalski et al., 2013; Walther et al., 2013) information from GOES-17 
for the duration of the HSI acquisition corroborate, as expected, that for 
SUN τ was low (1.5–1.8) indicating optically thin clouds (Supplemen
tary Video 4) with a CPS of 36.6–39.7 μm. In contrast, for DIFF, τ was 
high (6.6–6.7) indicating optically thick clouds (Supplementary Video 
4) with a CPS of 42.8–48.3 μm. During the VAR acquisition, τ increased 
from 1.9 to 3.3 (decrease in CPS from 35.6 to 27.8 μm) indicating a 
buildup of clouds. The τ determines the quantity of scattering, while CPS 
is related to the direction of the scattering processes and magnitude of 
attenuation (Walther et al., 2013); larger liquid water droplets result in 
greater absorption of irradiance (Heidinger et al., 2018). 

For a UAV-HSI platform, stability and speed are very important to 
minimize attitude induced artifacts (Arroyo-Mora et al., 2019; Freitas 
et al., 2018). Therefore, our flight plan considered only 2–3 flight lines at 
a time, at a speed of 1 m/s, which increased the likelihood of changes in 
dynamic illumination. The changes in illumination can be clearly seen in 
the differences in brightness between flight lines in the non- 
geocorrected radiance DIFF and VAR imagery (Fig. 9). Of additional 
consideration for the SUN image is the potential of irradiance 
enhancement (Pecenak et al., 2016) which has been shown to be prev
alent in spatially and temporally heterogeneous optically thin clouds 
with substantial forward scattered diffuse irradiance (Supplementary 
Video 4) (Bartlett et al., 1998; Berg et al., 2011; Pecenak et al., 2016). 
While likely only a small contribution (< 5–10%) to the total irradiance 
based on the τ and the solar zenith angle at the time of image acquisition 
(Table 1), it could explain the overall high total irradiance (825.4 W/ 
m2) of which 24% are diffuse (Table 5). Importantly, the scattering and 
attenuation by the water vapor and liquid/ice droplet composition of the 
clouds is wavelength dependent. The SWIR wavelengths are attenuated 
the most but the red and NIR wavelengths are also noticeably affected, 
resulting in a relatively higher intensity of UV and blue wavelengths 
(Lubin and Vogelmann, 2011; Nann, 1990). An increase in τ from 1 to 5 
decreases transmission of light through the clouds by at least an addi
tional ~25% at wavelengths greater than 1000 nm (Lubin and Vogel
mann, 2011). For the DIFF imagery (negligible direct illumination = 2.5 
W/m2 Table 5, Fig. 5, Supplementary Video 4), the majority of the 
downwelling diffuse illumination (214 W/m2) is likely in the visible 
wavelengths because of the optically thick cloud clover (τ = 6.6–6.7). Its 
effect can be seen in the especially low SNR in the SWIR range at 
wavelengths >1400 nm (Fig. 10). Concurrently, the field spectroradi
ometer measurements of the 99% Spectralon panel show considerably 
lower reflected energy in the SWIR (DIFF DN2200nm = 858), compared to 
the other two conditions, for example, SUN DN2200nm = 2082 and VAR 
DN2200nm = 1899 (Fig. 6E). The effects of the low irradiance of the 

Fig. 10. Average maximum SNR (SNRmax) of the raw images across dates.  
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skylight during the DIFF acquisition can further be seen in the increased 
noise in the reference panels’ apparent reflectance (Fig. 6A-D) acquired 
both with the spectroradiometer as well as reflectance extracted from 
the pixels (Fig. 7). The noise due to low SNR is also seen in the reflec
tance of the canopy leaves and herbaceous vegetation at wavelengths 
>2000 nm (Fig. 8). 

4.2. Atmospheric compensation 

Benefits of UAV include their deployability and thus are becoming 
very widely used for many applications under a wide range of condi
tions, therefore the analysis around atmospheric compensation is 
absolutely critical. Atmospheric compensation of HSI acquired below 
clouds is challenging because conventional radiative transfer model 
based corrections such as implemented in ATCOR assume a cloud free 

Fig. 11. Probability Density Function (PDF) of maximum SNR (SNRmax) for canopy and herbaceous vegetation across dates, for VNIR and SWIR regions. Shadow 
PDFs for SUN illumination conditions are also included (E). 
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Fig. 12. Direct and diffuse illumination versus VNIR (A–C) and SWIR (D–F) SVIs for canopy and herbaceous vegetation across dates.  
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atmosphere (Wright et al., 2020), and are not currently parameterized 
with the unique conditions imposed by predominantly diffuse irradiance 
(Fig. 4B) (Richter and Schlapfer, 2019). Radiative transfer models based 
on MODTRAN-5 rely on the retrieval of the aerosol optical thickness to 
calculate the visibility (horizontal meteorological range) which is 
related to the extinction coefficient at 550 nm (Richter and Schlapfer, 
2019). The 550 nm band is also used in MODTRAN-5 to define a rela
tionship between horizontal visibility and vertical optical thickness in 
clear sky conditions. A minimum SNR of 100:1 for dark targets has been 
shown to be adequate for aerosol optical thickness retrieval at 550 nm 
(Seidel et al., 2008). Retrieval over brighter targets requires a higher 
SNR (e.g. 300:1 at 30% reflectance). Vegetation is considered a low 
reflectivity target at 550 nm with a green peak reflectance generally less 
than 15%. For our HSI, the SNR was not high enough for the DIFF 
(SNR550nm = 75:1) or VAR (SNR550nm = 54:1) imagery to meet this 
requirement (Fig. 11). Only for the SUN imagery (SNR550nm = 104:1) 
were the conditions favourable for a radiative transfer model approach. 
Also, an important consideration for imagery acquired below clouds is 
the multiple scattering between the ground and the clouds especially in 
wavelengths with higher reflectivity (e.g. NIR plateau of vegetation 
spectra) (Nann, 1990). These processes are not considered in conven
tional radiative transfer models. Therefore, for the DIFF and VAR im
agery, an ELM compensation was required. For low altitude UAV-HSI, 
constant aerosol contents could be assumed due to the low aerosol 

variability and the short observation distance. Also, because below 
cloud conditions represent fully diffuse illumination, this result is less 
influence by scattered direct illumination. Therefore, the illumination 
field is much more homogeneous and measurements (such as ELM co
efficients) can be transferred within the image with less error than 
would be encountered with high direct illumination. 

The different approaches used for atmospheric compensation based 
on conditions at the time of acquisition is an important aspect to 
consider because our data collection reflects realistic fieldwork sce
narios in an area where cloudy conditions are common, and resources 
need to be maximized. In addition to removing the majority of the at
mospheric effects, both methods also resulted in a normalization of the 
differences in brightness seen in the radiance images most prominent in 
the DIFF and VAR imagery (Fig. 9). Refinement of the ELM taking into 
consideration the changes in the direct to diffuse ratio (e.g. Li et al., 
2015) over the course of HSI acquisition may further improve the at
mospheric compensation under highly variable illumination conditions. 
Future inclusion of a downwelling irradiance sensor onboard (e.g. 
Suomalainen et al., 2018) or coincident upwelling and downwelling 
irradiance measurements onboard (e.g. Wright et al., 2020) would 
further improve the results under varying illumination conditions and 
potentially further expand the utility of such imagery to other chal
lenging conditions such as broken clouds. 

When acquiring UAV-HSI in complex or restrictive environments 
where in-scattering from nearby objects cannot be avoided (Fig. 6), use 
of field spectroscopy measurements of contaminated targets for ELM or 
other corrections should be avoided. Including such errors into the 
processing chain will affect all subsequent analytics steps by modifying 
the spectra of pixels throughout the imagery resulting in a reduction in 
accuracy for analyses that require representative spectral signatures 
such as classification, target detection, modeling of traits from SVIs, etc. 
In this study the effects were mitigated by substituting the field spectra 
of the reference panels with their laboratory measured spectra. How
ever, acquisition of coincident downwelling irradiance onboard, or a 
combination of upwelling and downwelling irradiance (e.g. Wright 
et al., 2020) would further mitigate these errors. In addition develop
ment of radiative transfer models that can account for the complex 
conditions in predominantly diffuse illumination would decrease the 
dependence on scene-based atmospheric compensation approaches in 
these situations. 

4.3. SNR 

The S-620 imager was operated in low gain mode for the duration of 
the acquisition. In future applications changing to high gain mode would 
likely improve the SNR under cloudy and low overall irradiance con
ditions. Nevertheless, for UAV-HSI, a trade-off between spatial resolu
tion and SNR should be expected. Moderate resolution (30-90 m) 
spaceborne HSI acquiring data under clear or minimally cloudy condi
tions have been shown to have relatively high SNR, for example, Hy
perion was shown to have an SNR of 150:1 at 650 nm (at 30% 
reflectance) (Buckingham et al., 2002; Peddle et al., 2008). Because of 
the much smaller pixels (< 5 cm) from UAV platforms, when operated in 
marginal atmospheric conditions, SNR is expected to be lower. Binning 
pixels in the along and/or across track direction will result in lower 
spatial resolution, but given the small native pixel sizes a degradation in 
spatial resolution may be a worthwhile trade-off for improved SNR 
(Jorge et al., 2017). As described in Fig. 3, the spatial binning of the V- 
1240 to match the image size of the S-620 results in an improvement in 
SNR by a factor of 3.3. However, further pixel summation of the com
bined VNIR-SWIR imagery could boost the SNR further for imagery 
acquired under diffuse conditions. 

SNR requirements are application driven (Drusch et al., 2012; Nieke 
et al., 1998; Piscini and Amici, 2010) and of the various applications for 
which minimum SNR levels have been estimated (e.g. kaolinite doublet 
detection (Porter and Enmark, 1987), ocean color (Hu et al., 2012), 

Table 7 
Dunn’s multiple comparisons test for SVIs across dates.  

NDVI Mean rank diff. CAI Mean rank diff. 

SUN-CA vs. DIFF-CA* 1083 SUN-CA vs. DIFF-CA − 1416 
SUN-CA vs. VAR-CA* − 239.8 SUN-CA vs. VAR-CA − 715.2 
DIFF-CA vs. VAR- 

CA* 
− 1323 DIFF-CA vs. VAR- 

CA* 
701.1 

SUN-HE vs. DIFF- 
HE* 

958.9 SUN-HE vs. DIFF- 
HE* 

− 2665 

SUN-HE vs. VAR-HE − 150.4 SUN-HE vs. VAR-HE* − 660.1 
DIFF-HE vs. VAR- 

HE* 
− 1109 DIFF-HE vs. VAR- 

HE* 
2005 

SUN-CA vs. SUN-HE* 1216 SUN-CA vs. SUN-HE* 259.3 
DIFF-CA vs. DIFF- 

HE* 
1092 DIFF-CA vs. DIFF- 

HE* 
− 989.5 

VAR-CA vs. VAR-HE* 1305 VAR-CA vs. VAR-HE* 314.4  

CRI  NDWI  
SUN-CA vs. DIFF-CA* 219.7 SUN-CA vs. DIFF-CA − 95.9 
SUN-CA vs. VAR-CA* − 520.9 SUN-CA vs. VAR-CA 160.9 
DIFF-CA vs. VAR- 

CA* 
− 740.5 DIFF-CA vs. VAR-CA 256.8 

SUN-HE vs. DIFF-HE 32.41 SUN-HE vs. SUN-HE* 296.4 
SUN-HE vs. VAR-HE* − 1229 SUN-HE vs. DIFF- 

HE* 
− 1648 

DIFF-HE vs. VAR- 
HE* 

− 1261 SUN-HE vs. VAR-HE* 803 

SUN-CA vs. SUN-HE* 523 SUN-CA vs. SUN-HE* 296.4 
DIFF-CA vs. DIFF- 

HE* 
335.7 DIFF-CA vs. DIFF- 

HE* 
− 1552 

VAR-CA vs. VAR-HE − 185 VAR-CA vs. VAR-HE* 642.2  

ARI  NDLI  
SUN-CA vs. DIFF-CA* 429.6 SUN-CA vs. DIFF-CA* 1047 
SUN-CA vs. VAR-CA* 410.1 SUN-CA vs. VAR-CA 170.4 
DIFF-CA vs. VAR-CA − 19.48 DIFF-CA vs. VAR- 

CA* 
− 876.6 

SUN-HE vs. DIFF-HE 140.5 SUN-HE vs. DIFF- 
HE* 

− 1024 

SUN-HE vs. VAR-HE* − 728.3 SUN-HE vs. VAR-HE 20.11 
DIFF-HE vs. VAR- 

HE* 
− 868.8 DIFF-HE vs. VAR- 

HE* 
1044 

SUN-CA vs. SUN-HE* − 1364 SUN-CA vs. SUN-HE* 1270 
DIFF-CA vs. DIFF- 

HE* 
− 1653 DIFF-CA vs. DIFF- 

HE* 
− 800.8 

VAR-CA vs. VAR-HE* − 2503 VAR-CA vs. VAR-HE* 1120 

CA = canopy leaves, HE = herbaceous vegetation. 
* Difference is significant (p < 0.05). 
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essential aquatic biodiversity assessment (Muller-Karger et al., 2018)), 
vegetation applications are among the most sensitive (Peterson and 
Hubbard, 1992). Smith and Curran (1996) estimated the SNR re
quirements for the estimation of foliar biochemical concentrations from 
HSI finding minimum SNR values of 37:1 needed for Nitrogen retrieval, 
50:1 for lignin and 65:1 for cellulose (from 1st derivative spectra). These 
values suggest that even under the lowest overall irradiance with the 
thickest cloud cover encountered with the DIFF imagery, the SNR is 
adequate for the retrieval of many foliar traits from features at wave
lengths in the 550–1400 nm range (Fig. 10). It is important to note that 
once the effects of the atmosphere and other sensor geometry related 
characteristics are factored in (e.g. point spread function) (Inamdar 
et al., 2020) the requirement of SNR would likely increase and therefore 
care should be taken to limit the analyses to the wavelengths that meet 
the necessary SNR criteria. 

4.4. SVIs 

The variable wavelength attenuation by the clouds can be also 
clearly seen in the SVI results (Fig. 12). For tree canopy leaves, signifi
cant differences were found across illumination conditions for five of the 
six indices (Table 7, Fig. 12). Only NDWI (related to water content) was 
unaffected. For the herbaceous vegetation, all six indices showed sig
nificant differences across illumination conditions (Table 7, Fig. 12). 
While natural site-level variability is expected in the spectral response of 

the vegetation, the overall study area is small, therefore, the vegetation 
is likely exposed to similar precipitation, temperature, and edaphic 
conditions. There may be variability in the species composition of the 
herbaceous vegetation but the large sample size (1200–1500 pixels per 
class per image) minimized the effect of this variability on the SVI re
sults. As well, some differences can be attributed to expected biological 
processes. For example, under diffuse illumination the herbaceous class 
has NDWI values indicative of higher water content than under high 
direct illumination potentially due to evapotranspiration differences. 
Nevertheless, depending on the wavelengths used to calculate the 
indices, the impact of the cloud cover will vary. For example, values of 
CAI from the DIFF and VAR imagery should be treated with caution due 
to the lower SNR at wavelengths >2000 nm and the residual noise seen 
in the data following atmospheric compensation (Figs. 7 and 8). 
Furthermore, when SVIs are calculated on surface reflectance imagery as 
intended, rather than digital counts or top of atmosphere reflectance, 
they have been shown to suppress topographic shading which is both 
consistent across bands in the visible to SWIR range and independent of 
surface material type (Jones and Vaughn, 2010) as opposed to variation 
in illumination, the effect of which is band dependent. Coburn et al. 
(2010) found a considerable anisotropic effects on both NDVI and the 
Water-Band-Index; estimates of vegetation characteristics derived from 
the SVIs could result in large errors depending on the illumination: 
viewing angle combination at time of data acquisition. Both macro 
(landscape) and micro (canopy structure) topographic effects can 

Fig. 13. Example of the most abundant endmembers from the two contrasting illumination conditions: predominantly direct illumination (SUN) and predominantly 
diffuse illumination (DIFF). Values in the legends represent proportional abundance (range 0–1). 
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strengthen BRDF effects in vegetation and are among the predominant 
sources of uncertainty in ecophysiological models from SVIs (Buchhorn 
et al., 2016). Our results show that similar magnitude differences can be 
found in SVIs due to the wavelength dependent attenuation by cloud 
cover. Therefore, care should be taken when comparing SVIs calculated 
under different illumination conditions, or when modeling traits or 
other variables from these indices because differences encountered may 
be due not only to site-level heterogeneity but also to the conditions 
under which the imagery was acquired. However, as discussed below, 
diffuse illumination conditions may minimize BRDF effects on SVIs and 
should be investigated further in mitigation of large uncertainties in 
vegetation trait estimation from SVIs in high latitudes with low sun 
angles (Buchhorn et al., 2016) and in areas with large seasonal solar 
angle variation (Breunig et al., 2015). 

4.5. Endmember extraction 

For the SUN image, the difference in abundance of the ‘green leaf’ 
endmember (Fig. 13) depending on whether the leaves are on the side of 
the canopy oriented facing the sun or on the opposite side is an artefact 
of the illumination condition rather than an actual difference in the 
foliage. However, imagery acquired under such conditions would be 
beneficial for examining the effects on spectral signatures from shadow 
gradation from the umbra to the penumbra. In contrast, class level 
spectral variability of the herbaceous vegetation was minimized in the 
SUN imagery. From the DIFF imagery, five of the most distinct end
members are related to components of the meadow herbaceous vege
tation. It therefore appears that under the diffuse illumination 
conditions environmental/biophysical differences in the herbaceous 
vegetation may be more readily differentiated. The prominence of the 
non-photosynthetic vegetation, mosses and lichens also differed in the 
endmember abundance, with up to four times higher values seen in the 
DIFF imagery. Lastly, the concept of “endmember” in ultra-high spatial 
resolution UAV-HSI merits consideration. When pixels represent very 
small cm-scale components of the landscape, it is likely that the majority 
are not “mixed pixels” as they would be from airborne or satellite 
platforms, therefore the interpretation of endmember identification al
gorithms will differ than from coarser scale airborne or satellite HSI. 

5. Conclusion 

To increase our understanding of imagery acquired by a full range 
pushbroom HSI (400–2500 nm) mounted on a UAV platform for 
ecosystem studies, we addressed three fundamental and interrelated 
aspects of UAV-HSI imagery acquired under various illumination con
ditions: atmospheric compensation, SNR and SVIs. In addition, we 
analyzed endmember identification results to illustrate the impact of 
diverse irradiance conditions on the spectra of vegetation. For atmo
spheric compensation we demonstrated that under high direct irradi
ance conditions, the MODTRAN-5 based radiative transfer model is 
applicable, consistent with Arroyo-Mora et al. (2019). However, under 
predominantly diffuse and variable irradiance conditions, an ELM 
approach was necessary. Moreover, regardless of illumination condi
tions, despite our best efforts to locate adequate placement for the 
reference calibration targets, in-scattering from nearby vegetation 
contaminated in-situ measurements of their absolute reflectance and 
these data were unsuitable as inputs into the ELM. In this case, we uti
lized laboratory determined spectral responses for the panels. This 
approach resulted in a high degree of similarity between spectra of the 
reference panels extracted from the pixels and the lab determined 
reference spectra. Under diffuse illumination conditions, the SWIR 
wavelength region should be used with caution due to both lower SNR 
and resultant increased noise in the spectra. Spatial and/or spectral 
binning of the raw data can be considered to increase the SNR under 
marginal atmospheric conditions. In addition, using a high gain mode 
during data acquisition would likely improve the signal quality under 

these conditions. Furthermore, wavelength and cloud characteristic 
dependant attenuation affects SVIs. Care must be taken in choosing an 
SVI in order for the interpretation to be relatable to biophysical phe
nomena rather than illumination. For instance, if the wavelengths used 
to calculate the SVI are affected similarly by τ and other cloud charac
teristics (e.g. droplet size), any resulting variability is more likely due to 
biophysical/chemical differences in the vegetation. SVIs have been 
broadly applied in the literature to imagery from many sensors at 
different spatial and spectral resolutions, however UAV-HSI do not have 
the same sensor characteristics as those for which the majority of these 
indices were developed (e.g. NDVI). Further, the ultra-high spatial res
olution poses challenges in the interpretation of SVIs as related to bio
physical/biochemical properties (e.g. chlorophyll concentration, water 
stress, etc.). New studies relating the sensitivity of UAV-HSI acquired 
under different illumination conditions to the estimation of in-situ 
vegetation biochemical traits are required. Similarly, our results 
demonstrate that well-known illumination derived phenomena such as 
the BRDF of vegetation which is shown to be accentuated under direct 
illumination obscures target biophysical variability. Diffuse illumination 
conditions may, therefore, be beneficial for determining structural and 
biochemical traits that otherwise would be obscured by commonly 
sought-after high direct illumination conditions and increase the spec
tral variability of the target. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2021.112396. 
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