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Abstract 

Failure induced by fiber microbuckling is a frequent failure mode in continuous fiber-reinforced composite materials subjected to 
compression along the fibers direction. This failure mechanism may lead to a notable decrease of the compressive strength of 
composite materials since may also induce the initiation and propagation of cracks at the micro-structural level. A detailed 
microscopic continuum analysis with an appropriate representation of different sources of nonlinearities is usually required to 
capture the effects of different microscopic failure modes (instability, fracture damage, for instance), at the expense of a very large 
computational effort. In order to avoid a direct modeling of all microstructural details of the composite solid, micromechanically 
based multiscale techniques can be adopted in coupling with first order homogenization schemes. To this end a semiconcurrent 
two-scale approach is proposed in which the macroscopic constitutive law is evaluated resolving a micromechanical BVP in each 
macroelement of the homogenized domain; the microscopic model adopts a full finite deformation continuum formulation to study 
the interaction between local fiber buckling and matrix or fiber/matrix interface microcracks in presence of unilateral self-contact 
between crack surfaces. Numerical results are obtained to provide accurate predictions of the critical load level associated to 
microscopic instabilities in 2D fiber-reinforced composite solids.   
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Nomenclature 

( )c i
u  Displacement jump at the deformed crack contact interface at a contact point pair ( ),l u

C
X X   

V  External RVE boundary in the deformed configuration 
( )iV  External RVE boundary in the undeformed configuration 

( ),RC X F  Fourth-order tensor of nominal moduli 

( )1 2,R ,w wF  Functional associated to the non-bifurcation condition 

( )1
#H V  Hilbert space of order one of vector valued functions periodic over V 

fH  Initial fiber thickness 

( )idS  Surface elements in the undeformed configuration 

( ),tx X  Microscopic deformation field 

( )S ,wF  Stability functional 

( )u l
R Rr r  Nominal contact reaction on the upper (lower) crack surface 

( )( )
c

R i
T X  Nominal stress tensor jump at the undeformed crack contact interface 
Rt  Nominal traction vector 

( )
c

nu


X  Normal displacement rate jump at the deformed crack contact interface at a contact point pair  

( )
c

nw


X  Normal fluctuation rate jump at the deformed crack contact interface at a contact point pair 
( )in  Outward normal at ( )iVX  

M
ct  Primary instability load level in a multiscale model 
D
ct  Primary instability load level in a direct model 

1. Introduction 

Over the past decade, scientific and industrial communities have shared their expertise to improve mechanical and 
structural design favoring the exploration and development of new technologies, materials and advanced modeling 
methods with the aim to design structures with the highest structural performances. The most promising materials are 
fiber- or particle-reinforced composite materials. Specifically, materials with periodically or randomly distributed 
inclusions embedded in a soft matrix offer excellent mechanical properties with respect to traditional materials (for 
instance, the capability to undergo large deformations). Recent applications of these innovative materials are advanced 
reinforced materials in the tire industry, nanostructured materials, high-performance structural components, advanced 
additive manufactured materials in the form of bio-inspired, functional or metamaterials. Both industrial and scientific 
communities are conscious that designing new complex structures and systems that simultaneously need to meet 
restrictive security, mechanical and, in some instances, economical constraints can only be accomplished by numerical 
simulations. Even though significant progress has been made in simulating different phenomena, more developments 
are still needed. This is particularly true for the computational techniques and algorithms used to investigate the 
behavior of materials with a heterogeneous microstructure and subjected to complex loading conditions.  

Ideally, models able to simulate the behavior of advanced composite materials should be accurate and simple at the 
same time, so that they can be implemented in standard finite element packages to solve interesting structural issues. 
The development of accurate modeling strategies represents a significant challenge for two main reasons: firstly, the 
common constitutive models adopted to model advanced composite materials are nonlinear; secondly, due to the finite 
geometry changes caused by loadings, there is an additional complication related to the microstructural evolution. 
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are still needed. This is particularly true for the computational techniques and algorithms used to investigate the 
behavior of materials with a heterogeneous microstructure and subjected to complex loading conditions.  

Ideally, models able to simulate the behavior of advanced composite materials should be accurate and simple at the 
same time, so that they can be implemented in standard finite element packages to solve interesting structural issues. 
The development of accurate modeling strategies represents a significant challenge for two main reasons: firstly, the 
common constitutive models adopted to model advanced composite materials are nonlinear; secondly, due to the finite 
geometry changes caused by loadings, there is an additional complication related to the microstructural evolution. 
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This context motivates the requirement to carry out theoretical studies focused on the finite strain behavior of such 
materials with special attention to the prediction of the onset of microscopic failure mechanisms by investigating their 
macroscopic (homogenized) behavior. As a matter of fact, the study of such failure mechanisms requires the use of 
sophisticated techniques because otherwise a direct modeling of all microstructural details is needed which, however, 
is unpractical due to the required large computational effort. Among the variegated failure mechanisms affecting 
composite materials subjected to large deformations, loss of composite integrity (fracture, delamination and damage) 
and local buckling or loss of microscopic stability are the most common ones. 

As regards the loss of composite integrity, in order to take account for microstructural evolution (such as crack 
propagation), different approaches can be adopted. In the past literature such approaches have been proposed within 
the context of small deformations but they have been also generalized to large deformations. Frequently they are 
implemented in conjunction with first-order homogenization methods (see, for instance, (Bruno et al., 2008; Greco, 
2009; Li et al., 2004)) and/or multi-scale schemes (e.g. (Feo et al., 2015; Feyel and Chaboche, 2000; Greco et al., 
2015, 2014; Yu et al., 2013)). Generally speaking, the homogenization approaches can be adopted if the assumptions 
of periodicity and scale separation are satisfied, whereas multiscale schemes overcome these limitations (such as the 
semiconcurrent, concurrent, hierarchical  or hybrid methods, see for instance (Greco et al., 2020)), and they are able 
to accurately take into account for microstructural evolution due to coalescence of micro-cracks and to material and/or 
geometrical nonlinearities. Failure of fiber-reinforced composite materials is usually promoted by the pre-existence of 
microstructural defects, especially in the form of fiber/matrix debonding, as a consequence of the well-known stress 
concentration arising in bimaterial systems with higher elastic mismatches (see, for instance, (Fantuzzi et al., 2018; 
Tuna et al., 2019)). Further numerical analysis, for both the nucleation and propagation of multiple cracking in 
reinforced quasi-brittle materials, based on inter-element cohesive approaches, are discussed in (De Maio et al., 2019a, 
2019b, 2019c).  Regards to the loss of microscopic stability, in the case of undefected composite materials several 
theoretical and numerical studies on the occurrence of instabilities at the scale of the microstructure have been 
performed in the literature, in order to determine the influence of these phenomena on the nonlinear macroscopic 
response of the composite solid, see for instance (Greco and Luciano, 2011; Michel et al., 2010; Miehe et al., 2002; 
Nestorović and Triantafyllidis, 2004; Nezamabadi et al., 2009). Generally speaking instability phenomena strongly 
reduce the structural integrity of structures , thus it must be investigated at different length scales (see, for instance, 
(Michel et al., 2010; Miehe et al., 2002)), and also, both geometrical and constitutive nonlinearities must be 
incorporated in the analysis (see, for instance, (Greco and Luciano, 2011)). 

Subsequently the pioneering study of (Triantafyllidis and Maker, 1985) devoted to the connections between 
microscopic and macroscopic instabilities in hyperelastic layered composites materials with a periodic microstructure, 
such nonlinear aspects were rigorously investigated in (Geymonat et al., 1993), where it was shown that instabilities 
with long wavelength lead to the loss of strong ellipticity condition of the unit cell homogenized moduli tensor and, 
as consequence, to a macroscopic instability. Following the above-mentioned works, the interrelationships between 
microscopic and macroscopic instabilities under plane-strain condition in hyperelastic periodic composites (layered 
and particle-reinforced) have been widely investigated in (Li et al., 2019; Slesarenko and Rudykh, 2017), by using the 
Bloch-Floquet technique in a FEM framework. The above investigations showed that the onset of the macroscopic 
instabilities (characterized by wavelengths significantly larger than the microstructure characteristic size) can be 
predicted by the loss of ellipticity analysis, whereas the prediction of instabilities with a small wavelength (local 
instability modes) requires sophisticated techniques such as Bloch wave stability analysis or direct finite element 
discretization of the unit cell assembly leading to a impracticable computational efforts due to the theoretically infinite 
nature of the analysis domain. In addition, to obtain a conservative prediction of the microscopic stability region with 
a lower computational effort the macroscopic constitutive stability measures shown in (Greco and Luciano, 2011) can 
be adopted. 

In composite materials subjected to large deformations, since the above studies were prevalently limited to the 
investigation of microscopic and macroscopic instabilities in undefected microstructures, the problem of interaction 
between different microscopic failure modes has been scarcely investigated, although it may have a detrimental effect 
on the overall failure response of composite materials. Furthermore, a detailed continuum analysis of composite solids 
taking into account the coupling effects between microfractures and microinstabilities requires a huge computational 
effort since a sophisticated numerical model must be adopted in order to accurately describe the different sources of 
nonlinearity (for instance those related to damage, constitutive and geometrical effects). The above considerations 
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motivate the requirement to conduct theoretical studies focused on the understanding of the finite strain behavior of 
such materials giving great attention to the prediction of the onset of microscopic failure mechanisms by investigating 
their nonlinear homogenized behavior in a multiscale framework. 

2. Theoretical formulation of the microscopic stability analyses in damaged fiber-reinforced composite by 
using homogenization techniques 

The considered microstructured solid consists of a periodic fiber reinforcement embedded in a microcracked matrix 
and the equilibrium problem is formulated with reference to the representative volume element (RVE) shown in Fig.1. 
The volume occupied by the homogenized composite in the initial configuration and the position vector of a generic 
macroscopic point are referred to as ( )iV  and X , respectively. The RVE is assumed to contain pre-existing cracks 
whose upper and lower surface are denoted as ( )

u
i  and ( )

l
i , in which the superscript u and l are respectively referred 

to upper and lower surface and the subscript (i) is referred to the initial configuration. With the aim to predict the 
stability phenomena the considered RVE may be composed by an assembly of periodic unit cells a-priori unknown or 
by a single unit cell (see, for instance, (Geymonat et al., 1993)). On the undeformed configuration, a generic point is 
identified with its position vector X  and the nonlinear deformation of the microstructure is denoted by ( )x X  
mapping points X  of the initial configuration ( )iV  onto points x  of the actual configuration V. The displacement field 
is defined as ( ) ( )= −u X x X X  and the deformation gradient is defined as ( ) ( ) /=  F X x X X  each 
microconstituents of the RVE follow a rate independent incrementally linear constitutive law that can be written in 
following form: 

 ( ),R
R  

  
=T C X F F  (1) 

where RT  and F  represents the rate of the first Piola-Kirchhoff stress tensor and the rate of the deformation gradient, 
respectively, and RC is the corresponding fourth-order tensor of nominal moduli satisfying the major symmetry 
condition : R R

ijkl klijC C= . The loading process is parametrized in terms of the time-like parameter monotonically 
increasing  0t  (t = 0 in the undeformed configuration). Such parameter produces a unique response defined as 
principal equilibrium path and, since it describes the quasi-static deformation path of the composite solid, the rates of 
field quantities are considered to be the derivative with respect it.  
 

 

Fig. 1. Homogenized solid of a microcracked fiber-reinforced composite material (to the left) and corresponding undeformed and deformed RVE 
configurations (to the right) attached to a generic material point. 
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and local buckling or loss of microscopic stability are the most common ones. 
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propagation), different approaches can be adopted. In the past literature such approaches have been proposed within 
the context of small deformations but they have been also generalized to large deformations. Frequently they are 
implemented in conjunction with first-order homogenization methods (see, for instance, (Bruno et al., 2008; Greco, 
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ijkl klijC C= . The loading process is parametrized in terms of the time-like parameter monotonically 
increasing  0t  (t = 0 in the undeformed configuration). Such parameter produces a unique response defined as 
principal equilibrium path and, since it describes the quasi-static deformation path of the composite solid, the rates of 
field quantities are considered to be the derivative with respect it.  
 

 

Fig. 1. Homogenized solid of a microcracked fiber-reinforced composite material (to the left) and corresponding undeformed and deformed RVE 
configurations (to the right) attached to a generic material point. 



404	 Umberto De Maio  et al. / Procedia Structural Integrity 25 (2020) 400–412
 Author name / Structural Integrity Procedia 00 (2019) 000–000  5 

For hyperelastic materials the constitutive behavior is derived from a strain energy-density function ( ),W X F , and 
thus the nominal stress tensor (second-order tensor) and the nominal moduli tensor (fourth-order tensor) can be defined 
as: 
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whose components are respectively ( ) , /R ij ijT = W F X F  and ( )2 , /R
ijkl ij klC = W F F  X F . The coupling relationship 

characterizing the microscopic and the macroscopic scales can be expressed in terms of boundary displacement and 
traction vector defining, as follow, the macroscopic deformation gradient F  and the first Piola-Kirchhoff stress tensor 

RT : 
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where ( )in  denotes the outward normal at ( )iVX ,   denotes the tensor product and ( )R R i=t T n  represents the first 
Piola-Kirchhoff traction vector. In a macrostrain driven loading regime, the microscopic deformation field can be 
written as a function of the macro-deformation gradient ( )tF  and of the fluctuation field ( ),tw X  as follow:  

 

Fig. 2. Undeformed and deformed configurations of the crack surfaces, highlighting the pair of crack surface points ( , )l u
CX X  and the main 

associated parameters. 

 ( ) ( ) ( ),t t ,t=x X F X + w X  (4) 

where ( )tF X  represents a linear displacement contribution. The application of (3) to the boundary of the RVE leads 
to the following integral constraint written in terms of RVE boundary displacements: 
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i (i)
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dS


= 0w n . (5) 

Such boundary constraint is automatically satisfied assuming that the microstructure is periodic, it leads to 
consistent displacements of opposing boundary; in particular, this condition establishes a split of the boundary limits 
in a positive part ( )iV +   and in a negative part ( )iV − : 

 ( ) ( )1 ( )2 ( )1 ( )2i i i i iV V V V V+ + − − =     ;  (6) 

The corresponding outward unit vectors +n  and −n , respectively normal to ( )iV +  and ( )iV − , present the following 
relation: 
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Definitively, the periodic boundary condition on ( )iV is given as follow: 

 ( , ) ( , ) ( ( , ) )( )t t t+ − + −− = − −u X u X F X I X X .  (8) 

Imposing the Eq. (8) at the boundary of the RVE, this condition leads to an anti-periodic traction field and to a 
periodic fluctuation field as expressed in the following: 

 ( , ) ( , )R Rt t+ −= −t X t X  , (9) 

 ( , ) ( , )R Rt t+ −=w X w X  . (10) 

In order to take into account for frictionless self-contact phenomena between opposite crack surfaces, the following 
conditions at each point Xu of the upper crack surfaces are introduced: 
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As shown in Fig. 2, 0uh =  and  0lh =  describe the deformed upper and lower crack surfaces, denoted by u  and 
l , while ( )

u u u
R R i =T n n is the normal nominal contact reaction on the upper crack surface, where un  represents the 

deformed outward normal, and ( )
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R Ri =T n r represents the nominal contact reaction. For sake of brevity, only the 
equations governing the rate equilibrium solution of the microstructure are reported in the following: 
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where ( )nu X  denotes the projection of the displacement rate along the normal ln  to the deformed lower crack 
surface, ( ) ( ) ( )

C

l u
n n nu u u


= −X X X  represents its jump at a contact point pair ( , )u l

CX X , Rr  is the nominal contact 
reaction rate, defined as ( )R R i=r T n . 
To derive the infinitesimal stability and non-bifurcation conditions of the equilibrium configuration, the following 
contact surface integral is examined: 
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representing the virtual work of the contact reaction rate acting on the present contact interface in a virtual displacement 
* ( )A , u F F . 

Using Eq. (12)4 the contact surface integral becomes: 
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For hyperelastic materials the constitutive behavior is derived from a strain energy-density function ( ),W X F , and 
thus the nominal stress tensor (second-order tensor) and the nominal moduli tensor (fourth-order tensor) can be defined 
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where ( )in  denotes the outward normal at ( )iVX ,   denotes the tensor product and ( )R R i=t T n  represents the first 
Piola-Kirchhoff traction vector. In a macrostrain driven loading regime, the microscopic deformation field can be 
written as a function of the macro-deformation gradient ( )tF  and of the fluctuation field ( ),tw X  as follow:  
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associated parameters. 
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where ( )tF X  represents a linear displacement contribution. The application of (3) to the boundary of the RVE leads 
to the following integral constraint written in terms of RVE boundary displacements: 
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Such boundary constraint is automatically satisfied assuming that the microstructure is periodic, it leads to 
consistent displacements of opposing boundary; in particular, this condition establishes a split of the boundary limits 
in a positive part ( )iV +   and in a negative part ( )iV − : 
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The corresponding outward unit vectors +n  and −n , respectively normal to ( )iV +  and ( )iV − , present the following 
relation: 
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Definitively, the periodic boundary condition on ( )iV is given as follow: 

 ( , ) ( , ) ( ( , ) )( )t t t+ − + −− = − −u X u X F X I X X .  (8) 
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deformed outward normal, and ( )
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where ( )nu X  denotes the projection of the displacement rate along the normal ln  to the deformed lower crack 
surface, ( ) ( ) ( )
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reaction rate, defined as ( )R R i=r T n . 
To derive the infinitesimal stability and non-bifurcation conditions of the equilibrium configuration, the following 
contact surface integral is examined: 
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representing the virtual work of the contact reaction rate acting on the present contact interface in a virtual displacement 
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and taking into account for the frictionless contact model (see eqn (12)5), the contact reaction rate can be written as 
R R R =r n+ n  leading to an expression in which the work done by the nominal contact reaction through the virtual 

displacement consists in two contributions: the first (a) is a contribution related to the tangential component of the 
nominal contact reaction rate R n  (since 0=n n ); the second (b) is a contribution related to the different variation 
of the reference to actual surface element ratio ( ) /u

idS dS  between the lower and upper crack contact surfaces: 
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Uniqueness of the rate response is ensured satisfying the following positivity condition:  

 ( ) (1) (2)
1 2, >0        ( )*R , A ,  w w w w F FF , (16) 

where 1 2( , )R ,w wF  is the so-called exclusion functional that assumes the following expression: 
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where superscripts (1) and (2) refer to two possible rate solutions ( ) ( )i i= +u FX w  (i =1,2) associated to the same F . 
In addition, the stability condition of the generic equilibrium configuration is obtained by assuming that the rate 

problem admits only the trivial rate solution = 0w  thus, by coupling the known solution (2) = 0w  with a generic 
admissible fluctuation field rate (1) =w w , it follows that the stability condition represents a non-bifurcation criterion 
for the trivial case with ( )t = 0F  and the resulting positivity condition is expressed as: 

 ( ) 0    ( )  ( )*S , A ,   0 0w w x F F =F , (18) 

where ( )S ,wF  is the so-called stability functional assuming the following expression: 
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Further details about the stability and non-bifurcation conditions can be found in (Greco, 2013; Greco et al., 2016). 
In the general case of non-homogeneous loading (0) F 0  owing to contact nonlinearities, the stability condition does 
not ensure uniqueness since an eigenstate does not correspond to a primary bifurcation state; on the other hand the 
non-bifurcation condition (17) implies stability. In order to circumvent non-linearities arising from crack self-contact, 
incrementally linear comparison problems can be adopted as shown in (Greco, 2013), specifically, a lower bound 
predictions for the loading levels at the onset of instability and bifurcation can be obtained by using the incremental 
comparison problem corresponding to the completely free to penetrate rate conditions over the whole crack contact 
interface, in other words (0)

C
nw


 is assumed arbitrary on the whole c. 

3. Microscopic stability analysis by means of multiscale techniques 

The previously developed theoretical formulation is here applied to analyze the macroscopic compressive failure 
behavior of defected periodic fiber-reinforced composites subjected to large deformations associated to the coupled 
effects of microscopic instabilities and microfractures. In particular, a semiconcurrent multiscale model (FE2-like) was 
adopted, in which the macroscopic constitutive response of the composite structure was extracted (for each Newton-

8 Author name / Structural Integrity Procedia  00 (2019) 000–000 

Raphson iteration) by solving a microscopic boundary value problem linked at the macroelements of the homogenized 
domain. The information are transferred on the fly during the simulation from lower (micro) to higher (macro) scales 
and vice versa establishing a “two-way” weak coupling, similarly to the FE2 method (see Fig. 3).  

 

 

Fig. 3. Schematic representation of the (FE2) semiconcurrent multiscale approach. 

It is worth noting that the microscopic problems are decoupled to each other leading to a lower computational effort 
only in presence of an effective core processor parallelization adequately implemented in the solver procedure. 
However, in order to avoid the evaluation of the critical load at each load step through an eigenvalue problem, it is 
possible to use the two-dimensional stability and uniqueness domains reported in the following works: (Greco et al., 
2018b, 2018a). The drawback of this approach is the difficulty to evaluate the boundary layer effects, if a first order 
homogenization scheme is used. Below, in order to demonstrate both accuracy and validity of the previously described 
theoretical formulation within a multiscale analysis framework, some numerical applications were reported. 

3.1 Multiscale analysis of defected fiber-reinforced composites subjected to homogeneous macroscopic 
deformations 

The first multiscale application considers a composite material reinforced with continuous fibers arranged 
according to a unidirectional pattern. The homogenized domain, length 300 μm and high 100 μm, is subjected to a 
homogeneous compressive uniaxial macro-deformation path in the fiber direction (Fig. 4). In the semiconcurret 
multiscale framework, the microscopic periodic unit cells are connected to the homogenized continuum in order to 
obtain the macroscopic response along the primary macro-deformation path. In the meantime, the macro-deformation 
state of each microscopic cell has been monitored by means of the two-dimensional stability and uniqueness domains 
presented in (Greco et al., 2018b, 2018a). The obtained critical load factor H

ct  is equal to 0.1139. 
 

 

Fig. 4. A composite material reinforced with continuous fibers subjected to homogeneous compressive uniaxial macro-deformation path and 
check of critical deformation through 2D stability and uniqueness domains. 
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and taking into account for the frictionless contact model (see eqn (12)5), the contact reaction rate can be written as 
R R R =r n+ n  leading to an expression in which the work done by the nominal contact reaction through the virtual 

displacement consists in two contributions: the first (a) is a contribution related to the tangential component of the 
nominal contact reaction rate R n  (since 0=n n ); the second (b) is a contribution related to the different variation 
of the reference to actual surface element ratio ( ) /u

idS dS  between the lower and upper crack contact surfaces: 

( )
( ) ( )

( )
( ) ( )

( )
c

l l
c i c i c

il l l l l l
rate c R i R n i

i

dS dSL dS dS
dS dS

a b

u   


  

 
 = −  

 
 n u . (15) 

Uniqueness of the rate response is ensured satisfying the following positivity condition:  

 ( ) (1) (2)
1 2, >0        ( )*R , A ,  w w w w F FF , (16) 

where 1 2( , )R ,w wF  is the so-called exclusion functional that assumes the following expression: 

( ) ( ) ( )

( )

( ) ( )

( )

(1) (2) (1) (2)
1 2 ( )

( ) (1) (2)
( )

( )

, [ ]

                       +            with 

C
li C i

l
C i C

R l l l
(i) R i

B

il l l
R n i

i

R , dV dS

dS dS w dS
dS dS








 

=     −   +

 
    =  − 
 

 



w w C X, w w w w n wF F - -

 (17) 

where superscripts (1) and (2) refer to two possible rate solutions ( ) ( )i i= +u FX w  (i =1,2) associated to the same F . 
In addition, the stability condition of the generic equilibrium configuration is obtained by assuming that the rate 

problem admits only the trivial rate solution = 0w  thus, by coupling the known solution (2) = 0w  with a generic 
admissible fluctuation field rate (1) =w w , it follows that the stability condition represents a non-bifurcation criterion 
for the trivial case with ( )t = 0F  and the resulting positivity condition is expressed as: 
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where ( )S ,wF  is the so-called stability functional assuming the following expression: 
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Further details about the stability and non-bifurcation conditions can be found in (Greco, 2013; Greco et al., 2016). 
In the general case of non-homogeneous loading (0) F 0  owing to contact nonlinearities, the stability condition does 
not ensure uniqueness since an eigenstate does not correspond to a primary bifurcation state; on the other hand the 
non-bifurcation condition (17) implies stability. In order to circumvent non-linearities arising from crack self-contact, 
incrementally linear comparison problems can be adopted as shown in (Greco, 2013), specifically, a lower bound 
predictions for the loading levels at the onset of instability and bifurcation can be obtained by using the incremental 
comparison problem corresponding to the completely free to penetrate rate conditions over the whole crack contact 
interface, in other words (0)

C
nw


 is assumed arbitrary on the whole c. 

3. Microscopic stability analysis by means of multiscale techniques 

The previously developed theoretical formulation is here applied to analyze the macroscopic compressive failure 
behavior of defected periodic fiber-reinforced composites subjected to large deformations associated to the coupled 
effects of microscopic instabilities and microfractures. In particular, a semiconcurrent multiscale model (FE2-like) was 
adopted, in which the macroscopic constitutive response of the composite structure was extracted (for each Newton-
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Raphson iteration) by solving a microscopic boundary value problem linked at the macroelements of the homogenized 
domain. The information are transferred on the fly during the simulation from lower (micro) to higher (macro) scales 
and vice versa establishing a “two-way” weak coupling, similarly to the FE2 method (see Fig. 3).  

 

 

Fig. 3. Schematic representation of the (FE2) semiconcurrent multiscale approach. 

It is worth noting that the microscopic problems are decoupled to each other leading to a lower computational effort 
only in presence of an effective core processor parallelization adequately implemented in the solver procedure. 
However, in order to avoid the evaluation of the critical load at each load step through an eigenvalue problem, it is 
possible to use the two-dimensional stability and uniqueness domains reported in the following works: (Greco et al., 
2018b, 2018a). The drawback of this approach is the difficulty to evaluate the boundary layer effects, if a first order 
homogenization scheme is used. Below, in order to demonstrate both accuracy and validity of the previously described 
theoretical formulation within a multiscale analysis framework, some numerical applications were reported. 

3.1 Multiscale analysis of defected fiber-reinforced composites subjected to homogeneous macroscopic 
deformations 

The first multiscale application considers a composite material reinforced with continuous fibers arranged 
according to a unidirectional pattern. The homogenized domain, length 300 μm and high 100 μm, is subjected to a 
homogeneous compressive uniaxial macro-deformation path in the fiber direction (Fig. 4). In the semiconcurret 
multiscale framework, the microscopic periodic unit cells are connected to the homogenized continuum in order to 
obtain the macroscopic response along the primary macro-deformation path. In the meantime, the macro-deformation 
state of each microscopic cell has been monitored by means of the two-dimensional stability and uniqueness domains 
presented in (Greco et al., 2018b, 2018a). The obtained critical load factor H

ct  is equal to 0.1139. 
 

 

Fig. 4. A composite material reinforced with continuous fibers subjected to homogeneous compressive uniaxial macro-deformation path and 
check of critical deformation through 2D stability and uniqueness domains. 
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A convergence analysis, reported in Fig. 5, to the RVE size has been incorporated in the numerical procedure to 
assess the local nature of the instability mode and, as a consequence, to verify the correspondence between the repeated 
unit cell (RUC) and the representative volume element (RVE). In detail, the coincidence of the mode shape and the 
critical load level between a single cell and a cell assembly of increasing dimensions (2x2 and 4x4), were verified. 

 

 

Fig. 5. Convergence analysis to the RVE size incorporated in the numerical procedure. 

To evaluate the accuracy and the effectiveness of the adopted multiscale model, the obtained results have been 
compared with the stability analysis performed on a direct numerical model based on the explicit discretization of the 
heterogeneities of the composite microstructure. The direct numerical analysis has been developed by solving in a 
coupled way the global and the rate eigenvalue boundary value problems (Fig. 6) providing the bifurcation and the 
instability load levels for the exact formulation. The obtained critical load parameter value is equal to 0.1172. 
 

 

Fig. 6. Direct numerical analysis of a fiber-reinforced composite material subjected to homogeneous macro deformation with the accompanying 
nonlinear eigenmode boundary value problems giving the bifurcation and the instability critical load factor. 

The results are reasonably accurate when compared with the critical load predictions of the direct numerical 
analysis. The relative percentage error of the critical load level, about of 3%, is due to the boundary layers effects 
induced by the external constrains. 

3.2 Multiscale analysis of fiber-reinforced composites subjected to nonhomogeneous macroscopic 
deformations 

The second application concerns a cantilever composite beam reinforced with continuous fibers, length 240 μm and 
high 40 μm, subjected to a bending stress induced by a concentrated vertical force applied at the free end of the beam 
leading to a macroscopic displacement ( )u t . The numerical analysis of the homogenized model, composed by a 4x8 
periodic unit cell assembly (see Fig. 7), was conducted assuming quasi-static displacement-controlled loading 
conditions. The dimensions of the considered unit cell, denotes as L and H, are chosen such that their ratio L/H is equal 
to 3 and L is equal to 30 μm, whereas the thickness of the fiber (i.e. the reinforcement layer), denoted as Hf, is set as 
0.025H, associated with a fiber volume fraction of 2.5%. The length of preexisting crack is equal to 0.4L. 
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Fig. 7. A cantilever composite beam reinforced with continuous fibers and subjected to concentrated vertical force at the free end of the beam 
leading to a macroscopic displacement. 

In the Fig. 8a, the Von Mises stress map of the macroscopic multiscale model is reported together with their linked 
microscopic representative volume elements (32 RVEs). In addition, the zoom on the critical cell, together with the 
vertical reaction versus the macro displacement ( )u t  plot, are reported at the left bottom side.  

It worth noting that such curve shows a load jump in correspondence with the critical load factor, that is about of 
30.1μ. It was measured by means of a graphic extrapolation reported in the top side of Fig. 8b. However, in order to 
evaluate the accuracy of the multiscale model predictions, the lower bound of the primary instability and bifurcation 
load was assessed through a linear comparison problem allowing for incremental crack surface penetration (bottom 
side of Fig. 8b). 

 

Fig. 8. Multiscale numerical simulation on a cantilever beam subjected to nonhomogeneous deformation (a). Graphical extrapolation of the 
instability critical load factor and assessment to the limit bound obtained through eigenvalue problem (b). 
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periodic unit cell assembly (see Fig. 7), was conducted assuming quasi-static displacement-controlled loading 
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Fig. 9. Direct numerical simulation on a cantilever beam subjected to nonhomogeneous deformation (a). Graphical extrapolation of the instability 
critical load factor (b) and assessment to the lower bound obtained through eigenvalue problem (c). 

The evaluated lower bound value is equal to 26.43μm. A comparison between results of multiscale and direct 
numerical simulation, are discussed here. The Fig. 9a shows the Von Mises stress map at the onset of microscopic 
instability of the direct model together with the vertical reaction versus the macro displacement ( )u t  plot. The critical 
load factor, obtained by a graphic extrapolation (Fig. 9b) and the evaluated lower bound by means of eigenvalue 
problem (Fig. 9c) are equal to 30.2 μm and 26.85 μm, respectively. As in the multiscale analysis, a load jump in the 
loading curve of direct numerical simulation occurs (bottom side of Fig. 9a). As expected in both multiscale and direct 
analysis the obtained lower bound of the primary instability and bifurcation load is lower than the exact critical load 
factor. The relative percentage errors between the two different simulations in term of both lower bound and exact 
critical load are 1.54% and 0.33%, respectively. Such numerical results demonstrated the capability and the 
effectiveness of adopted multiscale model to predict the critical loads for primary instability and bifurcation in defected 
fiber-reinforced composite materials subjected to both homogeneous and nonhomogeneous macroscopic 
deformations. 

4. Conclusions 

In this work the microscopic failure mechanisms triggered by fiber microbuckling were investigated for fiber-
reinforced periodic composites containing microscopic defects; these phenomena  are of central importance for an 
accurate prediction of the load carrying capacity in the presence of compression along the fiber direction in 
unidirectional fiber-reinforced or layered composites. As a matter of fact, the interaction between micro-fractures and 
buckling instabilities may lead to a strong decrease in the compressive strength of the composite material with a 
premature failure of the composite solid. 

With the aim to perform an accurate analysis of the above-mentioned failure behavior a rigorous full finite 
deformation continuum formulation was proposed to account for the interaction between local fiber buckling and 
matrix or fiber/matrix interface microcracks by modeling unilateral self-contact along crack surfaces in a multiscale 
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framework. The adopted formulation made it possible to highlight the presence of non-standard rate contributions 
arising from crack self-contact interface mechanisms that play a fundamental role in the prediction of the microscopic 
critical load of the composite solid. To this end, the first part of the paper is devoted to the theoretical formulation of 
instability and bifurcation phenomena for microcracked composite materials subjected to a macrostrain driven loading 
path. Then, with the aim to demonstrate that the developed formulation can be adopted in the context of multiscale 
approaches for predicting the failure behavior of locally periodic defected composite solids subjected to large 
deformations, some practical application was performed adopting a semiconcurrent two-scale approach, in which the 
macroscopic constitutive law is evaluated resolving a BVP in each macroelement of the homogenized domain. 

Numerical applications carried out for macroscopic loadings involving both homogeneous and inhomogeneous 
deformations in the homogenized solid, show that a two-scale homogenization approach is able to give accurate 
predictions of the critical load level associated to microscopic instabilities or bifurcations, as confirmed via 
comparisons with a direct analysis with an explicit meshing of all heterogeneities. 
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