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Abstract 

Traditionally, smart-connected products are predominantly utilized during the usage phase of the product lifecycle. However, we argue that there 
are distinct benefits of system-integrated sensor systems during the beginning of life, more specifically in manufacturing and assembly. In this 
paper, we analyze the ability of a smart-connected product with an integrated sensor system to recognize and label different manufacturing 
processes, generating a distinct process fingerprint within a discrete smart manufacturing system. The ability of the smart-connected product to 
detect distinct manufacturing process patterns (‘process fingerprint’) enables the production planner and operator, e.g., to optimize the scheduling, 
improve part quality, and/or reduce the energy footprint. The experimental setup is based on a FestoDidactics CPlab with eight different 
manufacturing processes. The smart-connected product is equipped with a sensor system providing data from eight different sensors (e.g., 
temperature, humidity, acceleration). We used an Artificial Neural Network (ANN) algorithm to create a model to detect specific events/patterns 
within the dataset after labelling it manually over the course of a complete production cycle. The focal manufacturing process was the heating 
tunnel where the smart-connected product was exposed to a heat treatment process and sequence. The results of this prototypical implementation 
indicate that a smart-connected product can reliably recognize specific process patterns with a system-integrated sensor system during a simulated 
manufacturing process. While this work is only a first step, the potential applications and benefits are promising and further research should focus 
on the potential quality implications within smart manufacturing of product-integrated sensor readings compared to machine tool-based sensors, 
both of which monitored during the beginning of life. Smart products’ integrated sensor systems provide the means to obtain measurements 
relevant for smart manufacturing systems that are not obtainable with common external sensor systems today. 
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1. Introduction 

Industry 4.0 and Smart Manufacturing are changing the 
manufacturing industry and data is the lifeblood of these 
paradigms. Today, significant research focus is placed on 
monitoring and analyzing manufacturing data from sensors 
using machine learning and artificial intelligence. Most of the 
manufacturing data is captured either at the machine tool [1], 
during in-situ or ex-situ quality inspections, or at the planning 
level, e.g., ERP, CAD/CAM, etc. With sensor systems 

becoming cheaper, more powerful, smaller, and more mobile, 
we also see an increase of sensor data stemming from products 
equipped with sensors themselves - so-called smart, connected 
products. However, these smart, connected products are only 
beginning to capture and communicate data during their field 
usage after manufacturing and assembly are completed. 

This paper evaluates two research questions related to this 
issue. The overarching question that arises is whether ‘smart-
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1. Introduction 

Industry 4.0 and Smart Manufacturing are changing the 
manufacturing industry and data is the lifeblood of these 
paradigms. Today, significant research focus is placed on 
monitoring and analyzing manufacturing data from sensors 
using machine learning and artificial intelligence. Most of the 
manufacturing data is captured either at the machine tool [1], 
during in-situ or ex-situ quality inspections, or at the planning 
level, e.g., ERP, CAD/CAM, etc. With sensor systems 

becoming cheaper, more powerful, smaller, and more mobile, 
we also see an increase of sensor data stemming from products 
equipped with sensors themselves - so-called smart, connected 
products. However, these smart, connected products are only 
beginning to capture and communicate data during their field 
usage after manufacturing and assembly are completed. 

This paper evaluates two research questions related to this 
issue. The overarching question that arises is whether ‘smart-
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connected products can add value during manufacturing 
processes (beginning of life - BOL)?’, followed by a more 
technical question of whether ‘smart-connected products today 
are capable of detecting the distinct manufacturing process 
patterns based on sensor data analyzed via machine learning’. 
The experimental setup to answer the latter question comprises 
integrating a sensor system into a smart product and recording 
the sensor data during the complete manufacturing and 
assembly program. This recorded data is subsequently fed into 
an artificial neural network (ANN) to detect the execution of 
the manufacturing processes. This paper presents the initial 
results and performance of the ANN to identify a selected 
process based on smart-connected product-based sensor input. 

The paper is structured as follows: Section 2 briefly 
highlights the current state of the art and background relevant 
for this research. Section 3 presents the research methodology 
including how data was acquired and analyzed. In section 4, the 
findings are presented, discussed, and evaluated. Section 5 
concludes the paper with a summary and an outlook on further 
research. 

2. State of the Art  

Smart manufacturing emerged due to increased computing 
and networking capabilities within manufacturing equipment. 
It can be described as “a data intensive application of 
information technology at the shop floor level and above to 
enable intelligent, efficient and responsive operations” [2]. 
Smart Manufacturing Systems (SMS) are complex Cyber 
Physical Systems (CPS) that integrate operational technology 
(OT) and information technology (IT) to improve 
manufacturing operations through sensor systems and 
advanced data analytics [3]. Alternatively, smart products, in 
essence, rely on these computing and networking capabilities, 
however at the product level [4]. The majority of today’s smart 
product are utilized during the middle of life (MOL) phase of 
the product lifecycle to provide the basis for advanced services 
and/or product service systems (PSS) for the consumer [5]. 
However, when considering the opportunity from a 
manufacturing-centered perspective, smart products are often 
interpreted as intelligent and connected machine tools [6]. 
Machine learning in general can be defined as programming 
computers to optimize a performance criterion using example 
data or past data [7]. A subgroup of machine learning 
algorithms is Artificial Neural Networks (ANN). ANNs try to 
simulate neurobiology and fabricate networks to solve 
computational problems [8]. Adapting this machine learning 
approach to manufacturing lead to improved yield, lower scrap 
rates, and reduced supply chain forecasting errors [9]. Machine 
tool interfaces enable connectivity for advanced data analytics 
[1]. This data can be utilized, e.g., for deep learning in smart 
manufacturing systems [10]. This paper aims to further expand 
the current state of the art by developing a model for data 
analytics in smart manufacturing on the basis of data solely 
captured by a smart-connected product during the BOL. 

 
 

3. Methodology and Experimental Setup 

The methodology is split into two distinct phases (Figure 1). 
The first phase is focused on collecting data and generating the 
manufacturing data set for the experimentation. The smart 
product’s integrated sensor system continuously records the 
sensor readings during the processing on the SMS test bed. The 
second phase focuses on data analytics and identifying patterns 
(‘process fingerprints’) in the generated data set. The recorded 
manufacturing data is i) pre-processed to prepare the machine 
learning application (including labelling), ii) visualized to 
enable feature engineering within the data set, and 
iii) ultimately the machine learning algorithm was executed. 

Fig. 1. Methodology and experimental setup. 

The experimental setup builds on three core systems: the 
SMS test bed (FestoDidactics CPlab), the sensor system, and 
the data analytics suite (see Figure 1). 

3.1. Manufacturing System Test Bed 

The SMS is a state of the art FestoDidactics Cyber-physical 
Lab (CPlab) with eight modular, fully connected 
manufacturing processes located at WVU’s Smart 
Manufacturing lab. The CPlab system’s eight modular 
manufacturing processes include for example a drilling 
process, heat treatment process, and muscle press process that 
are all connected via an automated conveying belt system. 
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3.2. Sensor System 

The smart product's sensor system in this experimental setup 
is a DA14583 IoT Sensor by Dialog Semiconductor [11]. The 
sensor system is a low power 12-degree-of-freedom wireless 
sensor module, which combines a low power ARM processor 
with Bosch Sensortec sensors. The integrated Bosch sensors are 
BMI160 (Inertial Sensor-Gyroscope), BMM150 (Geomagnetic 
Sensor), and BME280 (Environmental Sensor). The BMI160 
gyroscope sensor combines an accelerometer and gyroscope 
and offers low-noise 16-bit inertial measurements. The 
BMM150 geomagnetic provides 3-axis digital geomagnetic 
readings. The BME280 is an environmental sensor for 
temperature and relative humidity with a high accuracy and 
response time. The whole sensor package can operate in sleep 
mode only consuming 11uA (average). While active the 
average consumption reaches up to 560uA. 

3.3. Data Processing and Data Analytics 

Data analytics was performed in a Jupyter Notebook by a 
Jupiter Project [12]. The data analytics steps were pre-
processing (including labelling), data visualization and feature 
engineering, and finally machine learning. In the pre-
processing phase the retrieved data is transformed from a CSV 
file into an array with data type correction per variable, and 
then split into individual production runs through the SMS by 
marking the initial time t0 and end time tf for each run. The 
different processes were manually labeled based on the 
recorded timestamps entering and leaving each station and 
aligned with an even split across the production run. For data 
visualization the matplotlib library was utilized in order to 
identify anomalies and grasp a visual clue of the offsets 
between the individual runs. Furthermore, the visualization 
allowed for selection of relevant features for the modeling 
phase. The machine learning phase consisted of the model 
design, model parameter selection, model training, model 
execution, and evaluation of the model prediction performance. 

4. Results 

The cleaned and pre-processed data was plotted, and the 
data analytics implemented by feature engineering, model 
design, model training, model execution, and model evaluation. 

4.1. Data Set and Plots 

The resulting manufacturing data set includes the variables 
temperature, humidity, magnetic field (3-axis) with a resolution 
of one reading per second for every production run. One 
production run is defined as utilizing all eight manufacturing 
stations to manufacture a complete product. A total of 15 runs 
throughout the SMS test bed were recorded and make up the 
data set. The start of each production run was defined by 
releasing the raw material into the conveying container 
marking 0 seconds on the timescale. Each production run is 
built with five variables and 1,000 data points per variable. The 
runs were then divided into a test data set and a training data 

set. Data from 11 production runs are allocated for training 
(73.33%) and 4 for testing (26.67%). 

 

Fig. 2. Temperature trend. 

Figure 2 illustrates the temperature progression during the 
production runs. The plot shows 15 completed recordings and 
the resulting temperature increase during the heat treatment 
process can be identified with a linear temperature increase 
around the 600 second mark. Regarding the two outliers with 
early temperature increase, we were able to identify the use of 
preheated conveying container from previous runs as the cause. 

Fig. 3. Magnetic field trend (Y-axis). 

The plot shows the distinct pattern across all different 
processes employed in the manufacturing program. 
Geomagnetic field readings are used for spatial orientation and 
also identify if any ferro-magnetic material is within a close 
proximity of the product during manufacturing. Identifying a 
magnetic signature could provide insights to the ANN as to 
which sub-process is underway. In the plot, for instance, 
between second 500-700 the convey container remains 
stationary inside a closed chamber. Furthermore, the starting 
point and end point of each run can be clearly identified, which 
is important for precise automated labeling of these events. 
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Fig. 4. Relative humidity trend. 

Figure 4 highlights the relative humidity progression during 
each production run. The relative humidity initially rises, then 
drops when process heat is applied during the heat treatment 
sequence. Similar to the temperature values, the humidity 
values are subjected to lag at the beginning of the process. 

4.2. Model Design 

Five different ANN models have been built and used for this 
research project. It has to be noted that the objective is not to 
optimize the machine learning model but to showcase the 
potential of smart products adding value during the BOL. 
Therefore, we focused on basic ANNs with little variations to 
showcase the further potential for improvement in the 
analytical space for such applications. Table 1 summarizes the 
five models, which were designed using the scikit-learn library. 

Table 1. Machine learning models. 

Model No. 1 2 3 4 5 

Color Scheme black blue green red yellow 

Hidden Layers 5 7 3 3 3 

Neurons per Layer 50 100 50 20 10 

 
The machine learning models differentiate themselves by 

the number of neurons per layer and the number of hidden 
layers. The idea behind this approach is to choose suitable 
parameters to achieve an acceptable trade-off between 
performance and accuracy of the ANN. 

4.3. Feature Engineering 

Feature engineering incorporates knowledge from the real 
world (such as laws of physics) and manufacturing domain 
knowledge (e.g., from data labeling by manufacturing experts 
aka ‘a teacher’ in machine learning terms) into the application 
of the machine learning algorithm. Data exploration was used 
to contextualize the sensor readings for the individual 
manufacturing processes of the SMS. The temperature reading 
(mainly relevant for identifying the heat treatment process step) 
was selected to be most suitable for the experiment. The 
humidity readings were not used for this study since they were 

regarded as not an independent variable from the temperature 
reading. The geomagnetic field readings were discarded as too 
noisy after a visual inspection of the data plots. A block design 
was used (8-block division) to split the production runs into 
smaller segments. 

4.4. Model Training 

The machine learning model was trained to detect one of the 
eight manufacturing processes. The heat treatment module was 
selected as the proof of concept process for this experiment. 

Figure 5 details the loss curves of the five models (see 
Table 1 for color scheme). A loss curve shows the error vs. 
epochs. An epoch is a measure of the number of times all of the 
training data is used to update the weights. For each of the five 
different ANN models we performed a batch training. This 
means the training data pass through the learning algorithm 
simultaneously in one epoch, then the weights are updated. 

Fig. 5. Loss curves of the 5 models. 

Table 2 depicts the number of iterations until convergence 
or the epoch limit is reached. Given the size of the data set, 
more neurons and hidden layers are needed for faster learning. 
The model 2 performed best among the five. 

Table 2. Number of epoch iterations of all models. 

Model No. 1 2 3 4 5 

Iterations 113 85 197 395 636 

 
The performance of models 1 and 3 were surprisingly low 

given the low number of neurons. This may mean that when the 
dataset works well, then regular shapes of the loss curves with 
number of iterations proportional to the size of the model are 
expected. 

4.5. Evaluation 

The trained models were executed using the remaining test 
data set and evaluated with the help of the metrics module of 
the scikit-learn library. A successful detection is defined as the 
model prediction being able to detect the correct state (or 
correct non-state) within the manually pre-labeled test data set. 
The data-set was labeled by an expert based on the eight-block 
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split of each production run and whether a block was covering 
the heat treating process or not. 

Table 3. Confusion matrix of all models. 
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Predicted 
Case 

True 32 0 32 0 32 0 32 0 32 0 
False 0 4 0 4 1 3 1 3 1 3 

 
Table 3 presents the confusion matrices of the different 

models. The confusion matrix is presented as n*n table where 
n is the number of cases that are binary in this scenario (true 
and false). Since this is a case of binary classification, reading 
clockwise from row 1 column 1, the categories are: 1) true 
positive (TP) - the model predicts the positive class correctly; 
2) true negative (TN) - the model predicts the negative class 
correctly; 3) false positive (FP) - the model mistakes the 
negative class as a positive one; and 4) false negative (FN) - the 
model predicts the negative class incorrectly as false. The sum 
of the matrix represents the total number of predictions carried 
out by the machine learning model. The number of predicted 
cases in this case is 36 given that there are four complete 
production runs dedicated solely for testing the prediction 
model (test data set) that were each split in eight labeled time 
blocks. For instance, looking at model 5, we can observe 35 
correct predictions regarding the heat treatment fingerprint (32 
‘no heat treatment’ & three ‘heat treatment’ blocks) and one 
instance where a heat treatment block was incorrectly predicted 
to be a heat treatment block. 

Table 4. Accuracy of all models. 

Model No. 1 2 3 4 5 

Accuracy 1.0 1.0 0.97 0.97 0.97 

 
The confusion matrix can be summarized in an overall 

accuracy for each of the models. Table 4 shows that all cases 
(process prediction and detections of a different process) were 
correctly detected by model 1 & 2 resulting in a perfect 
accuracy of 100 %, while Models 3 - 5 reach an accuracy of 
97 % in this case. 

4.6. Limitations 

This research is an explorative study to show the potential 
value-add of expanding the active use of smart-connected 
products form the usage phase (MOL) to the beginning of life 
(BOL) by correctly identifying a manufacturing process in an 
SMS production run solely based on a smart product’s 
integrated sensor data. Despite the prototypical state, a few 
limitations of the study exist that need to be mentioned. Firstly, 
in this study, the production runs were manually split in blocks 
that were manually labeled. However, to provide real value in 
an industrial production process continuous monitoring and 
analytics are more desirable. This is an area where further 
research is necessary. Secondly, the data set is rather 
unbalanced (which is a common problem of manufacturing 
data). This can cause issues with some machine learning 
algorithms. Thirdly, we focused on only one process out of a 

total of eight - heat treatment - for the prototypical study. We 
chose the process due to the fact that it is rather unique and thus 
most likely to be correctly classified as a proof of concept. 
However, in a real production environment, in order to provide 
true value, all processes need to be correctly predictable 
rendering this problem to be not only a multi-class problem but 
also a problem requiring the introduction of additional clusters 
that are more noisy and less well defined. Fourthly, for the 
study we used identical smart products, sensors, SMS, and 
manufacturing programs. Thinking ahead, the challenge will be 
to correctly identify a process when it is manufacturing a 
variety of products (with different parameter settings etc.). 

5. Conclusion 

The objective of this exploratory study was to investigate 
the potential of smart-connected products to add value during 
the manufacturing and assembly process. We postulated that 
the capability of a smart-connected product to create their own 
manufacturing history and production plan is valuable for a 
variety of reasons, including improved product quality, 
optimized scheduling, counterfeit resistance, energy 
optimization, and reduction of scrap. Furthermore, smart 
products with their integrated sensor systems augment the data 
picture with measurements that are otherwise not obtainable 
using common external sensors. For example, detailed internal 
temperatures and temperature curves during heat treatment. 

To investigate the technical feasibility of a smart-connected 
product to identify the current manufacturing processes, we 
equipped a product with a sensor system and collected data on 
an eight-stage SMS and subsequently analyzed the data using 
an ANN algorithm with the goal of correctly identifying a 
selected manufacturing process (heat treatment) among the 
whole production run (eight manufacturing processes).  

The results show that a smart-connected product can be 
employed to successfully identify process patterns (‘process 
fingerprint’) using machine learning. We were able to predict 
the correct class with an accuracy of 100% in this prototypical 
setup and distinguish production run blocks (‘heat treatment’ / 
‘no heat treatment’). The result is not surprising as we 
cautiously chose the process with the highest probability for 
successful detection. The objective of this study was not to 
develop an advanced algorithm for prediction, but a proof of 
concept that smart-connected products can provide useful and 
value-added information in an SMS environment during the 
beginning of life. Future applications are manifold, for example 
optimizing the exposure time in a heat treatment process based 
on the product itself in contrast to proxy data from outside the 
part. The geometry, material, and other conditions can impact 
the ideal exposure time. Too long can lead to material 
degradation and energy waste, while a too short exposure will 
impact the material properties of the final product. 

5.1. Outlook and future research 

The limitations already outline several areas worthy of 
investigation. Furthermore, there are several avenues that are 
interesting to explore further - both on the technical as well as 
the economic side. On the economic side, the question of what 
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the break-even point of introducing a smart-connected product 
during the BOL. On the technical side, there are many open 
questions including the provision of connectivity and energy to 
the sensor system while the product is still being manufactured. 
Furthermore, the improvements to the sensor system itself can 
be investigated.  

An exciting option emerging is the field of 3D printed 
electronics. The integration of electronics within 
geometrically-complex, additively-manufactured structures 
has been demonstrated since the 1990s [13–17]. 3D printing 
can be interrupted and components can be robotically placed 
and electrical interconnect can be realized with manifold 
methods including micro-dispensing, ink jetting and aerosol 
jetting of conductive inks [18–20] as well as by structural 
embedding of solid high-performance conductors directly into 
substrates [21,22]. One benefit of an integrated, in-envelope 
suite of manufacturing processes is access to the structure at 
intermediate layers during fabrication. This access can enable 
the next generation of products capable of providing sensing 
data from within the structure both during and after 
manufacturing. The in-product sensors can inform the 
manufacturing process of predictive maintenance and even 
support the qualification of smart-connected structures based 
on in situ validation/qualification. Figure 6 depicts recent 
progress made in printable electronics. 

 

  

Fig. 6. Examples of previous 3D printed electronics with photocurable resins 
and conductive inks. 
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