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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Laser polishing (LP) is an advanced manufacturing process for improving surface quality via laser remelting of the surface topography of the 
material. In this preliminary study, a high-speed thermographic imager was coaxially installed on a LP system and was used to capture the thermo-
dynamics of the laser-material interactions under various process conditions. A visualization algorithm was developed and used to monitor the 
LP process dynamics along the laser path trajectory. This approach enables the analysis of LP process stability by means of reliable informational 
features of the individual images. Further, unsupervised machine learning analysis (Bayesian classifier) was used to reduce the number of 
informational variables/statistical characteristics of the images without compromising process predictability. These two techniques were applied 
for both monitoring and classification of the LP line experiments performed with a laser power of {5, 20, 35} W and a scanning speed of 75 mm/s. 
The preliminary results demonstrate the high potential of machine learning analysis towards the optimization and control of the LP process. 
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1. Introduction 

Laser polishing (LP) is an emerging manufacturing process 
that entails the use of laser radiation to melt the surface of 
functional parts such as tooling inserts [1-4]. During LP, 
workpiece material melts into a pool and solidifies rapidly into 
a smooth surface due to complex and overlapping 
thermodynamic phenomena induced by a constantly travelling 
laser beam. The quality of the post-LP surface critically 
depends on several process parameters, such as: laser power, 
travelling speed, focal distance, and track step over. The 
synergetic effect of these process parameters contributes to a 
thermodynamic equilibrium between solid, molten and 
resolidified material. Along these lines, several research studies 
have already emphasized the importance of the on-line 
monitoring of the actual temperature in the laser-material 
interaction zone. This information is needed for the 
identification of current process conditions and for further 

control and optimization of the LP performance with respect to 
(wrt) desired and/or best achievable surface quality. 
Pyrometers have been commonly used for LP process 
monitoring and control [5, 6]. In this application, process 
temperature is continuously measured (possibly with a 
sampling frequency of 600 Hz) in the middle of the focal line 
and proportional-integral-derivative close-loop control is 
applied in real-time to laser power in order to maintain a 
constant surface temperature. Prior studies have shown that LP 
process temperature can be controlled within ±15…20 K. 

Industry 4.0-based next generation manufacturing integrates 
cyber-physical systems, artificial intelligence, big data 
analysis, and modern manufacturing technologies with 
advanced laser processing [7]. Among the numerous 
technological examples developed and implemented so far, 
high-speed midwave-infrared (MWIR) camera has been used 
to monitor and evaluate the laser welding process [8]. For this 
purpose, a MWIR camera was mounted coaxially with laser 
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monitoring of the actual temperature in the laser-material 
interaction zone. This information is needed for the 
identification of current process conditions and for further 

control and optimization of the LP performance with respect to 
(wrt) desired and/or best achievable surface quality. 
Pyrometers have been commonly used for LP process 
monitoring and control [5, 6]. In this application, process 
temperature is continuously measured (possibly with a 
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cyber-physical systems, artificial intelligence, big data 
analysis, and modern manufacturing technologies with 
advanced laser processing [7]. Among the numerous 
technological examples developed and implemented so far, 
high-speed midwave-infrared (MWIR) camera has been used 
to monitor and evaluate the laser welding process [8]. For this 
purpose, a MWIR camera was mounted coaxially with laser 
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welding optics and it was used to record thermographic images 
of the process with a sampling frequency of 500 Hz and within 
a field of view of 9x9 mm2. From there, principal component 
analysis under a concept of unsupervised machine learning and 
image geometry-based parameters were used to extract the 
image features characterized by a high informational/data 
analysis value. In this context, it was found that the analyzed 
geometrical features were highly sensitive to the changes of the 
experimental conditions and thereby allowed detection and 
separation of the investigated welding defects with 99.9% 
accuracy. This welding-focused approach seems suitable to the 
LP process, especially since the thermodynamic performance 
of laser-material interactions as well as their thermographic 
imaging exhibit significant similarities. 

The present feasibility study is focused on the 
thermographic imaging, visualization, analysis, and machine 
learning-based classification (e.g., Bayesian) of the LP process. 
Several LP experiments were performed under various process 
parameters while thermographic images of the laser-material 
interaction zone were recorded at a high-speed (> 3 kHz). The 
captured images were then restructured into a spatial 2D 
process visualization. Furthermore, several image geometry-
based features were extracted to evaluate the LP process 
performance wrt the laser power. Building upon the acquired 
knowledge, a Bayesian classifier [9] was used to demonstrate 
the ability to perform unsupervised LP process monitoring, 
optimization, and control. 

2. LP experimental set-up 

Fig. 1 shows a picture of the LP experimental setup 
consisting of laser, laser beam delivery optics, laser scanner, 
and 3-axis motion system. The continuous wave fiber laser 
(YLR-100-SM-CS, from IPG Photonics Inc., USA), having a 
maximum power of 100 W, was operated with a wavelength of 
1070 nm. Laser beam was collimated and delivered to a 2D 
galvanometric laser scanner (exelliSCAN 14, from SCANLAB 
GmbH, Germany) equipped with a 254 mm scan f-theta lens. 
A camera adapter was placed between the collimator and laser 
scanner where interchangeable optical and thermographic 
cameras were mounted. The optical camera was used for visual 
alignment and precise setting of the laser beam and workpiece. 
Thermographic imaging was performed using a MWIR camera 
(TACHYON 16K, New Infrared Technologies, S.L., Spain) 
capable of acquiring 128x128 pixels images with a maximum 
of 2000 fps within a wavelength ranging between 1 and 5 µm. 

The 55x55x5 mm3 workpiece made of H13 tooling steel was 
mechanically mounted on a System 3R (from Mikron AGIE 
Charmilles AG, Switzerland) rapid-clamping feature attached 
to a Y-axis linear stage. This clamping arrangement enables an 
advanced ability to position/reposition the workpiece with high 
repeatability (±1 µm) required for pre- and post-LP surface 
topography acquisition. In addition, the pre-ground workpiece 
top surface was aligned along the X- and Y-axes within a 
±2 µm deviation by means of a touch probe caliper. To create 
an oxygen-free processing zone, a constant flow of Ar was 
directed to the laser-material interaction zone. The 3-axis 
motion system was made of two linear drives operating along 
X- and Y-axes and a ball-screw driven Z-axis. 

 

Fig. 1. Experimental set-up. 

The laser scanner and optics were mounted on X- and Z-axes 
and attached to the granite bridge. The workpiece was located 
on Y-axis and was affixed to a granite table for enhanced 
thermal stability. All electronic components (motion 
controllers, laser scanner and laser control unit) were connected 
to the main motion control unit (Aerotech, Inc., USA). 

3. Thermographic image analysis methodology 

The thermographic image analysis was divided in three 
processing steps. At first, LP experiments were performed in 
such a way that three sets of three 5 mm long lines were 
polished with scanning speeds of {25, 50, 75} mm/s and laser 
powers of {5, 20, 35} W, however only experiments with a 
scanning speed of 75 mm/s were analyzed in this preliminary 
study. The LP process was recorded with the Tachyon MWIR 
camera/software for each set of LP lines. Image acquisition was 
performed with a sampling rate of over 3000 fps and a frame 
size of 64x64 pixels. The acquired data was saved into a file 
with a particular structure of common parameters (i.e., 
temperature range) and comprised of image frames and 
corresponded time stamps. 

The second phase of thermographic image analysis was 
allotted to the determination of the informational features to be 
used for further process analysis and classification. In the 
context of the present feasibility study, only areal image 
projection (e.g., representing an area of the laser-material 
interactions including melt pool and heat affected zone) was 
used. By contrast, spatial and amplitude parameters of the 
thermographic images were intentionally left out for future 
analysis. In a more general sense, this step represents nothing 
but a dimension reduction from a 64x64 data matrix associated 
with each image to a vector characterized by few informational 
features. This transformation is important for the augmentation 
of the computational efficiency as well as for the subsequent 
on-line monitoring, optimization, and control of the LP process. 

Fig. 2 depicts definitions of the temperature contour-based 
informational features for each image frame. Mathematically, 
the temperature contour was defined as a 64x64 binary matrix 
for each of the N thermographic images (after the application 
of a certain temperature threshold Ttr) as 
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Fig. 2. Definition of the temperature contour-based informational features. 

It was evident that each temperature contour h(i,j) has an 
elliptical shape and therefore three most obvious informational 
features can be used, such as 
• area of laser-material interaction zone: 
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,( , ),  1 64,   ,  1 Nk k k max
i

s h i j i j of T k= = … = …∑ ,          (3) 
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During the third phase, a MATLAB-based function was 
developed to extract all informational features defined in 
Eqs. 2-4 for each LP experiment. To achieve this, these features 
were rearranged from a frame-driven index (k = 1…N) into a 
discrete function related to the travel distance of 5 mm for each 
LP line. This was accomplished by using a timestamp and a 
constant scanning speed, a method that enabled the ability to 
synchronize experimental data in space (i.e., along the LP line) 
instead of the time domain. Moreover, the data associated with 
the first and last 0.5 mm of each LP line was removed in an 
attempt to eliminate any transient behavior as well as to ensure 
reliable analysis of the steady LP process only. The resulting 
A(x), s(x), w(x) data were further used for the LP process 
visualization, analysis, and Bayesian classification. 

4. Visualization of LP process performance 

In order to visualize the LP process, the transversal 
temperature profile hk(i,•) extracted from each k-frame at Tmax 
(and all profiles) was generated as a function of the travel 
distance. Fig. 3 illustrates an image-based LP process 
visualization characterized by {5, 20, 35} W laser power and 
75 mm/s travel speed. At 5 W laser power, the contour of the 
molten pool/heat affected zone envelope appeared jagged with 
a highly non-uniform boundary. This is most likely a 
consequence of the shallow surface melting phenomenon that 
is inevitably present at low laser power levels. 

 

Fig. 3. LP process visualization with {5, 20, 35} W laser power and 75 mm/s. 

By contrast, LP process appears to be more stable at 20 W 
(more uniform and consistent boundaries of the temperature 
envelope). Finally, significant variations in the thermodynamic 
equilibrium of the LP process are present at 35 W and they 
appear to significantly influence the formation of instabilities 
in the polished surface topography. Two additional 
observations can be made in this high power case: i) the 
temperature envelope is characterized by low frequency 
variations of its boundaries, and ii) occasional flares in the 
temperature and contour area are present. This latter aspect may 
represent an indicator of the LP quality and performance 
related to the initial surface topography, process parameters, 
physical-mechanical properties of the workpiece material as 
well as polished surface topography. 

5. Analysis of LP using defined informational features 

Fig. 4 shows the functional variation of the informational 
features defined in Section 3 (i.e., A(x), s(x), and w(x)) that are 
characteristic to the laser-material interaction zone associated 
with the three LP lines made with {5, 20, 35} W laser power 
and 75 mm/s travel speed. Clearly, the geometric properties 
introduced in Section 3 are strongly correlated with the applied 
laser power. All three analyzed informational features exhibit 
a similar behavior wrt laser power: a) the actual values become 
higher when laser power increases, b) value-power functional 
is nonlinear: the increase from 20 W to 35 W is significantly 
larger that from 5 W to 20 W, c) visually/qualitatively, their 
spatial signature along LP line length correlates with process 
visualization (Fig. 3), and d) these features are interdependent 
as their signatures appear to be very similar. 

6. Bayesian classification of the applied laser power 

In order to determine the applicability of the three analyzed 
informational features (A(x), s(x), w(x)) for machine learning-
based monitoring, optimization and control of the LP process, 
a classic pattern recognition analysis (aka Bayesian classifier) 
[9] was applied. In broad strokes, pattern recognition analysis 
is based on the linear discriminant theory and enables the 
selection of the best combination of informational features 
within the n-dimensional informational space. This is meant to 
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welding optics and it was used to record thermographic images 
of the process with a sampling frequency of 500 Hz and within 
a field of view of 9x9 mm2. From there, principal component 
analysis under a concept of unsupervised machine learning and 
image geometry-based parameters were used to extract the 
image features characterized by a high informational/data 
analysis value. In this context, it was found that the analyzed 
geometrical features were highly sensitive to the changes of the 
experimental conditions and thereby allowed detection and 
separation of the investigated welding defects with 99.9% 
accuracy. This welding-focused approach seems suitable to the 
LP process, especially since the thermodynamic performance 
of laser-material interactions as well as their thermographic 
imaging exhibit significant similarities. 

The present feasibility study is focused on the 
thermographic imaging, visualization, analysis, and machine 
learning-based classification (e.g., Bayesian) of the LP process. 
Several LP experiments were performed under various process 
parameters while thermographic images of the laser-material 
interaction zone were recorded at a high-speed (> 3 kHz). The 
captured images were then restructured into a spatial 2D 
process visualization. Furthermore, several image geometry-
based features were extracted to evaluate the LP process 
performance wrt the laser power. Building upon the acquired 
knowledge, a Bayesian classifier [9] was used to demonstrate 
the ability to perform unsupervised LP process monitoring, 
optimization, and control. 

2. LP experimental set-up 

Fig. 1 shows a picture of the LP experimental setup 
consisting of laser, laser beam delivery optics, laser scanner, 
and 3-axis motion system. The continuous wave fiber laser 
(YLR-100-SM-CS, from IPG Photonics Inc., USA), having a 
maximum power of 100 W, was operated with a wavelength of 
1070 nm. Laser beam was collimated and delivered to a 2D 
galvanometric laser scanner (exelliSCAN 14, from SCANLAB 
GmbH, Germany) equipped with a 254 mm scan f-theta lens. 
A camera adapter was placed between the collimator and laser 
scanner where interchangeable optical and thermographic 
cameras were mounted. The optical camera was used for visual 
alignment and precise setting of the laser beam and workpiece. 
Thermographic imaging was performed using a MWIR camera 
(TACHYON 16K, New Infrared Technologies, S.L., Spain) 
capable of acquiring 128x128 pixels images with a maximum 
of 2000 fps within a wavelength ranging between 1 and 5 µm. 

The 55x55x5 mm3 workpiece made of H13 tooling steel was 
mechanically mounted on a System 3R (from Mikron AGIE 
Charmilles AG, Switzerland) rapid-clamping feature attached 
to a Y-axis linear stage. This clamping arrangement enables an 
advanced ability to position/reposition the workpiece with high 
repeatability (±1 µm) required for pre- and post-LP surface 
topography acquisition. In addition, the pre-ground workpiece 
top surface was aligned along the X- and Y-axes within a 
±2 µm deviation by means of a touch probe caliper. To create 
an oxygen-free processing zone, a constant flow of Ar was 
directed to the laser-material interaction zone. The 3-axis 
motion system was made of two linear drives operating along 
X- and Y-axes and a ball-screw driven Z-axis. 
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• width of the laser-material interaction zone calculated from 
transversal temperature profile: 

,( , ),  1 64,   ,  1 Nk k k max
j

w h i j j i of T k= = … = …∑ .          (4) 

During the third phase, a MATLAB-based function was 
developed to extract all informational features defined in 
Eqs. 2-4 for each LP experiment. To achieve this, these features 
were rearranged from a frame-driven index (k = 1…N) into a 
discrete function related to the travel distance of 5 mm for each 
LP line. This was accomplished by using a timestamp and a 
constant scanning speed, a method that enabled the ability to 
synchronize experimental data in space (i.e., along the LP line) 
instead of the time domain. Moreover, the data associated with 
the first and last 0.5 mm of each LP line was removed in an 
attempt to eliminate any transient behavior as well as to ensure 
reliable analysis of the steady LP process only. The resulting 
A(x), s(x), w(x) data were further used for the LP process 
visualization, analysis, and Bayesian classification. 

4. Visualization of LP process performance 

In order to visualize the LP process, the transversal 
temperature profile hk(i,•) extracted from each k-frame at Tmax 
(and all profiles) was generated as a function of the travel 
distance. Fig. 3 illustrates an image-based LP process 
visualization characterized by {5, 20, 35} W laser power and 
75 mm/s travel speed. At 5 W laser power, the contour of the 
molten pool/heat affected zone envelope appeared jagged with 
a highly non-uniform boundary. This is most likely a 
consequence of the shallow surface melting phenomenon that 
is inevitably present at low laser power levels. 

 

Fig. 3. LP process visualization with {5, 20, 35} W laser power and 75 mm/s. 

By contrast, LP process appears to be more stable at 20 W 
(more uniform and consistent boundaries of the temperature 
envelope). Finally, significant variations in the thermodynamic 
equilibrium of the LP process are present at 35 W and they 
appear to significantly influence the formation of instabilities 
in the polished surface topography. Two additional 
observations can be made in this high power case: i) the 
temperature envelope is characterized by low frequency 
variations of its boundaries, and ii) occasional flares in the 
temperature and contour area are present. This latter aspect may 
represent an indicator of the LP quality and performance 
related to the initial surface topography, process parameters, 
physical-mechanical properties of the workpiece material as 
well as polished surface topography. 

5. Analysis of LP using defined informational features 

Fig. 4 shows the functional variation of the informational 
features defined in Section 3 (i.e., A(x), s(x), and w(x)) that are 
characteristic to the laser-material interaction zone associated 
with the three LP lines made with {5, 20, 35} W laser power 
and 75 mm/s travel speed. Clearly, the geometric properties 
introduced in Section 3 are strongly correlated with the applied 
laser power. All three analyzed informational features exhibit 
a similar behavior wrt laser power: a) the actual values become 
higher when laser power increases, b) value-power functional 
is nonlinear: the increase from 20 W to 35 W is significantly 
larger that from 5 W to 20 W, c) visually/qualitatively, their 
spatial signature along LP line length correlates with process 
visualization (Fig. 3), and d) these features are interdependent 
as their signatures appear to be very similar. 

6. Bayesian classification of the applied laser power 

In order to determine the applicability of the three analyzed 
informational features (A(x), s(x), w(x)) for machine learning-
based monitoring, optimization and control of the LP process, 
a classic pattern recognition analysis (aka Bayesian classifier) 
[9] was applied. In broad strokes, pattern recognition analysis 
is based on the linear discriminant theory and enables the 
selection of the best combination of informational features 
within the n-dimensional informational space. This is meant to 
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Fig. 4. Functional dependence of informational features wrt the laser power. 

provide mathematical rules as linear decision functions to be 
embedded into control hardware for real-time monitoring, 
diagnostics and control of the LP process. Three Bayesian 
classifiers were computed for the informational spaces {A(x), 
s(x)}, {A(x), w(x)}, and {s(x), w(x)}, with a quality of 
classification of 79.3%, 84.9%, and 78.2%, respectively. The 
classification results are presented in Fig. 5. 

7. Summary and conclusions 

This study demonstrates both the feasibility and 
applicability of high-speed thermographic imaging for 
visualization, analysis, and machine learning-based Bayesian 
classification of the LP process. In this context, several 
conclusions became apparent: 

• The three proposed informational features reliably 
correlate with laser power variations and they can be 
used in the Bayesian classification for on-line 
monitoring, optimization, and control of the LP process. 

• Pattern recognition analysis grants the ability to choose 
the most adequate informational features 

• This study sets the informational foundation towards the 
future integration of the LP process into the Industry 4.0 
framework 
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