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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract  

Die sinking EDM processes are widely employed in advanced aerospace applications where part quality and machining time are main concerns. 
The aim of this research work is to develop an advanced EDM process monitoring procedure in the perspective of Zero Defect Manufacturing 
based on the identification of correlations between die sinking EDM process parameters and improper process conditions that could increase 
machining time and cause unacceptable part quality. To this purpose, the Real Time Acquisition (RTAQ) module installed on a AgieCharmilles 
FORM P 600 sinker spark erosion machine tool is utilized to monitor and acquire online data related to 8 selected process parameters with 32 
ms sampling interval. An anomaly detection methodology is then applied to timely identify improper process conditions based on relevant 
features extracted from the EDM process parameters. 
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1. Introduction 

In the last few years, the employment of electrical 
discharge machining (EDM) processes in the aerospace 
industry is increasing due to the large range of applications 
which includes very small holes, precise cutting of tough, hard 
and heat resistant metals, machining of cavities with complex 
geometry [1]. In particular, die-sinking EDM processes are 
largely utilised for the realization of slots characterised by 
high depth-to-width ratio on aeroengine components such as 
turbine blades made of difficult-to-machine materials like 
Nickel-based alloys [2,3].  

In these advanced aerospace applications, part quality and 
machining time are main concerns. The resulting white layer 
thickness, metallurgical properties, residual stress, fatigue 
behaviour, need to be controlled in order to satisfy the quality 
specifications for the final part, which can be very restrictive 

in some application fields. In many cases, very conservative 
EDM process parameters values must be employed, which 
makes the EDM process extremely inefficient. Machining 
duration can be negatively affected by several phenomena, 
such as the decrease of erosion speed which occurs due to the  
excessive deposit of debris at the bottom of narrow cavities or 
due to tool electrode wear, which also affects the geometry of 
the cavity [1]. Moreover, process modelling is particularly 
challenging due to the stochastic nature of the die sinking 
EDM process [1,4].  

In this framework, the development and implementation of 
advanced sensor monitoring procedures can be critical to the 
identification of correlations between die sinking EDM 
process parameters and improper process conditions 
responsible for increased machining time and unacceptable 
part quality. To this purpose, in this research work, an 
advanced die sinking EDM process monitoring technique 
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based on anomaly detection was developed [5–7].  
An experimental campaign of die sinking EDM was carried 

out on a AgieCharmilles sinker spark erosion machine tool, 
largely employed in the aerospace industry, with different 
process settings to simulate both standard and anomalous 
process conditions. The Real Time Acquisition (RTAQ) 
module installed on the machine tool was employed to 
monitor and acquire online data related to 8 selected process 
parameters with 32 ms sampling interval. An anomaly 
detection procedure was then developed using the features 
extracted through statistical analysis in the time domain, in 
order to classify the good machining conditions and identify 
the improper machining conditions. The final goal is to 
employ the advanced sensor monitoring procedure for 
monitoring the EDM process in the perspective of Zero Defect 
Manufacturing and enhance the productivity by lowering the 
machining time while fulfilling the restrictive quality 
requirements imposed on the workpiece surface integrity. 

2. Experimental campaign of die sinking EDM 

An experimental testing campaign was designed with the 
aim to reproduce anomalous conditions which could occur 
during machining of thin slots. First of all, the standard 
process was tested in order to collect data concerning the 
good process conditions. Afterwards, selected technological 
parameters were modified in order to force the degeneration 
of the die sinking EDM process so as to trigger the occurrence 
of improper machining conditions. 

2.1. Experimental setup 

The EDM experimental testing campaign was carried out 
on a AgieCharmilles FORM P 600 sinker spark erosion 
machine tool equipped with a Real Time Acquisition (RTAQ) 
module to acquire online data on selected process parameters. 

The workpiece was a 1.2343 steel plate (Fig. 1). A fine 
graphite tool electrode with dimensions L 35 mm × T 0.4 mm 
× D 25 mm was employed to realise cavities (slots) with a 
depth of 6 mm. In each test, 6 consecutive slots with a 
distance of 1.125 mm between centres were realised with the 
same tool electrode. After the machining of each slot, tool 
electrode dressing was performed in order to refresh the 
electrode erosion surface and remove the pyrolytic graphite 
deposits which grow on the corners of the electrode. The 
dressing operation was performed using a reverse polarity 
technology on a copper workpiece to achieve a 0.5 mm length 
reduction on the electrode (Fig. 2). 

2.2. Experimental testing campaign 

In order to develop the anomaly detection methodology, 6 
tests (each consisting of 6 consecutive slots) were carried out 
under standard conditions (“good conditions”). The aim is to 
collect data on the standard process to be used as a reference 
for training the system on the identification of anomalous 
process conditions. The most relevant technological 
parameters employed in the experimental tests under standard 
conditions are summarised in Table 1. 

 Afterwards, 5 different tests (each consisting of 6 
consecutive slots) were carried out under modified conditions 
(“anomalous conditions”) to gather data to be used for the 
validation of the anomaly detection procedure (Table 2). In 
particular, defects and improper process conditions were 
generated by varying the following technological parameters: 

 
• OFF Time (modified to 150 µs) 
• Machine Sensitivity (modified to +/-2, +/-3) 

 

 

Fig. 1. Steel workpiece and tool electrode setup for the EDM tests. 

 

Fig. 2. Copper workpiece setup for tool electrode dressing. 

Table 1. Technological parameters used in tests under standard conditions. 

Technological parameters Value 

Pulse Current [A] 24 

ON Time [µs] 60 

OFF Time [µs] 200 

Ignition Voltage [V] 220 

Machine Sensitivity 0 

Table 2. Tests carried out under standard and modified process conditions. 

Technological parameters No. of tests Total no. of slots 

Standard parameters 6 36 

OFF Time = 150 µs 1 6 

Machine Sensitivity = +2 1 6 

Machine Sensitivity = -2 1 6 

Machine Sensitivity = +3 1 6 

Machine Sensitivity = -3 1 6 
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2.3. RTAQ data acquisition 

During the experimental tests, the RTAQ module was 
employed for the acquisition of the following 8 parameters 
considered significant for monitoring the EDM process: 

• Erosion Front [mm]: the relative position of the lower 
surface of the electrode. 

• Pause Average LF [V]: voltage value in the pause. 
• Effective Sparks [Sparks/s]: total number of sparks per 

second, including short circuits. 
• Short [Sparks/s]: number of short circuits per second. 
• Arc [Sparks/s]: number of arcs per second. 
• Erosion Speed [um/min]: current speed of the electrode. 
• Spark Voltage [V]: average voltage value during the 

spark. 
• StDevEservo [%]: standard deviation of real adjustment 

value and target value of the servo-regulator. 

The signals related to the listed parameters were acquired 
form the RTAQ module with a sampling period of 32 ms. 
Each acquired signal contains the data of the entire machining 
test, i.e. of the 6 consecutive slots realised woth the same tool 
electrode (Fig. 3 a-h). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 3. Examples of signals acquired during an experimental test:  
(a) erosion front, (b) erosion speed, (c) effective sparks, (d) short, (e) arc,  

(f) pause average, (g) spark voltage, (h) StDevEservo. 
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3. RTAQ data processing and feature extraction 

In order to separate the 6 segments of each signal 
corresponding to the single slots, a signal segmentation 
procedure was developed [8]. The Erosion front signal (Fig. 
3a), as most representative signal of the EDM progression 
giving information on the position of the electrode, was used 
to identify the start and end points for signal segmentation. 

For each signal segment relative to a single slot (Fig. 4), 
the following statistical features were extracted: 

 
• Mean value 
• Variance 
• Skewness 
• Kurtosis 

 
After that, the results of each test were reported into a 

global graph (Fig. 5) in order to have a graphical summary of 
the features development and to perform a visual analysis of 
the anomalies. A total number of 28 features, 4 features for 
each of the 7 acquired signals, were extracted for each slot.  

4. Anomaly detection methodology 

The anomaly detection methodology applied in this 
research work consisted of two phases, see Fig. 6. The first 
phase was the system training, which was carried out by using 
as training dataset the statistical features extracted from the 
signals relative to the slots machined under standard 
conditions. Accordingly, the training set was made of 36 
values for each of the 28 statistical features. The second phase 
consists in the system testing: to this aim, the tests performed 
under anomalous conditions were used for building the testing 
dataset composed of 66 values for each of the 28 features. 

Testing was carried out by using the six sigma approach 
which is based on the calculation of the mean value µ and the 
standard deviation σ of the input data [9–11]. By setting the 
standard deviation range the percentage of the training set 
values included in the acceptability range is obtained. The 
range was set at 6 σ (Fig. 7) in order to include 99.999998% 
of training set good values: the values outside this range 
during the testing phase were classified as anomalies. 

5. Results and discussion 

By observing the behaviour of the extracted features, 
reported in the graphs, it is clear that significant variations 
occurred when the technological parameters were varied. 
Moreover, it can be observed that the features extracted under 
standard machining conditions are grouped in a limited range 
of values. This behaviour seems encouraging for the the 
anomaly detection procedure because it allows a clear 
distinction between good and anomalous values (e.g. Fig. 8). 

Despite the variability of the feature values shown in Fig. 
8, the related anomaly detection analysis registered no 
abnormal value, as all the feature values were classified 
within the six sigma range (the two red lines in Fig. 9). The 
importance and the effectiveness of this analysis is shown in 
Figs. 10-13, reporting two different cases of outliers.  

 

Fig. 4. Segmented erosion speed signal (single slot). 

 

Fig. 5. Overall average value of the erosion speed signal vs slot number. 

Fig. 6. Anomaly detection methodology scheme. 

 

Fig. 7. Standard deviation scheme for six sigma approach. 

 

 Fig. 8. Overall skewness value of the spark voltage signal vs slot number. 
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The spark voltage variance of the first slot of test 1 (Fig. 
10), which seemed to be an outlier as clearly separated from 
the main group of standard values, was actually correctly not 
identified as an anomaly as inside the six sigma range in the 
histogram (Fig. 11). Instead, in Figs. 12-13, the two point 
series of the effective sparks variance belonging to tests under 
improper process conditions were actually identified as 
anomalies as falling out of the histogram acceptability range. 

As regards the spark voltage kurtosis reported in Fig. 14, a 
critical issue concerns test 2: after the overall anomaly 
detection analysis it was not identified as anomalous (Fig. 15) 
but it represents an anomaly if considering just the slot n. 1. 
This circumstance suggests that also an in-depth analysis 
concerning the single slot EDM process has to be performed 
with the aim to detect the occurrence of anomalies during 
machining of the single cavity. Thus, the overall anomaly 
detection analysis, which concerns the analysis of the whole 
tests including 6 consecutive slots, will be integrated with an 
anomaly detection analysis at different depth ranges during 
machining of a single slot, by further segmenting the signal 
acquired during the EDM process (Fig. 16). 

6. Conclusions 

The anomaly detection analysis for the identification of 
improper EDM process conditions, trained using standard 
process data, provided excellent results after the testing phase 
carried out on the entire dataset including standard and 
anomalous conditions.  

 

 

Fig. 9. Anomaly detection analysis of Spark voltage skewness. 

 
Fig. 10. Overall variance value of the spark voltage signal vs slot number. 

 
Fig. 11. Anomaly detection analysis of Spark voltage variance. 

 

Fig. 12. Overall variance value of the effective sparks signal vs slot number. 

 

Fig. 13. Anomaly detection analysis of Effective spark variance. 

 

 

Fig. 14. Overall kurtosis value of the spark voltage signal vs slot number. 
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10), which seemed to be an outlier as clearly separated from 
the main group of standard values, was actually correctly not 
identified as an anomaly as inside the six sigma range in the 
histogram (Fig. 11). Instead, in Figs. 12-13, the two point 
series of the effective sparks variance belonging to tests under 
improper process conditions were actually identified as 
anomalies as falling out of the histogram acceptability range. 

As regards the spark voltage kurtosis reported in Fig. 14, a 
critical issue concerns test 2: after the overall anomaly 
detection analysis it was not identified as anomalous (Fig. 15) 
but it represents an anomaly if considering just the slot n. 1. 
This circumstance suggests that also an in-depth analysis 
concerning the single slot EDM process has to be performed 
with the aim to detect the occurrence of anomalies during 
machining of the single cavity. Thus, the overall anomaly 
detection analysis, which concerns the analysis of the whole 
tests including 6 consecutive slots, will be integrated with an 
anomaly detection analysis at different depth ranges during 
machining of a single slot, by further segmenting the signal 
acquired during the EDM process (Fig. 16). 

6. Conclusions 

The anomaly detection analysis for the identification of 
improper EDM process conditions, trained using standard 
process data, provided excellent results after the testing phase 
carried out on the entire dataset including standard and 
anomalous conditions.  

 

 

Fig. 9. Anomaly detection analysis of Spark voltage skewness. 

 
Fig. 10. Overall variance value of the spark voltage signal vs slot number. 

 
Fig. 11. Anomaly detection analysis of Spark voltage variance. 

 

Fig. 12. Overall variance value of the effective sparks signal vs slot number. 

 

Fig. 13. Anomaly detection analysis of Effective spark variance. 

 

 

Fig. 14. Overall kurtosis value of the spark voltage signal vs slot number. 
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Fig. 15. Anomaly detection analysis of Spark voltage kurtosis. 

 
(a) 

 
(b) 

 
(c) 

Fig. 16. Mean value of the Spark voltage resulting from single slot analysis: 
(a) 6 divisions, (b) 9 divisions, (c) 12 divisions.  

Further analysis will be performed considering the single 
slot EDM and analysing the process behaviour at different 
depth ranges with the aim to obtain additional information 
about the occurrence of anomalies during the EDM process. 
Moreover, the studied methodology will be applied to die-
sinking EDM of Inconel 718, largely employed in aeronautic 
industry for turbine blades production. The final objective is 
represented by the implementation of this methodology in the 
RTAQ software for online monitoring of process conditions. 

 

 

Fig. 17. Appearance of current, voltage and machine control board signals on 
the oscilloscope screen. 

Finally, as each RTAQ signal is based on the analysis of 
current and voltage signals acquired from the machine control 
board, an advanced study of raw current and voltage signals 
will be performed. A high frequency oscilloscope will be used 
for this study to investigate the primary conditions which lead 
to anomalies (Fig. 17). 
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