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Abstract

Die sinking EDM processes are widely employed in advanced aerospace applications where part quality and machining time are main concerns.
The aim of this research work is to develop an advanced EDM process monitoring procedure in the perspective of Zero Defect Manufacturing
based on the identification of correlations between die sinking EDM process parameters and improper process conditions that could increase
machining time and cause unacceptable part quality. To this purpose, the Real Time Acquisition (RTAQ) module installed on a AgieCharmilles
FORM P 600 sinker spark erosion machine tool is utilized to monitor and acquire online data related to 8 selected process parameters with 32
ms sampling interval. An anomaly detection methodology is then applied to timely identify improper process conditions based on relevant

features extracted from the EDM process parameters.
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1. Introduction

In the last few years, the employment of electrical
discharge machining (EDM) processes in the aerospace
industry is increasing due to the large range of applications
which includes very small holes, precise cutting of tough, hard
and heat resistant metals, machining of cavities with complex
geometry [1]. In particular, die-sinking EDM processes are
largely utilised for the realization of slots characterised by
high depth-to-width ratio on aeroengine components such as
turbine blades made of difficult-to-machine materials like
Nickel-based alloys [2,3].

In these advanced aerospace applications, part quality and
machining time are main concerns. The resulting white layer
thickness, metallurgical properties, residual stress, fatigue
behaviour, need to be controlled in order to satisfy the quality
specifications for the final part, which can be very restrictive
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in some application fields. In many cases, very conservative
EDM process parameters values must be employed, which
makes the EDM process extremely inefficient. Machining
duration can be negatively affected by several phenomena,
such as the decrease of erosion speed which occurs due to the
excessive deposit of debris at the bottom of narrow cavities or
due to tool electrode wear, which also affects the geometry of
the cavity [1]. Moreover, process modelling is particularly
challenging due to the stochastic nature of the die sinking
EDM process [1,4].

In this framework, the development and implementation of
advanced sensor monitoring procedures can be critical to the
identification of correlations between die sinking EDM
process parameters and improper process conditions
responsible for increased machining time and unacceptable
part quality. To this purpose, in this research work, an
advanced die sinking EDM process monitoring technique
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based on anomaly detection was developed [5-7].

An experimental campaign of die sinking EDM was carried
out on a AgieCharmilles sinker spark erosion machine tool,
largely employed in the aerospace industry, with different
process settings to simulate both standard and anomalous
process conditions. The Real Time Acquisition (RTAQ)
module installed on the machine tool was employed to
monitor and acquire online data related to 8 selected process
parameters with 32 ms sampling interval. An anomaly
detection procedure was then developed using the features
extracted through statistical analysis in the time domain, in
order to classify the good machining conditions and identify
the improper machining conditions. The final goal is to
employ the advanced sensor monitoring procedure for
monitoring the EDM process in the perspective of Zero Defect
Manufacturing and enhance the productivity by lowering the
machining time while fulfilling the restrictive quality
requirements imposed on the workpiece surface integrity.

2. Experimental campaign of die sinking EDM

An experimental testing campaign was designed with the
aim to reproduce anomalous conditions which could occur
during machining of thin slots. First of all, the standard
process was tested in order to collect data concerning the
good process conditions. Afterwards, selected technological
parameters were modified in order to force the degeneration
of the die sinking EDM process so as to trigger the occurrence
of improper machining conditions.

2.1. Experimental setup

The EDM experimental testing campaign was carried out
on a AgieCharmilles FORM P 600 sinker spark erosion
machine tool equipped with a Real Time Acquisition (RTAQ)
module to acquire online data on selected process parameters.

The workpiece was a 1.2343 steel plate (Fig. 1). A fine
graphite tool electrode with dimensions L 35 mm x T 0.4 mm
x D 25 mm was employed to realise cavities (slots) with a
depth of 6 mm. In each test, 6 consecutive slots with a
distance of 1.125 mm between centres were realised with the
same tool electrode. After the machining of each slot, tool
electrode dressing was performed in order to refresh the
electrode erosion surface and remove the pyrolytic graphite
deposits which grow on the corners of the electrode. The
dressing operation was performed using a reverse polarity
technology on a copper workpiece to achieve a 0.5 mm length
reduction on the electrode (Fig. 2).

2.2. Experimental testing campaign

In order to develop the anomaly detection methodology, 6
tests (each consisting of 6 consecutive slots) were carried out
under standard conditions (“good conditions”). The aim is to
collect data on the standard process to be used as a reference
for training the system on the identification of anomalous
process conditions. The most relevant technological
parameters employed in the experimental tests under standard
conditions are summarised in Table 1.

Afterwards, 5 different tests (each consisting of 6
consecutive slots) were carried out under modified conditions
(“anomalous conditions”) to gather data to be used for the
validation of the anomaly detection procedure (Table 2). In
particular, defects and improper process conditions were
generated by varying the following technological parameters:

* OFF Time (modified to 150 ps)
* Machine Sensitivity (modified to +/-2, +/-3)

Fig. 2. Copper workpiece setup for tool electrode dressing.

Table 1. Technological parameters used in tests under standard conditions.

Technological parameters Value
Pulse Current [A] 24
ON Time [ps] 60
OFF Time [ps] 200
Ignition Voltage [V] 220
Machine Sensitivity 0

Table 2. Tests carried out under standard and modified process conditions.

Technological parameters No. of tests Total no. of slots
Standard parameters 6 36

OFF Time = 150 ps 1 6

Machine Sensitivity = +2 1 6

Machine Sensitivity = -2 1 6

Machine Sensitivity = +3 1 6

Machine Sensitivity = -3 1 6
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2.3. RTAQ data acquisition

During the experimental tests, the RTAQ module was
employed for the acquisition of the following 8 parameters
considered significant for monitoring the EDM process:

Erosion Front [mm]: the relative position of the lower
surface of the electrode.

Pause Average LF [V]: voltage value in the pause.
Effective Sparks [Sparks/s]: total number of sparks per
second, including short circuits.

Short [Sparks/s]: number of short circuits per second.

Arc [Sparks/s]: number of arcs per second.

Erosion Speed [um/min]: current speed of the electrode.
Spark Voltage [V]: average voltage value during the
spark.

StDevEservo [%]: standard deviation of real adjustment
value and target value of the servo-regulator.

The signals related to the listed parameters were acquired
form the RTAQ module with a sampling period of 32 ms.
Each acquired signal contains the data of the entire machining

test,

i.e. of the 6 consecutive slots realised woth the same tool

electrode (Fig. 3 a-h).
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Fig. 3. Examples of signals acquired during an experimental test:
(a) erosion front, (b) erosion speed, (c) effective sparks, (d) short, (e) arc,

(f) pause average, (g) spark voltage, (h) StDevEservo.
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3. RTAQ data processing and feature extraction 600 — Erosioniopeed
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Fig. 4. Segmented erosion speed signal (single slot).
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The anomaly detection methodology applied in this Training .
research work consisted of two phases, see Fig. 6. The first dataset > Analys1§ of Anomaly
phase was the system training, which was carried out by using Anomalies detection
as training dataset the statistical features extracted from the Testing . system
signals relative to the slots machined under standard dataset

conditions. Accordingly, the training set was made of 36
values for each of the 28 statistical features. The second phase
consists in the system testing: to this aim, the tests performed
under anomalous conditions were used for building the testing
dataset composed of 66 values for each of the 28 features.
Testing was carried out by using the six sigma approach

Fig. 6. Anomaly detection methodology scheme.
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The spark voltage variance of the first slot of test 1 (Fig. i
10), which seemed to be an outlier as clearly separated from
the main group of standard values, was actually correctly not
identified as an anomaly as inside the six sigma range in the 8t
histogram (Fig. 11). Instead, in Figs. 12-13, the two point
series of the effective sparks variance belonging to tests under
improper process conditions were actually identified as 4r
anomalies as falling out of the histogram acceptability range.
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Fig. 16. Mean value of the Spark voltage resulting from single slot analysis:
(a) 6 divisions, (b) 9 divisions, (c) 12 divisions.

Further analysis will be performed considering the single
slot EDM and analysing the process behaviour at different
depth ranges with the aim to obtain additional information
about the occurrence of anomalies during the EDM process.
Moreover, the studied methodology will be applied to die-
sinking EDM of Inconel 718, largely employed in aeronautic
industry for turbine blades production. The final objective is
represented by the implementation of this methodology in the
RTAQ software for online monitoring of process conditions.

00mVola

Fig. 17. Appearance of current, voltage and machine control board signals on
the oscilloscope screen.

Finally, as each RTAQ signal is based on the analysis of
current and voltage signals acquired from the machine control
board, an advanced study of raw current and voltage signals
will be performed. A high frequency oscilloscope will be used
for this study to investigate the primary conditions which lead
to anomalies (Fig. 17).
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