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h i g h l i g h t s

• The contact process on chains with power-law distributed connections is investigated.
• The absorbing-state phase transition deviates from the directed percolation universality class.
• We find a crossover from the 1D directed percolation to mean-field-like exponents when the couplings become longer ranged.
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a b s t r a c t

In this workwe study the critical behavior of the absorbing state phase transition exhibited
by the contact process in a linear chain with power-law diluted long-range connections.
Eachpair of sites is connectedwith a probability P(r) that decayswith the distance between
the sites r as 1/rα . The model allows for a continuous tuning between a standard one-
dimensional chain with only nearest neighbor couplings (α → ∞) to a fully connected
network (α = 0). We develop a finite-size scaling analysis to obtain the critical point and a
set of dynamical and stationary critical exponents for distinct values of the decay exponent
α > 2 corresponding to finite average bond lengths and low average site connectivity.
Data for the order parameter collapse over a universal curve when plotted after a proper
rescaling of parameters. We show further that the critical exponents depend on α in the
regime of diverging bond-length fluctuations (α < 3).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Contact Process (CP), introduced by Harris a long time ago [1], was one of the first models to exhibit a non trivial
critical behavior even in one dimension. Originally proposed to describe epidemic spreading, it has been later used tomodel
a variety of competitive dynamical phenomena [2].
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The CP state is defined on a d-dimensional network, where each site is occupied by an active (infected) or an inactive
(healthy) individual. Furthermore, the CP dynamics is a stochastic process obeying a Markovian rule: in a time step, healthy
individuals may be infected with a probability p which depends both on the number of active as well as inactive neighbor-
ing individuals, while infected individuals may recover at constant probability λ, which is usually considered as a control
parameter.

This rule generates a dynamical competition between infection and healing processes, whose output is determined by
the value of the control parameter λ. It turns out that the fraction of infected individuals ρ (order parameter) vanishes
for large values of λ while, for small values of λ, the ratio ρ remains strictly positive. Therefore, for large values of λ the
epidemic is completely eliminated and the population reaches an absorbing healthy state. For small values of λ the system
evolves towards a statistically stationary dynamical epidemic configuration with a fluctuating fraction of active individuals.
The absorbing state will eventually be reached in systems with a finite size irrespective to the value of λ because random
fluctuations will occasionally drive the system towards the healthy vacuum state.

According to the above characteristics, the system then displays a continuous transition from an active state to an absorb-
ing state at a critical transition pointλc . Many previousworks have shown that the CPmodel belongs to the universality class
of directed percolation (DP) [2]. These studies are in agreement with the conjecture of Grassberger and Janssen [3,4] that
CP stays in the DP universality class since it only includes short-range interactions and does not have special attributes such
as additional symmetries or quenched disorder [5]. All systems that belong to the DP universality class have a continuous
phase transition to an absorbing state which is characterized by a strictly positive order parameter.

In recent years, many generalizations of the CP model have been proposed [6–12]. In particular, there has been an
increasing interest in model systems with long-range interactions whose critical behavior can depart from the usual DP
universality class [13–15]. The most straightforward proposal considered fat-tailed probabilities for the connections, which
typically can be Levy or power-law type [16]. Another class of contact processes whose universality class deviates from DP
includesmodelswith an explicit particle diffusionprocess [17,18]. In these systems, the particles canhave twodistinct states,
healthy or infected, and can independently diffuse. The total density of particles acts as the control parameterwith the active
state being statistically stable only above a critical concentration of particles. Even local diffusion is a relevant ingredient in
thesemodels and the critical properties of the absorbing state phase transition depends on the relative diffusivity of particles
in distinct states. Recently, a superdiffusive epidemic processmodelwas introducedwhose critical exponentswere shown to
depend on the decay exponent of a Levy-like jump distribution function, exhibiting a crossover from the diffusive epidemic
universality class to the mean-field universality class as the jump distribution becomes more long-ranged [19].

In this paper, we will advance along this research line, considering a Generalized Contact Process (GCP) model in one-
dimensionwith strictly power-lawdistributed connections and no particle diffusion [20–22].More precisely, the probability
of a link between the sites i and j, namely P(rij = |i− j|), decays as a power law (see Eq. (1) below). In this sense, the present
model differs from those considering the activation process to be governed by interactions with other active individuals,
even when they are located at long distances. It has been suggested that the contact process with Levy exchanges belongs
to the same universality class of the contact process in models with long-distance interactions [21]. In this class of models,
the infection probability decays as a power-law of the distance to the active individuals. Both variants of these models
(interaction with all active individuals or just with the nearest one) deviate from the usual DP universality class, exhibiting
continuously varying critical exponents [16,22,23].

The present model considers the contact process on a network on which all first-neighbors connections are included
together with additional diluted long-distance connections, whose fraction decays as a power-law of the distance. The
contact process on complex networks has also been a subject of current interest regarding its critical behavior. In scale-free
networks, it has been suggested that the transition should fall in a generalized DP mean-field universality class, although
numerical simulations have shown some deviations [24–28]. The contact process on a multi-scale network consisting of
linear chains connected by a scale-free one also was shown to belong to a new universality class [29]. More recently,
the contact process on chains with quasi-periodic connections has been investigated, and a new set of critical exponents
were unveiled with a dependence on the underlying inflation rule [30]. Here, the exponent α governing the decay of the
connection probability allows us a continuous variation from the one-dimensional contact process model with just first
neighbors couplings (α → ∞), to the mean-field regime consisting in the fully connected network (α = 0). Indeed, as we
will see later, the parameter α shapes the nature of the interaction, and only for sufficiently large values of α (short-range
contacts favored) the model falls in the standard DP universality class.

This paper is organized as follows: in Section 2 we describe our short/long range GCP model including the numerical
techniques used. Section 3 deals with our results concerning the critical points, emphasizing their main features. The
summary and conclusions of this paper are presented in Section 4.

2. Model and numerical methods

We define our GCP model taking into account a linear chain of length L with periodic boundary conditions. Two sites i
and j of the chain are connected with a probability P(rij), independent of other pairwise connections, where rij denotes the
smallest distance between sites along the closed chain. This probability is assumed to obey a power-law decay, i.e.

P(rij) = 1/rα
ij (1)
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where rij is the distance between the sites i and j, and α is the exponent that governs the effective range of the couplings.We
remark that, according to this probability, the first neighbor sites are always linked. Furthermore the number of links to a
given site, for large L, is in average 2


∞

r=1 r
−α

= 2 ζ (α) (ζ is the Riemann function). Observe also that the average number
of connected sites increases for decreasing values of α. In the following, we will develop simulations using several values of
α ≥ 2. The average distance of connected sites is ζ (α − 1)/ζ (α). The Riemann function ζ (α) diverges when α → 1, and
therefore, when α = 2 the average distance of the connected sites limα→2 ζ (α − 1)/ζ (α) is infinite. In this limiting value,
the average number of links per site is 2 ζ (2) = π2/3. This means that the most connected case has, in average, an extra
link for any site.

The resulting connected lattice is quenched and it is never updated during the dynamics. It can be repeated from the
beginning many times with a different realization of the connecting lattice, whose different outputs can be averaged in
order to eliminate fluctuations.

The state of the system is defined by the string σ1, σ2, . . . , σL where the dichotomous variable σi describes the state of
the individual located at the site i, i.e., σi = 1 indicates an infected individual (active), while σi = 0 a healthy one (inactive).
Then, the dynamics updates the state of the system according to the following rules:

(i) We always start with every individual being infected (the fraction of active sites is ρ = 1).
(ii) A site i is randomly selected and the status of the individual is checked. Then, if σi = 0, the individual will be infected

with a probability pi = si/ni, where ni and si are, respectively, the number of sites and the number of active sites linked
to i. Otherwise, if σi = 1, the individual recovers with probability λ.

(iii) We re-determine the fraction of active individuals ρ as ρ = L−1 L
i=1 σi. In order to avoid capture by the absorbing

state due to fluctuations, whenever ρ = 0 we escape from the trap by infecting a randomly chosen individual. Previous
works have shown that this procedure provides an accurate inference of the critical exponents, specially those related
to the critical relaxation dynamics when starting from the fully active state because the power-law relaxation process
takes place at times much shorter than the typical trapping time [31–33].

(iv) Steps (ii) and (iii) are repeated a number of times enough to reach relaxation.
(v) The whole process is started again with a different realization of the lattice connections.

In these simulations we considered systems of sizes L = 100, 200, 400, 800, and 10000. The smaller sizes (from
L = 100 to L = 800) have been used for finite scaling analysis (systems evolve for 104 Monte Carlo steps and 5 × 103

independent realizations independently on the size) and data collapse. The larger size L = 10000 has been considered for the
determination of the exponents which characterize the time relaxation near the critical point. The number of independent
realizations for L = 10000 (distinct quenched connected networks) was 105 for each value of α.

3. Numerical results

Fig. 1(a) shows the behavior of the order parameter ρ as a function of the control parameter λ, for different values of α.
We remind that the phase transition to the absorbing state is described, close to criticality, by the relation

⟨ρ⟩ ∼ (λc − λ)β , (2)

where β is the exponent that characterizes the transition, and λc is the critical point which separates the active and inactive
phases. Fig. 1(b) shows the dependence of the critical value λc with α. From there we observe that, for increasing values
of α, the critical point λc converges to the well known critical value 0.30326(1) of CP in chains with only first neighbor
couplings [2].

We performed a preliminary estimate of the values λc by computing the moment ratiom defined as (3)

m =
⟨ρ2

⟩

⟨ρ⟩2
, (3)

which is known to be scale invariant at the absorbing state phase transition [34,35]. In Fig. 2, we plotted the moment
ratio m as a function of the control parameter λ, for several values of the network sizes, namely L = 100, 200, 400 and
800. In Fig. 2(a) we consider the decay exponent α = 2.0, while in Fig. 2(b) we consider α = 5.0. The different plots of
m, corresponding to different values of the lattice size L, intersect roughly at a common point (mc, λc) where the phase
transition occurs. Thus, the intersections in Fig. 2(a) and (b) give us rough estimates of λc . This procedure was used for the
full set of α values considered in this work.

In order to obtain refined estimates ofλc and also to calculate the exponent ratioβ/zν⊥, we considered the time evolution
of the average density ρ of active individuals at the critical point λ = λc , which must satisfy the scaling relation

⟨ρ(t)⟩ ∼ t−β/zν⊥ . (4)

Here we have considered a system of size L = 10000 and we refined the values of λc previously obtained from the scale
invariance of the moment ratio by looking for the value of λ that resulted in a power-law decay of the order parameter
density over more than three decades. The linear behavior in the log–log scale of Fig. 3 confirms the accuracy of the λc
values. The average was performed over 105 independent realizations of the GCP for α = 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0.
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a b

Fig. 1. (Color online) (a) Order parameter ⟨ρ⟩ as a function of the control parameter λ for α = 3.0 (circles) and 5.0 (squares). Here we have considered
L = 800 for both values of α. Observe that smaller values of α favor infection; (b) Plot of the critical values of the control parameter λc versus the decay
exponent α. The points correspond to the intersections of the moment ratio m versus λ as shown in the next figure. When α increases, λc approaches to
the standard value of the CP transition in a linear chain with only first-neighbors couplings.

Fig. 2. (Color online) The moment ratio m as a function of the control parameter λ for different sizes L. All curves intersect in the critical point, giving an
estimation for λc ; (a) α = 2.0 → λc = 0.5071; (b) α = 5.0 → λc = 0.3065.

Fig. 3. (Color online) Order parameter ⟨ρ⟩ as a function of time t at the critical point. The best fit provides the critical exponents β/zν⊥ for the different
values of α. Data are from simulations on a chain with L = 10000 sites.
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Table 1
Estimates of the critical point and critical exponents for different values of α. The values in the last line, corresponding to the d = 1 usual DP universality
class, are those in Ref. [36].

α λc β/zν⊥ 1/z 1/zν⊥ β/ν⊥ 1/ν⊥

2.0 0.5071(1) 0.46(2) 1.20(5) 0.57(5) 0.38(2) 0.48(4)
2.5 0.3772(1) 0.21(1) 0.79(3) 0.40(4) 0.27(2) 0.50(5)
3.0 0.3342(1) 0.17(1) 0.70(3) 0.48(3) 0.26(2) 0.68(1)
3.5 0.3189(1) 0.17(1) 0.68(3) 0.51(3) 0.25(1) 0.75(3)
4.0 0.3120(1) 0.16(1) 0.67(3) 0.54(3) 0.25(1) 0.81(1)
4.5 0.3085(1) 0.16(1) 0.66(3) 0.57(3) 0.25(1) 0.86(4)
5.0 0.3065(1) 0.16(1) 0.65(3) 0.57(2) 0.25(1) 0.86(2)

DP – 0.159464(6) 0.632613(4) 0.576752(2) 0.25207(1) 0.911698(3)

Fig. 4. (Color online) Log–log plot of the moment ratio U versus time t at the critical point for a system of size L = 10000. The best fit gives the critical
exponent 1/z for the different values of α.

The exponent ratio β/zν⊥ is estimated from the best linear fit of data when plotted in a log–log scale (see estimated values
in Table 1). We remark that the exponent ratio for α ≥ 3 is consistent to the one expected for the directed percolation
universality class in d = 1 (β/zν⊥ = 0.159464(6) [36]).

A second dynamical exponent was computed by considering the time evolution of the moment ratio U(t) = m(t) − 1 at
the critical point λ = λc , where it is expected to satisfy the following scaling relation

U(t) ∼ td/z, (5)

with d being the dimension of the system (d = 1 for a linear network). According to the above relation, the slope of the best
linear fit of a log–log plot of U(t) versus t gives the critical exponent 1/z (see Fig. 4). The estimated values of this dynamical
critical exponent are also summarized in Table 1.

A third dynamical critical exponent 1/zν⊥ can be estimated taking into account that, in the critical point, the derivative
of the order parameter logarithm scales as

D(t) =
d|ln⟨ρ(t)⟩|

dλ
∼ t1/zν⊥ . (6)

The corresponding result is shown in Fig. 5 as a log–log plot. The time interval used in estimating this critical exponent
ranges from 103 to 104. The regime of longer times (up to 104) was not included since it turns out that finite difference is a
poor approximation of the derivative in this region. The computed values of the exponent 1/zν⊥ are shown in Table 1.

In order to estimate some stationary critical exponents, we performed a collapse of stationary order parameter data [37].
The resulting scaled data is illustrated in Fig. 6(a) for α = 2.0, as well as in Fig. 6(b) where we considered α = 5.0. Other
values of these stationary critical exponents can be found in Table 1. Note that all critical exponents deviate from the usual
DP values for α < 3, approaching the corresponding mean-field values as α decreases.

We close this section by considering the extreme case α = 0, where all possible links are active and the model assumes
a mean-field character. Each of the (1 − ρ)L healthy individuals has a probability ρ of being infected, while the recover
probability of one of the ρL active individuals is λ. Therefore, the number of infected individuals increases of one with
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Fig. 5. Log–log plot of the derivative of d| ln⟨ρ⟩|/dλ versus time t at the critical point for a system of size L = 10000. The best fit gives the critical exponent
ratio 1/zν⊥ .

Fig. 6. (Color online) Data collapse of the order parameter, calculated for L = 100, 200, 400, and 800. The stationary regime was reached after 104 Monte
Carlo steps and 5 × 103 independent realizations were considered. (a) α = 2.0: best collapse with λc = 0.5071, β/ν⊥ = 0.38 and 1/ν⊥ = 0.48;
(b) α = 5.0: best collapse with λc = 0.3065, β/ν⊥ = 0.25 and 1/ν⊥ = 0.86.

probability ρ(1 − ρ), and decreases of one with probability λρ. In the continuous time limit

dρ
dt

= ρ(1 − ρ − λ), (7)

the critical point is λc = 1, while the steady state has

ρ = λc − λ, (8)

yielding β = 1. Furthermore, at the critical point

ρ(t) ∼ t−1, (9)

and therefore β/zν⊥ = 1, which also implies 1/zν⊥ = 1.

4. Summary and conclusions

In summary, we introduced in this paper a new model exhibiting an absorbing state phase transition with continuously
varying critical exponents. The model is a generalization of the contact process on a one-dimensional chain in which
additional connections between sites at a distance r are randomly distributed with a probability decaying as 1/rα . The
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binding exponent α allows a continuous tuning between the standard one-dimensional contact process with just first
neighbors interactions (α → ∞), and the mean-field regime is achieved in the limit of a fully connected network (α = 0).

We developed numerical simulations on finite networks, and employed a finite-size scaling analysis to locate the critical
point and exponents for distinct values of the binding exponent α. The average length of the long-distance connections
diverges forα ≤ 2. Our simulationswere restricted to the regime ofα ≥ 2. Our results show that significant deviations from
the usual directed percolation universality class appear as α decreases. Although themodel incorporates quenched disorder
in the lattice topology, the transition remains a second order one, contrastingwith the Griffiths behavior reported to occur in
some other models with a quenched disorder distribution of recovery rates [38], but in full agreement with previous studies
of absorbing-state phase-transitions in complex networks with an heterogeneous distribution of site connectivities [13].

The scale invariance of the second moment of the stationary order parameter density was used to precisely locate the
critical point. Further, the short time dynamics of the critical order parameter, its logarithmic derivative and moment ratio,
were used to evaluate three independent dynamical critical exponents. Stationary critical exponents were also indepen-
dently estimated by employing a collapse of stationary order parameter data in the vicinity of the transition. The reported
results show that the critical exponents are roughly constant for α > 3, the regime with finite variance of the bond-length.
Below this particular value the exponents vary continuously with α approaching the mean-field behavior as α decreases.
This finding adds to the general belief that long-range interactions can indeed lead to a non-equilibrium critical behavior
with continuously varying exponents. It is important to stress that it has been previously demonstrated that long-range in-
teractions can lead to the breakdown of universality [22]. Further, continuously varying exponents have also been reported
to take place in scale-free networks, depicting a power-law distribution of connectivities [24–28]. It is important to stress
that a similar trend has been recently observed in the superdiffusive contact process on which a crossover to mean-field
critical behavior is achieved when the jump distribution governing the diffusion process becomes more long-ranged [19].
However, the model considered in the present work belongs to a distinct universality class because it does not contain an
explicit particle diffusion process. Therefore the present results indicate that long-range processes promote a crossover to
mean-field behavior irrespective to the universality class of the corresponding short-range model and its universality class.

Our model thus provides a simple framework to continuously investigate the crossover from one-dimensional to mean-
field critical behavior of the contact process phase transition. The long-range character of the connections is able to modify
the critical behavior with respect to the usual directed percolation universality class. Analytical perturbative and field the-
oretical approaches would be in order to describe the critical behavior in the distinct coupling regimes. Furthermore, the
regime of small values of α < 2 deserves a more extensive simulation study. In this regime, the average distance of con-
nected sites strongly diverges as the system size increases. Under these conditions, finite-size scaling arguments have to be
properly adapted to deal with such non-extensive scenario. We hope the present results can stimulate future investigations
along these lines.
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