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a b s t r a c t

Several applications aim to identify rare events from very large data sets. Classification algorithms may

present great limitations on large data sets and show a performance degradation due to class imbalance.

Many solutions have been presented in literature to deal with the problem of huge amount of data or imbal-

ancing separately. In this paper we assessed the performances of a novel method, Parallel Selective Sampling

(PSS), able to select data from the majority class to reduce imbalance in large data sets. PSS was combined

with the Support Vector Machine (SVM) classification. PSS-SVM showed excellent performances on synthetic

data sets, much better than SVM. Moreover, we showed that on real data sets PSS-SVM classifiers had perfor-

mances slightly better than those of SVM and RUSBoost classifiers with reduced processing times. In fact, the

proposed strategy was conceived and designed for parallel and distributed computing. In conclusion, PSS-

SVM is a valuable alternative to SVM and RUSBoost for the problem of classification by huge and imbalanced

data, due to its accurate statistical predictions and low computational complexity.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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. Introduction

Many real-word applications of machine learning classifiers have

o identify rare events from very large data sets. For example, in the

tudies on the automated segmentation from magnetic resonance

mages [19–21], the number of training examples is very huge (up

o millions), the classes are strongly imbalanced, and generating ac-

urate statistical solution is not trivial. In addition, data imbalance in

uge data sets is also reported in other applicative domains, such as

arketing data [22], oil spill detection or land cover changes from

emote sensing images [16,27], text classification [18] and scene clas-

ification [35]. In these areas, very large data sets have to be handled

nd the minority class is the one of interest, consequently two prob-

ematic issues add on: the computational complexity dependent on

he size of the data set and the need to pursue a fairly high rate of

orrect detections in the minority class.

Many classification algorithms present great limitations on large

ata sets and show a performance degradation due to class imbal-

nce [14]. For example, Support Vector Machines (SVM) [33], that are

mployed in many applicative domains [3,4,13,24], really become in-

ractable and computationally too expensive when huge data sets are
✩ This paper has been recommended for acceptance by Y. Liu.
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andled [32]. In fact, the training complexity of SVM is highly de-

endent on the size of the data set. Moreover, SVM classification per-

ormance can be hindered by class imbalance [1,30]. Compared with

ther standard classifiers, it is more accurate on moderately imbal-

nced data. The reason is that only SVs are used for classification and

any majority samples far from the decision boundary can be re-

oved without affecting the classification. However, an SVM classi-

er can be sensitive to high class imbalance, resulting in a drop of the

lassification performance on the minority class. In fact, it is prone to

enerate classifier that has a strong estimation bias toward the ma-

ority class: since the number of majority class patterns exceeds that

f the minority class, the class boundary becomes vulnerable to be

istorted [15]. Nevertheless, these limitations are common to many

ther classification schemes such as Multi-Layer Perceptron (MLP) [7]

nd Logistic Regression (LR) [23].

To overcome these problems, a selection of examples has to be

erformed sampling a small number of patterns from the majority

lass to reduce both the number of data and the imbalance. Such a

rocedure is well known in literature as ”undersampling” method

12]. It generally improves the classification performance and reduces

he computational complexity, however it presents a potential dis-

dvantage of distorting the distribution of the majority class. If the

ampled patterns from the majority class do not represent the orig-

nal distribution, it may degrade the classification performance. This

otential drawback comes dramatically true when the number of mi-

ority class patterns is very small [15]. However, other techniques are
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Block diagram of PSS.
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not feasible with very large data set because they work: (1) by mod-

ifying cost for misclassified patterns belonging to the minority class,

without changing the number of original data [7], (2) by increasing

the total number of examples by copying patterns from the minority

class to balance the ratio of classes (”oversampling” method) [9], (3)

by combining oversampling and undersampling techniques [34].

Several methods to select examples in a classification problem are

presented in literature, using two different approaches: the example-

selection method can be embedded within the learning algorithm

or the examples can be filtered before passing them to the classifi-

cation scheme [2,26]. It is worth noting that the first type of selec-

tion methods generally work by preserving the original ratio between

classes [6,11]: if there is a great skew in the data, it continues to be.

To overcome this problem, filtered methods are more suited for pre-

processing data before the classification step. Numerous algorithms

can be used taking into account the class-membership of samples to

solve the imbalance in the data [2]. In this framework, a very interest-

ing method has been developed by Evgeniou and Pontil in [10]. They

present a preprocessing algorithm that computes clusters of points in

each class, based on Euclidean distance, and substitute each cluster

with the mass center of the points in the cluster. The algorithm tends

to produce large (small) clusters of data points which are far (near)

from the boundary between the two classes. These strategies did not

focus on both large and imbalanced data learning. More recently, a

method focused on both big and class imbalanced data classification

was proposed [29]. It is a cost-sensitive support vector machine us-

ing randomized dual coordinate descent method (CSVM-RDCD) and

it belongs to the class of embedded methods, i.e. the examples selec-

tion is integrated in the learning algorithm and classifier dependent.

This method was tested on three data sets with relative class imbal-

ance and three data sets with severe class imbalance, of which only

one of them with a large number of examples. In all the experiments

the recognition rates of the minority class, computed by CSVM-RDCD

and SVM, are roughly comparable, with an improvement of about 1%.

New studies are required in order to examine in more depth the case

study of imbalanced and big data.

A valuable alternative is given by filter methods which are attrac-

tive because they adjust only the distribution of the original training

set, independently of the given classifier. In this paper, we describe a

novel approach, named Parallel Selective Sampling (PSS), that selects

data from the majority class to reduce imbalance in big data sets. PSS

is a filter method which can be combined with a variety of classifi-

cation strategies. It is based on the idea (usually used in SVM) that

only training data, near the separating boundary (for classification),

are relevant. In this way the core information from the training data

- i.e. the training data points near the separating boundary - is pre-

served while the size of the training set is effectively decreased. Rel-

evant examples from the majority class are selected and used in the

successive classification step using SVM. Due to the complex com-

putational requirements, PSS is conceived and designed for parallel

and distributed computing. Finally, PSS–SVM allows accurate statisti-

cal predictions keeping down the computational times.

The paper is organized as follows: in Section 2 we describe in de-

tails the proposed sampling method and we introduce the main prop-

erties of SVM for classification of large and imbalanced data sets. In

Section 3 we discuss the experimental results obtained in the analy-

sis of real and simulated data sets. Section 4 concludes the paper and

summarizes the main results.

2. Methods

2.1. PSS

The PSS method can be used to preprocess very large training data

with significant skew between classes. It is an undersampling method

because it acts by reducing examples belonging only to the majority
lass. It is based on the computation of Tomek links [31], defined as a

air of nearest neighbors of opposite classes. Given {E1, . . . , En} ∈ Rk,

pair (Ei, Ej) is called a Tomek link if Ei and Ej have different labels,

nd there is not an El such that d(Ei, El) < d(Ei, Ej) or d(Ej, El) < d(Ei,

j), where d( ·, ·) is the Euclidean distance. Here Tomek links are used

o remove samples of majority class staying in areas of input space

ense of data belonging to the same class.

Let S = {(x1, y1), . . . , (x�, y�)} be the training set, where xi ∈ Rk and

i ∈ {0, 1}, ∀i = 1, . . . , �. We define S0 the set of �0 training data be-

onging to class y = 0 and S1 the set of �1 training data belonging to

lass y = 1, with �0 � �1. PSS achieves a reduced training set whose

ercentage M% of the minority class on the total number of examples

s chosen by the user.

a: data partitioning. The S0 set is divided into N subset Sn
0

with

n = 1, 2, . . . ,N, with N set by the user. In this way, N different un-

dersampling procedures are performed in parallel computation

(see Fig. 1).

For each Sn
0
, with n = 1, 2, . . . ,N, the following steps are per-

formed:

b: computing Tomek links. Let us define the set Tn of all examples

in the majority class Sn
0

that are first neighbors of one sample in

S1, that is T n = {x ∈ Sn
0
|(x, z) is Tomek link on S1 ∪ Sn

0
, z ∈ S1}.

c: removing examples. Let us randomly select x̄ ∈ Dn = Sn
0
\T n; the

following steps are performed (see Fig. 2):
• the Tomek link (x̄, z̄) is computed over the data set x̄ ∪ S1, with

z̄ ∈ S1;
• the Euclidean distances d(x̄, x) are computed for each x ∈ Sn

0
;

• let us define the subset L = {x ∈ Sn
0
|d(x̄, x) < d(x̄, z̄)}, (see the

red circumference in Fig. 2a). The Tomek link (x∗, z̄) in z̄ ∪ L is

computed, i.e. x∗ is defined as the first neighbor in L of z̄ ;
• let us define the set R = {x ∈ L|d(x̄, x) < [d(x̄, z̄) − d(x∗, z̄)]}

(see the blue circumference in Fig. 2a). Let us delete all the

points in R that are not Tomek links, i.e. each x ∈ R′ with
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(a)

(b)

Fig. 2. Removing examples step (c) of PSS.
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Table 1

Summary of training data sets,

Data set Training set size Percentage of � of attributes

minority class

S1 106 4.9% 2

S2 106 2.8% 2

S3 106 1.2% 2

D1 25,667 7.1% 54

D2 190,698 1% 54

D3 387,341 0.5% 54
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R′ = {x ∈ R|x /∈ T n}. The remaining data points (shown in Fig.

2b) of the majority class are contained in Sn
0

′ = Sn
0
\R′ ;

• if the classes are balanced, the algorithm goes to the follow-

ing step d; otherwise it randomly selects x̄ ∈ Dn ′ = Sn
0

′\T n and

repeats the previous issues (step c).

d: joining residual examples. The majority class data, selected by

each parallel computation, are then joined.

e: last elimination. The procedure previously described (step c) is

repeated achieving a final reduced training set whose M% belongs

to the minority class.

.2. Support vector machines

Our methodology was combined with SVM, a powerful technique

or data classification with many applications in literature. For details

n the SVM algorithm we refer to [33], here we discuss its limitations

n large and imbalanced training sets. In fact, despite its good theo-

etic foundations and high classification accuracy, it is not suitable for

lassification of huge data, because the training complexity of SVM is

ighly dependent on the size of data set. To overcome this bottle-

eck, different methods have been proposed in literature. A first ap-

roach consists of modifying SVM algorithm in order to make faster

he training on large data sets; for example, Sequential Minimal Opti-

ization (SMO) breaks the large QP problem into a series of smallest

ossible QP problems [25], allowing SMO to handle large training sets

25]. Nowadays SMO can be considered a standard procedure in the

nalysis of large data sets by using SVM. Another approach consists

f matching selective sampling techniques with SVM. In [8] the au-

hors proposed a novel classification approach for large data sets us-

ng Minimum Enclosing Ball (MEB) clustering: after partitioning the

raining data via MEB method, the centers of the clusters were used

or the first time SVM classification; the algorithm used only the clus-

ers whose centers are support vectors or those clusters which have

ifferent classes to perform the second time SVM classification. In

his way many data points were recursively removed. However, the

bove mentioned methods are not helpful for classification of large

ata sets with imbalanced classes.

The effects of imbalanced data on SVM are related to the soft-

argin maximization paradigm [1]: since SVM tries to minimize to-

al error, it is biased toward the majority concept. In the linear case,

two-class space could be separated by a learned boundary that is

ery different from the ideal one. Moreover, if there was a lack of data

epresenting the minority concept, there could be an imbalance of

epresentative support vectors that could also degrade performance.
hese same characteristics are readily evident in non-linear separa-

le spaces. In the worst case, SVM will classify all examples as per-

aining to the majority class, a tactic that, if the imbalance is severe,

an provide the minimal error rate across the data space [12]. There

ave been many works in literature that apply different techniques

o the SVM framework in order to overcome problems due to imbal-

nce. Most of them assign different error costs to different classes

n order to shift the decision boundary and to guarantee that it is

etter defined [1,12]. Another major category of kernel-based learn-

ng research efforts focuses more concretely on the mechanics of the

VM itself; this group of methods is often called kernel modification

ethods [12]. However these methods could be useless for large data

et, because they use all the data for training the classifier. The un-

ersampling techniques are useful for large training set. In [30] the

ranular Support Vector Machines - Repetitive Undersampling algo-

ithm (GSVM-RU) was proposed to integrate SVM learning with un-

ersampling methods. This method uses the SVM itself as a mech-

nism for undersampling in order to sequentially develop multiple

ubsets with different informative samples, which are later combined

o develop a final SVM for classification. Also this method is not tai-

ored for very huge data sets, because the SVM problem should be

ard to solve due to the training set size. Instead, methods based on

smart undersampling of the majority class should be preferable for

ery large data sets analysis.

. Experimental results

.1. Data set description and experimental design

In this study we used three synthetic and three real data sets (see

able 1). Each synthetic data set counts 106 training examples and

ach datum is composed of 2 attributes. The data distribution in the

nput space follows a checkerboard pattern, as shown in Fig. 3. The

est sets are independently built with the same procedure and are

ade of 500, 000 examples. The percentage of the minority class of

he training and test sets are reported in Table 1.

The three real data sets have been extracted from the Forest Cover

ype data set of the UCI repository [5] having 7 classes and 581,012

amples. This is for the prediction of forest cover type based on 54

artographic variables. Since our system works for binary classes, we

xtracted data for two classes from this data set as follows and di-

ided the data in training set and test set.

• D1: Ponderosa Pine vs Cottonwood/Willow (training set 23,836 vs

1831 samples; test set 11,918 vs 916 samples);
• D2: Spruce-Fir vs Cottonwood/Willow (training set 188,867 vs

1831 samples; test set 94,434 vs 916 samples);
• D3: Cottonwood/Willow vs all (training set 1381 vs 385,510 sam-

ples; test set 192,755 vs 916 samples).

.2. Evaluation of experimental performance

The accuracy as an objective function is inadequate for classifica-

ion tasks with hard data imbalancing. For example, let us consider a
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Fig. 3. Undersampling of the synthetic data set S1 by PSS. After the partition of S1 in four subsets, the 1st, 6th, 11th and final iterations are shown. The residual examples of the

four subsets are joined in the first picture (1st iteration) of last row. Then, the 17th and 34th iterations of PSS to the joined residual examples and the final reduced majority class

(S0) are shown.
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Table 2

Summary of the experimental results on the synthetic data sets: a) evaluation metrics com-

puted on test set and computational time of PSS-SVM required for both preprocessing and

training, b) mean values (standard deviation) of evaluation metrics computed on test set

and computational time on 10 iterations of random undersampling SVM. Optimal parame-

ters (SVM kernel, regularization parameter C and desired percentage M) are shown.

S1 PSS-SVM Random undersampling SVM

M = 25%, RBF σ = 0.7, C = 610 M = 25%, RBF σ = 0.7, C = 610

Time (s) 2123 12740

Dice 0.87 0.79 (0.0031)

Precision 0.78 0.66 (0.0044)

Recall 0.97 1.00 (0.0002)

Relative Overlap 0.77 0.66 (0.0042)

S2 PSS–SVM Random undersampling SVM

M = 25%, RBF σ = 0.5, C = 620 M = 25%, RBF σ = 0.5, C = 620

Time (s) 757 3635

Dice 0.86 0.72 (0.0171)

Precision 0.78 0.56 (0.0211)

Recall 0.97 1.00 (0.0002)

Relative Overlap 0.76 0.56 (0.0210)

S3 PSS-SVM Random undersampling SVM

M = 10%, RBF σ = 0.5, C = 650 M = 10%, RBF σ = 0.5, C = 650

Time (s) 536 4020

Dice 0.80 0.56 (0.0071)

Precision 0.67 0.39 (0.0070)

Recall 0.99 1.00 (0.0000)

Relative Overlap 0.67 0.39(0.0070)
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lassification problem in which there are two classes, 1% of the pat-

erns belonging to the minority class and 99% of the patterns belong-

ng to the majority class. If a naive approach of classifying made a de-

ision that all patterns should be classified into the majority class, it

ould achieve 99% of accuracy. This can be considered as a good per-

ormance in terms of simple accuracy, but this is of no use since the

lassifier does not catch any important information on the patterns

f the minority class [12].

More appropriate performance measures may be derived from the

onfusion matrix, that compares predicted to true labels. We consider

ice D, precision P, recall R and relative overlap R.O.: these metrics are

ffective to evaluate classification performance in imbalanced learn-

ng scenarios, and are defined as follows:

P = TP

TP + FP

R = TP

TP + FN

D = 2 ∗ P ∗ R

P + R
= 2 ∗ TP

(TP + FP) + (TP + FN)

.O. = TP

FP + TP + FN

here TP is the number of True Positive, i.e. the actual positive data

hich are correctly classified as such, FP is the number of False Posi-

ive, i.e. negative data classified as positive, TN is the number of True

egative, i.e. the actual negative data which are correctly classified

s such, and FN is the number of False Negative, i.e. positives incor-

ectly classified as negatives. Intuitively, precision is a measure of ex-

ctness (i.e., of the examples predicted as positive, how many are ac-

ually labelled correctly), whereas recall is a measure of completeness

i.e., how many examples of the positive class were labelled correctly)

12]. The D value is used to merge precision and recall into a single

etric for convenience. The R.O. accounts for the fraction of TP on the

otal number of true and predicted positive examples. We considered

he minority class as positive.
.3. Experimental results

All of the experiments were carried out on a Workstation HP Z820

quipped with 2 CPU Intel Xeon and eight cores E5-2650, RAM 64Gb-

x1000Gb. All data were analyzed in MATLAB (MathWorks, Natick,

A). The parameters of the classifiers were tuned to obtain optimal

alues; models were built on the training set, and performances of

he constructed classifier were tested on the test set. Also the per-

entage M% of the minority class obtained by PSS was considered as

parameter and was tuned in each experiment.

First of all, we illustrate experimental results on synthetic data ob-

ained by the proposed method PSS-SVM. Fig. 3 shows a snapshot of

SS procedure on data set S1. In each partition the progressive dele-

ion of the points of the majority class is shown. After joining residual

xamples from parallel partitions, the output of PSS consisted of a re-

uced data set where the examples of majority class, nearest to the

inority class, were clearly preserved.

Table 2 shows that the method achieved good performances, in

articular high values of dice and recall for all the data sets. Cor-

ectly, evaluation metrics decreased when the imbalancing increased.

ote that for severe imbalancing, high values of M were not optimal

hoice in term of classification performances. In fact, for data set S3

hich had an imbalancing of 1.2%, the best performances were ob-

ained with M = 10%. Moreover, in order to evaluate the repeatability

f PSS–SVM, we run it on S3 data set 10 times. The average values of

ach metric correspond to those reported in Table 2 with standard

eviations lower than 0.01.

In these experiments an undersampling method was manda-

ory: in fact due to the very huge amount of data points (1 million

f examples), SVM did not achieve convergence. Hence the perfor-

ances of PSS-SVM were compared with those of random under-

ampling SVM, in order to highlight the benefit deriving from us-

ng an ôintelligentö method for the undersampling. Then Gaussian

ernel SVMs were trained on reduced data sets, obtained by com-

ining minority class with random undersampling of the majority

ne, until the desired balance was achieved. This procedure implied

loss of information due to deleting examples from the training

ata. To generalize we considered a number of 10 iterations where
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Table 3

Summary of the experimental results on real data sets. Evaluation metrics com-

puted on test set and computational time for both preprocessing (if required)

and training of the classifiers are shown.

D1 SVM RUSBoost PSS-SVM

RBF-σ = 1 n.trees=1000 M = 15%, RBF-σ = 0.8

C = 100 n.leaf=5 C = 10

Time (s) 47 962 46

Dice 90.4 90.7 90.9

Precision 90.0 89.9 90.8

Recall 90.7 91.5 90.9

Relative overlap 82.4 82.9 83.3

D2 SVM RUSBoost PSS-SVM

RBF-σ = 1 n.trees=100 M = 10%, RBF-σ = 2

C = 100 n.leaf=5 C = 10

Time (s) 761 38 82

Dice 99.3 99.4 99.8

Precision 99.9 99.2 99.9

Recall 98.7 99.6 99.8

Relative overlap 98.6 98.8 99.7

D3 SVM RUSBoost PSS-SVM

RBF-σ = 1 n.trees=1500 M = 15%, RBF-σ = 1

C = 100 n.leaf=5 C = 10

Time (s) 833 1984 153

Dice 84.3 87.8 87.7

Precision 82.9 83.4 84.5

Recall 85.8 92.9 91.0

Relative overlap 72.9 78.3 78.0
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a new random undersampling and SVM training was performed.

The average values of evaluation metrics and standard deviation are

shown in Table 2. The M values were chosen equal to the PSS-SVM

setting.

Both methods achieved high recall values which referred to the

ability of the classifiers to correctly identify positive examples. In

clinical application, high recall values are important where the test

is used to identify a serious but tractable disease [17]. In the analysis

of the data set S1 which had an imbalancing of 4.9%, PSS-SVM had an

higher precision values (P = 0.78) than random undersampling SVM

(P = 0.66). In the analysis of data sets S2 and S3, the performances of

PSS-SVMs in terms of precision (S2, P = 0.78; S3, P = 0.67) were con-

siderably better than random unndersampling SVM (S2, P = 0.56; S3,

P = 0.39). The precision of a test is very useful to clinicians since it an-

swers the question: ”How likely is it that this patient has the disease

given that the test result is positive?”[17]. Consequently, Dice and

R.O. computed by PSS-SVM had higher values than those obtained

by random unndersampling SVM. These metrics are simple and use-

ful summary measures of overlapping between actual and predicted

labels, which are interestingly applied to studies of reproducibility

and accuracy in medical image segmentation [36]. Moreover, PSS-

SVM required shorter computational time than random undersam-

pling SVM.

Now we discuss experimental results on real data sets shown in

Table 3. We compared the performances of PSS-SVM with SVM on

three data sets with significant variation of both data size and im-

balancing. We also considered random undersampling SVM which

raised poor performance and therefore it was excluded from the dis-

cussion. For an exhaustive analysis, we compared the performances

of PSS-SVM with RUSBoost (Random Undersampling with Boosting)

[28]. It is a boosting-based sampling algorithm that handles class im-

balance randomly removing examples from the majority class until

the desired balance is achieved.

In all the experiments, we trained SVMs with different combi-

nations of parameters and we chose a gaussian kernel with optimal

sigma and C as reported in Table 3. Similarly a tuning was performed
or RUSBoost parameters and optimal choices are shown in the same

able.

The data set D1 contained 25667 examples whose 7% belonged to

inority class. Due to the small sample size and not extreme imbal-

ncing, the performances of PSS-SVM, SVM and RUSBoost were ex-

ellent and roughly comparable, with best dice of 90.9% computed by

SS-SVM. The cost sensitive implemented in SVM worked well con-

rolling this amount of imbalancing. Nevertheless the good results

btained with RUSBoost, its computational time was much higher

han others. This was due to the number of trees, equal to 1000, useful

o obtain the optimized evaluation metrics. In fact, using a number of

00 trees, the computational time decreased to a value comparable

o that of PSS-SVM, but the dice decreased to 90.0.

Data set D2 contained 1% of the training examples belonging to

he minority class and training set size 190698. Again the dice, equal

o 99.8, computed by PSS-SVM was slightly better then others with

hort computational time.

Data set D3 contained large amount of data points (training set

ize = 387341), and the class imbalancing was very hard (0.5%). The

ighest dice of ∼ 88% was obtained by both PSS-SVM and RUSBoost.

he processing time (153 s) required by PSS-SVM was shorter than

hat of RUSBoost (1984 s). In order to obtain computational time for

USBoost of about 150 s, 100 trees should be used which arose to a

ower dice of 83.9%.

In the analysis of synthetic data we considered three data sets

ith very large training set size and decreasing percentage of mi-

ority class in order to evaluate the performances of the proposed

ethod in a very hard condition. In this case, cost sensitive SVM does

ot work, while PSS-SVM showed very good performances. In the

nalysis of the real data sets, a less critical work condition was en-

ountered. Indeed, PSS-SVM performs as well as cost-sensitive SVM

n real data sets D1 and D2. Instead in the analysis of D3 real data set

the most critical among the real data sets), PSS-SVM outperforms

ost sensitive SVM. The effectiveness and the advantages of using

SS-SVM are more evident in large scale - class imbalanced data set

nalysis.

. Conclusions

In this paper, we introduced a new algorithm, called PSS, used

s a preprocessing step to train SVM on very huge and imbalanced

ata sets. The comparison between PSS-SVM and SVM was carried on

hree synthetic data sets, having a very huge amount of data. SVM

id not achieve convergence, then we considered random undersam-

ling (RUS) techniques to handle the class imbalancing and compared

US-SVM with PSS-SVM. The proposed algorithm performances were

ery good and considerably better. Moreover, PSS-SVM showed ex-

ellent performances and dice’s indexes comparable to the ones of

VM and RUSBoost classifiers on three real data sets. Our analysis

uggested that PSS-SVM is valuable alternative to SVM and RUSBoost

lassifiers for very imbalanced data. Importantly, PSS exhibited the

reat advantage to perform in parallel computation, drastically re-

ucing the computational time. Moreover, it is a general selective

ampling method that can be combined with different classification

lgorithms.
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