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Abstract

We study a problem of variable separation for the classical integrable hamiltonian systems possessing 
Lax matrices satisfying linear r-matrix algebra with skew-symmetric sl(2) ⊗ sl(2)-valued trigonometric 
r-matrix. For all such the systems we produce new symmetric variables of separation. We show that the 
corresponding curve of separation differs from the spectral curve of the initial Lax matrix. The example of 
trigonometric Clebsch model is considered in details.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The problem of the separation of variables is one of the most studied, but yet the most difficult 
and not completely resolved problems in the theory of integrable systems.

One of the most physically important classes of the integrable models are the models admit-
ting Lax representation. For such the models one can advance in the solution of the problem of 
separation of variables [1]. This approach — sometimes called “the magic recipe” — is based 
on the poles of Baker-Akhiezer functions. In the classical case the idea of the approach can be 
traced back to the papers [2–7].
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The approach of [1] — despite being very effective for certain classes of examples — has 
two weak points. Although it permits to construct a set of variables that belong to a spectral 
curve of the Lax matrix that plays the role of the equations of separation, but it does not (in 
general) guaranty that the constructed variables are the canonical coordinates, i.e. that they are 
the variables of separation indeed.

Another problem arising in the framework of the “magic recipe” is that the number of vari-
ables produced by the method rarely coincides with the dimension of the corresponding phase 
space. Often it happens that the number of the coordinates constructed by the method of Sklyanin 
is less than the dimension of the phase space. Such the situation may occur even in the case when 
the corresponding variables are indeed the canonical ones. Although in some cases the problem 
can be resolved by certain tricks e.g. by complementing of the set of the obtained canonical vari-
ables by a linear integrals playing the role of the additional momenta of separation and by finding 
of the corresponding canonically conjugated variables [2,6,8] but, unfortunately, it is not always 
possible to do this.

That is why it is desirable to have a method producing at once a complete set of coordi-
nates and momenta of separation. In order to do this we propose to re-consider a scheme of 
[1], changing its accents. The starting point of the scheme of [1] is a spectral curve of the Lax 
matrix. Contrary to this we propose to begin with a construction of a complete set of canonical 
coordinates and only after that start to check to what curve they belong, i.e. what equations of 
separation they satisfy. This changing of accents permits to obtain the separated variables for 
which the equations of separation does not coincide with a spectral curve of the Lax matrix. The 
change in the approach is suggested, in particular, by our recent result [13] on the separation of 
variables in the completely anisotropic Clebsch model, where it finally occurred that the canon-
ical coordinates of separation satisfy two different equations of separation, coinciding with two 
different spectral curves of two different — two by two and four by four — Lax matrices.

In the present paper we consider examples of partially anisotropic models that correspond to 
the classical trigonometric r-matrix, i.e. the Poisson brackets of the corresponding Lax matrices 
are written in the form

{L(u) ⊗ 1,1 ⊗ L(v)} = [r(u, v),L(u) ⊗ 1 + 1 ⊗ L(v)]. (1)

Here r(u, v) is a skew-symmetric trigonometric r-matrix in the following parametrization

r(u, v) =
√

u
√

v√
u − 1 − √

v − 1
(σ1 ⊗ σ1 + σ2 ⊗ σ2) +

√
v − 1

√
u − 1 + 1√

u − 1 − √
v − 1

σ3 ⊗ σ3, (2)

where σα , α ∈ 1,3 are Pauli matrices. The change of variables u = 1

sin2(φ)
, v = 1

sin2(ψ)
brings 

the r-matrix (2) to the standard trigonometric form.
Although the mentioned above trick with the complement of the standard Sklyanin-type vari-

ables is valid in the trigonometric case [15,14,16], i.e. helps to produce a complete set of variables 
of separation, we have succeeded in a construction of a new family of variables of separation 
which is complete at once without any additional tricks. In order to do this we construct canoni-
cal coordinates using the technique of separating functions B(u) and A(u) such that zeros of the 
first function generate the Poisson-commuting coordinates and the values of the second one in 
these zeros generate the canonically conjugated momenta. The most important their property is 
a Poisson algebra to be satisfied by the functions B(u) and A(u) [20–22]

{B(u),B(v)} = b(u, v)B(u) − b(v,u)B(v),
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{A(u),B(v)} = α(u, v)B(u) − β(u, v)B(v),

{A(u),A(v)} = a(u, v)B(u) − a(v,u)B(v),

for some functions a(u, v), b(u, v), α(u, v), β(u, v) such that the following limit holds true

lim
u→v

(α(u, v)B(u) − β(u, v)B(v)) = ∂vB(v) + γ (v)B(v).

The corresponding restriction imposed on B(u) and A(u) permits their explicit construction 
without any appeal to Baker-Akhiezer function. We have found the explicit form of such the 
functions B(u) and A(u) in the trigonometric case

B(u) = i√
u

L1(u) − i

√
u − 1√

u
L2(u) − L3(u), (3a)

A(u) = −u − 1

u
M3 − i

√
u − 1√

u
L1(u) +

√
u − 1

u
L3(u), (3b)

where Lα(u), α ∈ 1, 2, 3 are the components of the Lax matrix in the above parametrization and 
M3 is an additional linear integral satisfying the following Poisson-bracket relations with the 
components of the Lax matrix

{M3,Lα(u)} = ε3αβLβ.

Although the technique of the separating functions is in the framework of the general scheme 
of Sklyanin [1], but contrary to Sklyanin we do not require that the corresponding coordinates 
and momenta belong to the standard spectral curve of the initial Lax matrix. Neither we require 
— as it is always done in [1] — that the function A(u) is written in the closed form via the 
components of the Lax matrix only. In the final end it occurred that the constructed coordinates 
and momenta satisfy the spectral curve modified with the help of the linear integral M3

det
(
L(x−2

k + 1) + i
(
(x2

k + 1) · pk + M3
)
Id

)
= 0.

This result would be impossible to obtain if one insisted from the beginning that the equations of 
separation coincide with the standard spectral curve of the initial Lax matrix.

The functions B(u) and A(u) given by the formulas (3) produce the complete set of the 
coordinates of separation for any integrable system possessing Lax matrix satisfying the Poisson 
brackets (1) with the r-matrix (2). In order to be more concrete we consider a class of examples 
of the Lax matrices possessing the poles in the point u = ∞. The special attention devoted to 
this class of the Lax matrices is explained by the fact that they are connected with the finite-gap 
sectors of partially anisotropic Landau-Lifshitz and chiral field equations [10,11]. The example of 
the first non-trivial from the separation of variables point of view model, namely, trigonometric 
Clebsch model is considered in details. We explicitly write the corresponding coordinates and 
momenta of separation, the reconstruction formulae and the Abel-type equations. Note, that the 
reconstruction formulae that are explicitly obtained for the Clebsch model, and may be also 
explicitly obtained also for other integrable models associated with trigonometric r-matrix, are 
symmetric in terms of the coordinates on the separation curve. That is why we call the obtained 
separated variables to be symmetric.

In the end of the Introduction we would like to answer a natural question that may arise in 
the context of SoV for trigonometric integrable models. This question is the following: is not it 
possible to obtain a complete set of separated variables for trigonometric integrable models using 
trigonometric degeneration of the complete set of separated variables for the elliptic integrable 



JID:NUPHB AID:115101 /FLA [m1+; v1.331; Prn:29/06/2020; 12:38] P.4 (1-16)

4 T. Skrypnyk / Nuclear Physics B ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47
models? In particular, is not it possible to obtain a complete set of separated variables for the 
“trigonometric” Clebsch model using “symmetric” separated variable for the “elliptic” Clebsch 
model from [23] or “asymmetric” separated variables for the same model from [13]? The answer 
to this question is negative. After trigonometric degeneration of the “elliptic” separated variables 
from [23] or [13] one of the separated coordinates becomes constant or goes to infinity and the 
completeness of the obtained set of separated coordinates is lost.

The structure of the present letter is the following: in the Section 2 we remind the general 
scheme of the variable separation based on the method of separating functions. In the Section 3
we describe the trigonometric integrable models and separation of variables for them. In the 
Section 4 we consider an example of the trigonometric Clebsch model. At last in the Section 5
we briefly conclude and describe the on-going problems.

2. Separation of variables: general scheme

2.1. Definitions

Let us recall the definitions of Liouville integrability and separation of variables in the general 
theory of Hamiltonian systems [1]. An integrable Hamiltonian system with D degrees of freedom 
is determined on a 2D-dimensional symplectic manifold M — symplectic leaf in the Poisson 
manifold (P, { , }) by D independent functions (first integrals) Ij commuting with respect to the 
Poisson bracket

{Ii, Ij } = 0, i, j ∈ 1,D.

For the Hamiltonian H of the system may be taken any first integral Ij .
To find separated variables means to find (at least locally) a set of coordinates xi, pj , i, j ∈

1,D such that there exist D relations — equations of separation


i(xi,pi, I1, ..., ID) = 0, i ∈ 1,D, (4)

where the coordinates xi, pj , i, j ∈ 1,D are canonical, i.e.

{xi,pj } = δij , {xi, xj } = 0, {pi,pj } = 0, ∀i, j ∈ 1,D.

The separated variables provide a way to a construction of the action-angle coordinates from the 
Liouville theorem and half a way to explicit integration of the equations of motion.

Unfortunately, in the general case no algorithm is known to construct a set of separated vari-
ables for any given integrable system. One of the possible methods of their construction is the 
so-called method of separating functions permitting one to construct a set of canonical coordi-
nates.

2.2. Separating functions and canonical coordinates

Let us now remind a method of construction of canonical coordinates using separating func-
tions. Generally speaking this method can be considered independently of separation of variables. 
That is why in this subsection we do not assume any special properties of the Poisson manifold P
or Poisson structure { , }. Neither we assume integrability or existence of the Lax representation.

Let B(u) and A(u) be some functions of the dynamical variables and an auxiliary parameter u, 
which is constant with respect to the bracket { , }. Let the points xi , i ∈ 1,D be zeros of the 
function B(u) and pi , i ∈ 1,D be the values of A(u) in these points, i.e.
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B(u)|u=xi
= 0, pi = A(u)|u=xi

.

We wish to construct Poisson brackets among these new coordinates using the Poisson brackets 
between B(u) and A(u). The following Proposition holds true:

Proposition 2.1. Let B(xi) = 0, pj = A(xj ). Then:

(i) {xi, xj } =
( {B(u),B(v)}
∂uB(u)∂vB(v)

)
|u=xi ,v=xj

, where i 	= j,

(ii) {xj ,pi} =
( {A(u),B(v)}

∂vB(v)

)
|u=xi ,v=xj

+ {xi, xj }(∂uA(u))|u=xi
, where i 	= j,

(iii) {pi,pj } =
(
{A(u),A(v)}

)
|u=xi ,v=xj

+ {pi, xj }(∂vA(v))|v=xj

+ {xi,pj }(∂uA(u))|u=xi
−

− {xi, xj }(∂uA(u)∂vA(v))|u=xi ,v=xj
, where i 	= j.

Sketch of the Proof. The equalities (i)-(iii) are obtained by the decomposition of B(u), A(u), 
B(v), A(v) in Taylor power series in the neighborhood of the points u = xi , v = xj in the expres-
sions {B(u), B(v)}, {A(u), B(v)}, {A(u), A(v)} and by considering the limits u → xi, v → xj

after the calculation of the Poisson brackets.

Now we are ready to formulate the following important Lemma:

Lemma 2.1. Let the coordinates xi and pj , i, j ∈ 1,D be defined as above. Let the functions 
A(u), B(u) satisfy the following Poisson algebra

(i) {B(u),B(v)} = b(u, v)B(u) − b(v,u)B(v), (5a)

(ii) {A(u),B(v)} = α(u, v)B(u) − β(u, v)B(v), (5b)

(iii) {A(u),A(v)} = a(u, v)B(u) − a(v,u)B(v). (5c)

Then the Poisson bracket among the functions xi and pj , ∀i, j ∈ 1,D, i 	= j are trivial

(i) {xi, xj } = 0,

(ii) {xj ,pi} = 0,

(iii) {pi,pj } = 0.

If, moreover holds also the condition

lim
u→v

(α(u, v)B(u) − β(u, v)B(v)) = ∂vB(v) + γ (v)B(v) (6)

then the corresponding Poisson brackets are canonical, i.e.: {xi, pi} = 1, ∀i ∈ 1,D.

Remark 1. Observe, that the method of the separating functions A(u) and B(u) does not, 
generally speaking, guarantee that the constructed canonical coordinates satisfy the equations 
of separation (4) for some integrable Hamiltonian system defined by the Poisson-commuting 
Hamiltonians {Ii, i ∈ 1,D}. Nevertheless it is often the case and it is necessary only to find 
the explicit form of the corresponding functions 
i(xi, pi, I1, ..., ID). This phenomenon is ex-
plained by the fact that both the functions A(u), B(u) and the generating functions of integrals 
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of motions are constructed using the r-matrix technique with the same classical r-matrix. That 
is why it is quite natural (although not guaranteed) that the constructed in such a way canonical 
coordinates and integrals of motion are connected by some equations of separation. In the next 
sections we will illustrate this by a set of new examples.

3. Trigonometric models and separation of variables

3.1. Trigonometric r-matrix

Let us consider the following trigonometric r-matrix [12]

r(φ − ψ) = 1

sin(φ − ψ)
(σ1 ⊗ σ1 + σ2 ⊗ σ2) + cos(φ − ψ)

sin(φ − ψ)
σ3 ⊗ σ3. (7)

It satisfies usual classical Yang-Baxter equation [12]

[r12(φ − ψ), r13(φ − χ)] = [r23(ψ − χ), r12(φ − ψ) + r13(φ − χ)]
and coincides with the trigonometric degeneration of the elliptic r-matrix of Sklyanin [9].

Using the addition formulas for the trigonometric functions and re-parametrization u =
1

sin2(φ)
, v = 1

sin2(ψ)
it is easy to show that the trigonometric r-matrix (7) is re-written in 

the following irrational form

r(u, v) =
√

u
√

v√
u − 1 − √

v − 1
(σ1 ⊗ σ1 + σ2 ⊗ σ2) +

√
v − 1

√
u − 1 + 1√

u − 1 − √
v − 1

σ3 ⊗ σ3, (8)

where σα , α ∈ 1,3 are the Pauli matrices.
Hereafter in our paper we will use the trigonometric r-matrix only in the form (8).

3.2. Trigonometric Lax algebra

Let us consider on the space of sl(2)-valued spectral-parameter-dependent matrices the fol-
lowing Poisson bracket

{L(u) ⊗ 1,1 ⊗ L(v)} = [r(u, v),L(u) ⊗ 1 + 1 ⊗ L(v)], (9)

where r(u, v) is given by the formula (8) and L(u) =
3∑

α=1
Lα(u)σα , L(v) =

3∑
α=1

Lα(v)σα .

The type dependence of Lα(u) on the spectral parameter u and dynamical variables is deter-
mined by the parenthesis (9) the r-matrix (8) and the number and type of poles of the Lax matrix 
[17,18]. In the present paper we will consider mainly the examples of the Lax matrices with the 
poles in the point u = ∞.

The following proposition holds true:

Proposition 3.1. The Lax matrices L(u) satisfying (9) and having the poles in the point u = ∞
are written as follows

L(u) =√
u(S1(u)σ1 + S2(u)σ2) + √

u − 1S3(u)σ3 + √
u
√

u − 1(T1(u)σ1 + T2(u)σ2)

+ uT3(u)σ3, (10)
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where

Sα(u) =
∞∑

m=0

S(m)
α um, Tα(u) =

∞∑
m=0

T (m)
α um, (11)

σα are the Pauli Matrices and the Poisson brackets among S(m)
α and T (m)

α have the form

{S(m)
1 , S

(n)
2 } = S

(m+n)
3 − S

(m+n+1)
3 , {S(m)

1 , S
(n)
3 } = −S

(m+n)
2 , {S(m)

2 , S
(n)
3 } = S

(m+n)
1 .

(12a)

{S(m)
1 , T

(n)
2 } = T

(m+n)
3 , {S(m)

1 , T
(n)
3 } = −T

(m+n)
2 + T

(m+n+1)
2 ,

{S(m)
2 , T

(n)
3 } = T

(m+n)
1 − T

(m+n+1)
1 , (12b)

{T (m)
1 , S

(n)
2 } = T

(m+n)
3 , {T (m)

1 , S
(n)
3 } = −T

(m+n)
2 + T

(m+n+1)
2 ,

{T (m)
2 , S

(n)
3 } = T

(m+n)
1 − T

(m+n+1)
1 , (12c)

{T (m)
1 , T

(n)
2 } = S

(m+n+1)
3 , {T (m)

1 , T
(n)
3 } = −S

(m+n+1)
2 , {T (m)

2 , T
(n)

3 } = S
(m+n+1)
1 .

(12d)

Sketch of the Proof. The proof follows from the results of [10,11] on the elliptic algebra based 
on the elliptic r-matrix of Sklyanin in the trigonometric degeneration j1 = j2 = 0, j3 = 1, where 
jα , α = 1, 2, 3 are the branching points of the elliptic curve.

Remark 2. The division of the trigonometric Lax matrix L(u) into two parts: L(u) = S(u) +
T (u) corresponds to the decomposition of trigonometric function into odd and even parts. In 

order to see this it is necessary to make a change of variables u = 1

sin2(φ)
, v = 1

sin2(ψ)
. This 

division leads to the additional Z2-grading in the Lax algebra (12).

3.3. Lax matrices of finite-dimensional integrable systems

One of the main advantages of the proposed basis in the algebra of Lax operators consists in 
the fact that it gives a convenient way to describe finite dimensional Hamiltonian systems and 
“finite” Lax operators that correspond to them.

To construct the corresponding Lax operators it is necessary to consider the subspaces

J2M+2 = SpanC{S(m)
α , T

(m)
β m ≥ M,α,β ∈ 1,3},

J2M+1 = SpanC{S(m)
α ,m > M,α ∈ 1,3;T (n)

α , n ≥ M,β ∈ 1,3}
The following Proposition holds true:

Proposition 3.2. The spaces J2M+2 and J2M+1, M ≥ 0 are ideals in the Poisson algebra given 
by Poisson brackets (12).

Sketch of the Proof. It follows from the explicit form of the Poisson brackets (12) and is 
checked by direct verifications.

Using the above Proposition and the fact that projection onto the quotient space over the ideal 
is a homomorphism one proves the following Proposition:
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Proposition 3.3. The Lax matrices of the form (10) with

Sα(u) =
M−1∑
m=0

S(m)
α um, Tα(u) =

M−1∑
m=0

T (m)
α um, (13)

and

Sα(u) =
M∑

m=0

S(m)
α um, Tα(u) =

M−1∑
m=0

T (m)
α um, (14)

where M ∈Z+ satisfy linear tensor bracket (9).

Remark 3. The Poisson bracket between the coordinate functions S(k)
α , T (k)

β have the form (12)

where in the right-hand-side it is necessary to put S(k)
α = 0, T (l)

β = 0 if k, l ≥ M in the case of the 

Lax matrices (13) or to put S(k)
α = 0, T (l)

β = 0 if k > M , l ≥ M in the case of the Lax matrices 
(14).

3.4. Integrals of motion

3.4.1. General case
By the virtue of the r-matrix form of the Poisson brackets we have that the function

I (2)(u) =
3∑

α=1

L2
α(u) (15)

generate Poisson commuting integrals.
Let us now specify the form of the function I (2)(u) using the explicit form of the components 

of the Lax matrix Lα(u) in terms of the functions Tα(u) and Sα(u). By the direct calculation one 
shows that

I (2)(u) = I 2,+(u) + 2u
√

u − 1I 2,−(u),

where

I 2,+(u) = u(S2
1(u) + S2

2(u)) + (u − 1)S2
3(u) + u(u − 1)(T 2

1 (u)) + T 2
2 (u)) + u2T 2

3 (u),

I 2,−(u) =
3∑

α=1

Tα(u)Sα(u).

It is possible to show, that due to the SO(2)-symmetry of the r-matrix there exists also additional 
linear integral M3 such that

{M3,Lα(u)} = ε3αβLβ.

By the virtue of this property we have that {M3, I (2)(u)} = 0.
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3.4.2. Case of one-poled Lax matrices
In the case of the one-poled Lax matrices with the poles in the point u = ∞ we obtain that

I 2,+(u) =
∞∑

m=0

I 2,+
m um,

I 2,−(u) =
∞∑

m=0

I 2,−
m um,

where I 2,±
m are polynomials in the coordinate functions given by the following explicit formulae

I 2,+
m =

m−2∑
k=0

3∑
α=1

T (k)
α T (m−2−k)

α +
m−1∑
k=0

(

3∑
α=1

S(k)
α S(m−1−k)

α − T
(k)

1 T
(m−1−k)
1 − T

(k)
2 T

(m−1−k)
2 )

−
m∑

k=0

S
(k)
3 S

(m−k)
3 , (16a)

I 2,−
m =

3∑
α=1

m∑
k=0

T (k)
α S(m−k)

α . (16b)

The additional linear integral M3 is written in this case simply as follows

M3 = S
(0)
3 .

Remark 4. After the restriction to the finite-dimensional quotients some of the functions I 2,+
m

and I 2,−
n become Casimir functions and some of the functions I 2,+

m , I 2,−
n turn zero. The restric-

tions onto the quotients is made by putting in the functions (16) S
(m)
α = 0, T (m)

β = 0 if m ≥ M

(in the case of the Lax matrices (13)) or S(m)
α = 0, T (n)

β = 0 if m > M , n ≥ M (in the case of the 
Lax matrices (14)).

3.5. The separating functions

Let us consider the following linear in the matrix elements of the Lax matrix functions

B(u) = i√
u

L1(u) − i

√
u − 1√

u
L2(u) − L3(u), (17a)

A(u) = −u − 1

u
M3 − i

√
u − 1√

u
L1(u) +

√
u − 1

u
L3(u), (17b)

where M3 is such a function on the Lax algebra that

{M3,Lα(u)} = ε3αβLβ. (18)

The following Proposition is true:

Proposition 3.4. Let the components of the Lax matrix Lα(u) satisfy the Poisson brackets (9). 
Let, moreover, function M3 be such a function on the phase space that the Poisson relation (18)
holds. Then the above defined functions A(u) and B(u) possess the following Poisson brackets
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(i){B(u),B(v)} = B(u) − B(v), (19a)

(ii) {A(u),B(v)} =
√

u − 1
√

v − 1√
u − 1 − √

v − 1
(B(u) − B(v)), (19b)

(iii) {A(u),A(v)} = 0. (19c)

Sketch of the Proof. The Proposition is proven by the direct calculation using the explicit form 
of the functions A(u), B(v), the Poisson brackets (9) and the relation (18).

It is easy to see from the relations (19) that the relations (5) are satisfied. In order to satisfy 
the relation (6) it is necessary to make the change of variables

u = x−2 + 1, v = y−2 + 1.

In terms of these new spectral parameters the polynomial B(x) will have the correct order and 
the function A(x) will produce canonically conjugated momenta, i.e. the relation (6) is also 
satisfied.1

Hence we have constructed a set of canonical coordinates associated with the trigonometric 
r-matrix. It is left to show that they satisfy the equations of separation. For this purpose we define 
the following linear function C(u) on the algebra of the Lax matrices

C(u) = i√
u

L1(u) + i

√
u − 1√

u
L2(u) − L3(u). (20)

Now we can formulate the next Proposition:

Proposition 3.5. The functions A(u), B(u), C(u) satisfy the following algebraic relation

(
u

(u − 1)
A(u) + M3)

2 − u

(u − 1)
B(u)C(u) +

3∑
α=1

Lα(u)2 = 0. (21)

Sketch of the Proof. The Proposition is proven by the direct calculation using the explicit form 
of the functions A(u), B(v), C(u).

Taking into account that by the very definition B(xj ) = 0, A(xj ) = pj we obtain that the 
equations (21) are the equations of separation for the trigonometric models which can be written 
explicitly as follows

3∑
α=1

L2
α(x−2

k + 1) + ((x2
k + 1) · pk + M3)

2) = 0.

Now, if we choose the Pauli matrices normalized as follows

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 i

−i 0

)
, σ3 =

(
1 0
0 −1

)

then the equations of separation are written in the following determinant form

det(L(x−2
k + 1) + i((1 + x2

k ) · pk + M3)Id) = 0.

1 Hereafter for technical reason we chose the following convention for a sign of the square root: 
√

x2 = −x.
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In the end of this section let us show the completeness of the constructed separated variables. 
The following Proposition holds true:

Proposition 3.6. Let L(u) be “finite” Lax operator with the poles in the point u = ∞. Then 
the number of zeros of the polynomial B(x) coincide with the half of the dimension of the non-
degenerate symplectic leaf in the space of the “finite” Lax matrices.

Proof. Let us check the order of the polynomial B(x) in x−1. The direct calculation gives

B(x) = S1(u)−S2(u) ·x−1 + iS3(u) ·x−1 +T1(u) ·x−1 −T2(u) ·x−2 + iT3(u) · (1+x−2).

(22)

Taking into account that u = x−2 + 1 we obtain that order of the polynomial B(x) in x−1 is 
N = 2M in the case of the Lax operator (13) and N = 2M + 1 in the case of the Lax operator 
(14). On the other hand “finite” Lax operators (13) and (14) are defined on the spaces g(M) of 
the dimensions 3 × 2M and 3 × (2M + 1) correspondingly. Taking into account the explicit 
form of the Poisson brackets it is easy to show that these spaces coincide with dual spaces to the 
sequences of semidirect extensions of the Lie algebra so(3) with three dimensional commutative 
algebras over C: g(M) � (so(3) +C3) +C3) + ...+) +C3. It is well-known that the number of 
the Casimir functions of such the algebras is equal to the number of three dimensional spaces in 
this extension (including the initial algebra so(3)), i.e. is equal to 2M in case of the Lax operator 
(13) or (2M + 1) in case of the Lax operator (14). Hence the dimensions of the corresponding 
symplectic leafs is 2 × 2M and 2 × (2M + 1) correspondingly, which is exactly two times the 
order of the polynomial B(x).

Proposition is proven.

4. Separation of variables in trigonometric Clebsch model

4.1. The trigonometric Clebsch model

The trigonometric Clebsch model is the first non-trivial from the separation of variables point 
of view models obtained in our scheme. It corresponds to the Lax operator (13) and the case 
M = 1

L(u) = √
u(S1σ1 + S2σ2) + √

u − 1S3σ3 + √
u
√

u − 1(T1σ1 + T2σ2) + uT3σ3, (23)

where Sα ≡ S
(0)
α , Tα ≡ T

(0)
α , α ∈ 1, 2, 3.

The corresponding Poisson brackets coincide with the Lie-Poisson brackets on e∗(3)

{Sα,Sβ} = εαβγ Sγ , {Sα,Tβ} = εαβγ Tγ , {Tα,Tα} = 0.

The generating function I (2)(u) =
3∑

α=1
L2

α(u) of the integrals of motion is written as follows

I (2)(u) = I 2,+(u) + 2u
√

u − 1I 2,−(u),

where I 2,+(u) = u2I
2,+
2 + uI

2,+
1 + I

2,+
0 , I 2,−(u) = I

2,−
0 ,

I
2,+
2 =

3∑
T 2

α ,
α=1
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I
2,+
1 =

3∑
α=1

S2
α − (T 2

1 + T 2
2 ),

I
2,+
0 = −S2

3 ,

I
2,−
0 =

3∑
α=1

TαSα.

The functions C1 ≡ I
2,−
0 and C2 ≡ I

2,+
2 are Casimir functions. The functions H ≡ I

2,+
1 and 

K ≡ I
2,+
0 are the Hamiltonian and integral of motion

{H,K} = 0.

The “additional” linear integral is M3 = S3. It is functionally dependent on K : K = −M2
3 .

4.2. The separated variables

Let us now apply the results of the previous section to the trigonometric Clebsch model. For 
this purpose it is enough to specify the functions A(u) and B(u) in the new notations

B(x) = x−2(i(S1 + iT3)x
2 − i(iS3 − S2 + T1)x + i(iT3 − T2)

)
, (24a)

A(x) = −−iS1x + iT1 + T3x

x2 , (24b)

The separated coordinates x1, x2 are the solutions of the equation B(x) = 0 and have the 
following explicit form

x1 = T1 − S2 + iS3 −
√

T 2
1 − 2T1S2 + 2iT1S3 + S2

2 − 2iS2S3 − S2
3 + 4S1T2 − 4iS1T3 + 4iT3T2 + 4T 2

3

2(S1 + iT3)
,

x2 = T1 − S2 + iS3 +
√

T 2
1 − 2T1S2 + 2iT1S3 + S2

2 − 2iS2S3 − S2
3 + 4S1T2 − 4iS1T3 + 4iT3T2 + 4T 2

3

2(S1 + iT3)
.

The canonically conjugated momenta are

p1 = A(x1) = −−iS1x1 + iT1 + T3x1

x2
1

,

p2 = A(x2) = −−iS1x2 + iT1 + T3x2

x2
2

.

The Poisson commutation relations are the canonical ones

{xi,pj } = δij , {xi, xj } = 0, {pi,pj } = 0, i, j ∈ 1,2.

By the virtue of the results of the previous section the canonical coordinates pk, xk satisfy the 
following equations of separation

(1 + x2
k )2

x4
k

C2 + (1 + x2
k )

x2
k

H −M2
3 − 2(1 + x2

k )

x3
k

C1 + (
(1+x2

k )pk +M3
)2 = 0, k ∈ 1,2.

(25)
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4.3. The reconstruction formulae

Let us now reconstruct the dynamical variables Sα , Tβ , α, β ∈ 1, 2, 3 using the variables of 
separation pi , xj and the values of the Casimir functions. For this purpose it is necessary to solve 
the system of six linear-quadratic equations on six variables Sα, Tβ

(x1 + x2) = (T1 − S2 + iS3)

(S1 + iT3)
, (26a)

x1x2 = (−T2 + iT3)

(S1 + iT3)
, (26b)

p1 = −−iS1x1 + iT1 + T3x1

x2
1

, (26c)

p2 = −−iS1x2 + iT1 + T3x2

x2
2

, (26d)

C1 = T1S1 + T2S2 + T3S3, (26e)

C2 = T 2
1 + T 2

2 + T 2
3 . (26f)

The following Proposition holds true:

Proposition 4.1. (i) The system of equations (26) is solved as follows

S1 = i(x1 − x2)
2C2

2x1x2((x1 − x2)x
2
1p1 − x2

2p2(x1 − x2))
+

+ i(x4
1x2(x2 − 2x1 + x2

1x2)p2
1 − 2x3

1x3
2 (−1 + x1x2)p2p1 + x1x4

2 (x1x2
2 − 2x2 + x1)p2

2)

2x1x2((x1 − x2)x2
1p1 − x2

2p2(x1 − x2))
, (27a)

S2 = − i(x1 − x2)C1

x1x2(p1x
2
1 − x2

2p2)
+ i(x2 + x1)(x1 − x2)C2

2x2
2x2

1(p1x
2
1 − x2

2p2)
−

− i(−x2
2x4

1 (x3
1 + x2

1x2 − x1 + x2)p2
1 + 2x4

1x4
2 (x2 + x1)p2p1 − x2

1x4
2 (x3

2 + x1x2
2 − x2 + x1)p2

2)

2x2
2 (x1 − x2)x2

1 (p1x2
1 − x2

2p2)
,

(27b)

S3 = − (x1 − x2)C1

x1x2(p1x
2
1 − x2

2p2)
+ ((x2 + x1)(x1 − x2)C2

2x2
2x2

1(p1x
2
1 − x2

2p2)

− ((x2
2x4

1(1 + x2
1)p2

1 − x2
1x4

2(1 + x2
2)p2

2)

2x2
2x2

1(p1x
2
1 − x2

2p2)
, (27c)

T1 = − ix2x
2
1p1

(x1 − x2)
+ ix1p2x

2
2

(x1 − x2)
, (27d)

T2 = − i(x1 − x2)
2C2

2x1x2((x1 − x2)x
2
1p1 − x2

2p2(x1 − x2))
−

− i(−x2
2x4

1 (x1 − 1)(x1 + 1)p2
1 + 2x3

1x3
2 (−1 + x1x2)p2p1 − x2

1x4
2 (x2 − 1)(x2 + 1)p2

2)

2x1x2((x1 − x2)x2
1p1 − x2

2p2(x1 − x2))
, (27e)

T3 = − (x1 − x2)C2
2 2
2x1x2(p1x1 − x2p2)
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− (x2
2x4

1(1 + x2
1)p2

1 − 2x3
1x3

2(x1x2 + 1)p2p1 + x2
1x4

2(1 + x2
2)p2

2)

2(x1 − x2)(p1x
2
1 − x2

2p2)x1x2
. (27f)

(ii) If the Poisson commutation relations among pi , xj are the canonical ones

{xi,pj } = δij , {xi, xj } = 0, {pi,pj } = 0, i, j ∈ 1,2

then the Poisson brackets between the variables Sα, Tβ repeat standard Lie brackets of e(3)

{Sα,Sβ} = εαβγ Sγ , {Sα,Tβ} = εαβγ Tγ , {Tα,Tα} = 0.

4.4. The Abel-type equations

Using either the equations of separation or the reconstruction formulas it is possible to show 
that the Hamiltonians are expressed via the coordinates of separation and values of the Casimir 
functions as follows2

H = (2x4
1x2p1 − 2x1x

4
2p2)

x2
1x2

2(p1x
2
1 − p2x

2
2)

C1 + (−x4
1(1 + x2

2)p1 + x4
2(1 + x2

1)p2

(x2
1x2

2(p1x
2
1 − p2x

2
2))

C2+

+ (x4
2x4

1(1 + x2
1)p2p

2
1 − x4

2x4
1(1 + x2

2)p2
2p1)

x2
1x2

2(p1x
2
1 − p2x

2
2)

,

M3 = − (x1 − x2)C1

x1x2(p1x
2
1 − x2

2p2)
+ ((x2 + x1)(x1 − x2)C2

2x2
2x2

1(p1x
2
1 − x2

2p2)

− ((x2
2x4

1(1 + x2
1)p2

1 − x2
1x4

2(1 + x2
2)p2

2)

2x2
2x2

1(p1x
2
1 − x2

2p2)
.

Using this representation we obtain the following equations of motion for the separated coordi-
nates

dx1

dt1
= −2p2x1x2(x1 − x2)C1

(p1x
2
1 − p2x

2
2)2

+ p2(x1 − x2)(x2 + x1)C2

(p1x
2
1 − p2x

2
2)2 − p2(−x2

2x4
1(1 + x2

1)p2
1

+

+ p2(−x2
2x4

1(1 + x2
1)p2

1 + 2x2
1x4

2(1 + x2
1)p2p1 − x4

2x2
1(1 + x2

2)p2
2)

(p1x
2
1 − p2x

2
2)2

, (28a)

dx2

dt1
= 2p1x1x2(x1 − x2)C1

(p1x
2
1 − p2x

2
2)2

− p1(x1 − x2)(x2 + x1)C2

(p1x
2
1 − p2x

2
2)2

+

+ p1(x
2
2x4

1(1 + x2
1)p2

1 − 2x2
2x4

1(1 + x2
2)p2p1 + x4

2x2
1(1 + x2

2)p2
2)

(p1x
2
1 − p2x

2
2)2

, (28b)

dx1

dt2
= x1(x1 − x2)C1

x2(p1x
2
1 − p2x

2
2)2

− (x2 + x1)(x1 − x2)C2

2x2
2(p1x

2
1 − p2x

2
2)2

+

+ (−x2
2x4

1(1 + x2
1)p2

1 + 2x2
1x4

2(1 + x2
1)p2p1 − x4

2x2
1(1 + x2

2)p2
2)

2x2
2(p1x

2
1 − p2x

2
2)2

, (28c)

2 We hereafter prefer to use integral M3 = S3 instead of the integral K = −(M3)2.
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dx2

dt2
= − x2(x1 − x2)C1

x1(p1x
2
1 − p2x

2
2)2

+ (x2 + x1)(x1 − x2)C2

2x2
1(p1x

2
1 − p2x

2
2)2

−

− (x2
2x4

1(1 + x2
1)p2

1 − 2x2
2x4

1(1 + x2
2)p2p1 + x4

2x2
1(1 + x2

2)p2
2)

2x2
1(p1x

2
1 − p2x

2
2)2

, (28d)

where 
dxi

dt1
= {xi, H }, dxj

dt2
= {xj , M3}.

With the help of these equations of motion we derive the Abel-type equations

dx1

2x2
1(p1x

2
1 + M3 + p1)

+ dx2

2x2
2(p2x

2
2 + M3 + p2)

= −dt1,

p1dx1

(p1x
2
1 + M3 + p1)

+ p2dx2

(p2x
2
2 + M3 + p2)

= −dt2.

The Abel-type equations are integrated using the fact that momenta satisfy the equations of sep-
aration (25) and all the integrals are constants along the trajectories of the both flows.

Let us now transform the equation of the spectral curve (25) and the above Abel-type equa-
tions to more standard from the point of view of the algebraic geometry form. For this purpose 
we perform the following change of variables

Pi = (pi(x
2
i + 1) + M3), Xi = x−1

i i ∈ 1,2.

Under this transformation the spectral curve (25) becomes of second order in Pi and fourth order 
in Xi , i.e. coincides with the elliptic curve

P 2
i = −(X2

i + 1)2C2 − (X2
i + 1)H + M2

3 + 2(X2
i + 1)XiC1, i ∈ 1,2. (29)

The corresponding Abel-type equations are re-written as follows

dX1

2P1
+ dX2

2P2
= dt1, (30a)

(P1 − M3)

X2
1 + 1

dX1

P1
+ (P2 − M3)

X2
2 + 1

dX2

P2
= dt2. (30b)

As one can check, the first equation in the quadratures (30) contains a holomorphic differential 
on the elliptic curve (29), whereas the second one includes a meromorphic differential of third 
kind. Hence equations (30) written in integral form give rise to the so called generalized Abel 
mapping of third kind. The problem of its inversion has been posed in [25] and solved in terms 
of theta-functions of one variable in [26].

5. Conclusion and discussion

In the present paper we have constructed new symmetric variables of separation for the clas-
sical integrable Hamiltonian systems governed by skew-symmetric trigonometric r-matrix. The 
important feature of the constructed models is that the corresponding curve of separation is a 
shifted spectral curve of the initial Lax matrix.

In the present paper we have considered in details the example of trigonometric Clebsch 
model and have explicitly found the corresponding separated coordinates and momenta, the re-
construction formulas and Abel-type equations. We plan to perform a similar detailed study of the 
variables of separation for the other integrable models associated with a classical trigonometric 
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r-matrix. Among such the models there are physically important ones. They are: trigonometric 
Gaudin models [24] and Jyaynes-Cummings-Dicke-type models [19].

Note that in the case of the standard skew-symmetric rational r-matrix a complete symmetric 
set of separated variables is obtained by another method (see e.g. [22] and references therein) 
and the corresponding curve of the separation coincides with a standard spectral curve of the 
Lax matrix. The similar statement holds true for the case of elliptic integrable models, where the 
separation curve is a standard spectral curve of the initial Lax matrix (see [23] for the example 
of the “elliptic” Clebsch model). Nevertheless, this does not mean that the presented example 
of SoV is completely isolated. The method of construction of separated variables using shifted 
spectral curves is generalized onto certain classes of non-skew-symmetric classical r-matrices. 
The work over this problem is now in progress.

Another very interesting problem is to prolong the results of the present article onto the quan-
tum case. This problem is open.
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