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a b s t r a c t 

Neurite Orientation Dispersion and Density Imaging (NODDI) and Bingham-NODDI diffusion MRI models are 

nowadays very well-known models in the field of diffusion MRI as they represent powerful tools for the estimation 

of brain microstructure. In order to efficiently translate NODDI imaging findings into the diagnostic clinical 

practice, a test-retest approach would be useful to assess reproducibility and reliability of NODDI biomarkers, 

thus providing validation on precision of different fitting toolboxes. In this context, we conducted a test-retest 

study with the aim to assess the effects of different factors (i.e. fitting algorithms, multiband acceleration, shell 

configuration, age of subject and hemispheric side) on diffusion models reliability, assessed in terms of Intra-class 

Correlation Coefficient (ICC) and Variation Factor (VF). To this purpose, data from pediatric and adult subjects 

were acquired with Simultaneous-MultiSlice (SMS) imaging method with two different acceleration factor (AF) 

and four b-values, subsequently combined in seven shell configurations. Data were then fitted with two different 

GPU-based algorithms to speed up the analysis. Results show that each factor investigated had a significant effect 

on reliability of several diffusion parameters. Particularly, both datasets reveal very good ICC values for higher 

AF, suggesting that faster acquisitions do not jeopardize the reliability and are useful to decrease motion artifacts. 

Although very small reliability differences appear when comparing shell configurations, more extensive diffusion 

parameters variability results when considering shell configuration with lower b-values, especially for simple 

model like NODDI. Also fitting tools have a significant effect on reliability, but their difference occurs in both 

datasets and AF, so it appears to be independent from either misalignment and motion artifacts, or noise and 

SNR. The main achievement of the present study is to show how 10 min multi-shell diffusion MRI acquisition for 

NODDI acquisition can have reliable results in WM. More complex models do not appear to be more prone to 

less data acquisition as well as noisier data thus stressing the idea of Bingham-NODDI having greater sensitivity 

to true subject variability. 
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. Introduction 

Neurite Orientation Dispersion and Density Imaging (NODDI) is a

iffusion MRI (dMRI) technique that produces direct estimation of brain

icrostructure by modeling the tissue as a multi-compartmental system

 Zhang et al., 2012 ), accounting for free, hindered and restricted water

iffusion. Expressing the dMRI signal as a sum of contributions from

ach of the three compartments modeled, NODDI provides specific met-

ics (i.e. the Orientation Dispersion Index ODI, the volume fraction of

ntra-cellular v intra and of cerebro-spinal fluid v iso compartments) which

re able to quantify the effects of density and orientation distribution of

endrites and axons. Based on NODDI, Bingham-NODDI model was then

ntroduced ( Tariq et al., 2016 ), in order to characterize anisotropic ori-

ntation dispersion of complex configurations like fanning and bending

xons, overcoming the commonly used Diffusion Tensor Imaging (DTI).
 2021 

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ince DTI metrics (e.g. the Fractional Anisotropy (FA) and Mean Dif-

usivity (MD)) were estimated by approximating a single fiber at each

oxel and assuming mono-Gaussian model for water diffusion, they lack

pecificity in the White Matter (WM) tracts ( Kodiweera et al., 2016 ;

heeler-Kingshott and Cercignani, 2009 ). 

Similarly to DTI, NODDI and Bingham-NODDI methods allow one

ber tract in each voxel and they represent powerful instruments, able

o provide highly specific and biologically meaningful measures of tis-

ue microstructure ( Kunz et al., 2014 ). For this reason, these tech-

iques recently gained increasing interest for applications in the clin-

cal field, as they allowed to non-invasively investigate cognitive pro-

esses ( Kamiya et al., 2020 ) and in-vivo cellular architecture of the de-

eloping human brain and to follow brain maturation ( Lynch et al.,

020 ; Mah et al., 2017 ). Particularly, the ability to detect possible

lterations in WM fiber organization ( Dean et al., 2017 ) made the

ODDI approach suitable to probe brain injury ( Caverzasi et al., 2016 ;

alacios et al., 2020 ) and to investigate specific neurological disor-

ers, such as Alzheimer’s disease ( Fu et al., 2020 ), Multiple Sclerosis

 Mustafi et al., 2019 ; Schneider et al., 2017 ) and epilepsy disorders

 Sone et al., 2018 ). 

Despite their success in quantifying complex brain morphology, both

ODDI and Bingham-NODDI present some clinical limitations, mainly

elated to the long acquisition and processing times. Multi-shell acqui-

ition protocol with a large number of uniformly distributed diffusion

eighted gradient directions for each b-value leads to long scan time,

hich limits its application in the clinical practice especially in the pedi-

tric population. In this context, Multiband or Simultaneous Multi-Slice

SMS) imaging could represent a valid option for scan time reduction

s it is able to simultaneously excite multiple slices ( Setsompop et al.,

012 ), thus providing an acceleration in data acquisition which is pro-

ortional to the number of excited slices (i.e. acceleration factor AF).

oreover, fitting the data for diffusion parameter maps estimation is

omputationally expensive particularly when increasing dataset size and

or highly complex biophysical models. The use of computational power

ffered by recent parallel computing architectures like Graphics Process-

ng Units (GPUs) could represent a helpful solution to reduce processing

ime ( Cheng et al., 2013 ). Among other algorithms for fast model fitting

ptimization like the Accelerated Microstructure Imaging via Convex

ptimization (AMICO) (( Daducci et al., 2015 )), two GPU-based tool-

oxes have been recently presented to fit both NODDI and Bingham-

ODDI models. The first tool is Microstructure Diffusion Toolbox (MDT),

 python-based toolbox freely available under an open source l -GPL li-

ense that is primarily meant for microstructure modeling and analysis

f dMRI ( Harms et al., 2017 ), while the second tool is CUDA Diffusion

odeling Toolbox (cuDIMOT), a GPU-based library for accelerated non-

inear optimization ( Hernandez-Fernandez et al., 2019 ). Compared to

he widely used AMICO toolbox, MDT and cuDIMOT allow to fit NODDI

nd Bingham-NODDI models much faster, but it is not yet clear whether

he significant fitting time reduction could sacrifice reliability of the

etrics estimated. In order to efficiently translate NODDI imaging find-

ngs into the diagnostic clinical practice ( Lerma-Usabiaga et al., 2019 ),

 test-retest approach would be useful to assess reproducibility and reli-

bility of NODDI biomarkers, thus providing validation on precision of

he method, especially when considering GPU-based approach. In this

ontext several recent studies focused on investigating the reliability

nd reproducibility of metrics from different dMRI techniques, such as

TI ( Boekel et al., 2017 ; Duan et al., 2015 ), NODDI ( Parvathaneni et al.,

018 ; Tariq et al., 2012 ) and 3-tissues Constrained Spherical Deconvolu-

ion (CSD) ( Newman et al., 2019 ). Focusing on NODDI, previous stud-

es demonstrated significant dependence of metrics on magnetic field

trength ( Chung et al., 2016 ) and reported excellent repeatability, es-

ecially for ODI and v intra metrics ( Andica et al., 2020 ; Granberg et al.,

017 ; Huber et al., 2019 ). Moreover, although a reproducibility study

as recently performed to assess the effect of b-values and gradient di-

ections on metrics ( Parvathaneni et al., 2018 ), the effect of their inter-
2 
ction with other factors (e.g. SMS protocol and fitting tools) still need

o be evaluated. . 

The purpose of this work is therefore to perform a test-retest reli-

bility assessment of NODDI and Bingham-NODDI models fitted with

wo different GPU-based algorithms (MDT, cuDIMOT) in terms of Intra-

lass Correlation Coefficient (ICC) and Variation Factor (VF). Focusing

nly on NODDI metrics, the reliability results from GPU-based algo-

ithms were also compared to those from AMICO toolbox in order to

rovide quantifiable comparison between toolboxes with different per-

ormances. Particularly, the test-retest reliability was evaluated based

n children and adult data for different SMS protocols and for seven dif-

erent shell configurations. Along with it, a test on the brain asymmetry

nd its effect on reliability was performed. 

. Materials and methods 

.1. Subjects 

This research was conducted in accordance with the Declaration of

elsinki. Ethical committee approval was obtained through Institutional

eview Board (IRB) and written informed consent was obtained from ev-

ry subject or next of kin for the execution of MRI acquisitions. Between

eptember 2017 and September 2020 MRI data from healthy subjects

ere collected at the Bambino Gesù Children’s Hospital (Rome, Italy).

ccording to the recommendations on sample size for test-retest studies

 Bujang and Baharum, 2017 ), assuming two observation per subject, a

inimum sample size of 15 subjects is considered to be sufficient to de-

ect ICC values of 0.6 for fixed values of alpha and power (respectively

.05 and 80%). Consequently, we identified 31 subjects: 15 children

mean age = 8.9 y, range = 4.5–15.6 y, 8 males and 7 females) and 16

dult volunteers (mean age = 29.2y, range = 22.8–59.2 y, 8 males and

 females). 

.2. Data acquisition 

Images from both cohorts were acquired on a 3T scanner (Siemens

agnetom Skyra, Siemens Medical Systems, Erlangen, Germany)

quipped with a 32 channels head-coil. Each participant received a test-

etest protocol, including 2 diffusion MRI acquisitions with a Siemens

rototype EPI-based sequence (SMS). Pediatric subjects underwent MRI

or different clinical reasons and received a supra-tentorial acquisition,

here 9 out of 15 were acquired with AF = 2 (TR: 4500 ms, TE: 114 ms,

A: 90°, ST: 2 mm, #Slice: 45, AF: 2), while the other 6 received AF = 3

rotocol (TR: 3000 ms, TE: 114 ms, FA: 90°, ST: 2 mm, #Slice: 45, AF: 3).

dults received full brain acquisition, where 8 out of 16 volunteers were

cquired with AF = 2 protocol (TR: 6400 ms, TE: 114 ms, FA: 90°, ST:

 mm, #Slice: 66, AF: 2), while the other 8 volunteers received AF = 3

TR: 4500 ms, TE: 114 ms, FA: 90°, ST: 2 mm, #Slice: 69, AF: 3). Data

ere acquired at four different b-values to maximize signal-to-noise ra-

io (SNR) as shown before ( Zhang et al., 2018 ): (1) b = 300 s/mm 

2 along

0 gradient direction, (2) b = 700 s/mm 

2 and (3) b = 1000s/mm 

2 , both

ith gradients along 30 directions and (4) b = 2000s/mm 

2 , with 64

irections. 

Additional five brain volumes with no diffusion weighting

 b = 0 s/mm 

2 ) were collected. Only in adult volunteers one further ac-

uisition using a reversed phase encoding direction (posterior to ante-

ior) was also acquired to allow the estimation of susceptibility-induced

istortion. All diffusion images were acquired with a spatial resolution

f 2.0 × 2.0 × 2.0 mm and acquisition matrix of 128 × 128. Total ac-

uisition time for diffusion imaging was approximately 20 min for AF = 2

nd 15 min for AF = 3. Children did not exit the scanner between test and

etest but the two sessions were separated by about 20 mins. Conversely,

dult volunteers were out of the scanner for about 20 min between ses-

ions. 
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.3. Data preprocessing 

We assessed diffusion properties for seven different shell combina-

ion: three 2-shell (P 21 : b = 300–2000s/mm 

2 , P 22 : b = 700–2000s/mm 

2 

nd P 23 : b = 1000–2000s/mm 

2 ), three 3-shell (P 31 : b = 300–700–

000s/mm 

2 , P 32 : b = 300–1000–2000s/mm 

2 and P 33 : b = 700–

000–2000) and one 4-shell (P 4 : b = 300–700–1000–2000s/mm 

2 ).

hey were all processed for denoising, eddy current and motion ar-

ifacts correction using MRTrix3 dwidenoise ( Veraart et al., 2016b ,

016a ) and dwipreproc functions ( https://github.com/mrtrix3 , version

.0.2). Diffusion-Weighted Image (DWI) data were segmented with

PM12 toolbox ( https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ ),

roducing tissue segmentation maps, that were logically summed to

roduce brain masks required as input during the fitting step. When-

ver available, a susceptibility-induced off-resonance field was esti-

ated from the pairs of images acquired with reversed phase-encode

irections ( Andersson et al., 2003 ; Smith et al., 2004 ) using topup of

SL ( https://fsl.fmrib.ox.ac.uk/fsl/fslwiki , version 6.0). Moreover, from

ddy output of FSL, we estimated the amount of total movement during

he single acquisition for each subject, averaging the RMS movement

elative to the first volume (see Supplementary Material). 

.4. Data fitting 

NODDI and Bingham-NODDI were applied to the pre-processed data

rom all the shell configurations. Model fitting was performed with

wo different toolboxes: MDT ( https://github.com/cbclab/MDT , version

.19.1), a python-based GPU accelerated toolbox freely available un-

er an open source l -GPL licence ( Harms et al., 2017 ) and cuDIMOT

 https://users.fmrib.ox.ac.uk/~moisesf/cudimot/ ), a GPU-base library

or accelerated nonlinear optimization ( Hernandez-Fernandez et al.,

019 ). We used Powell’s and Levenberg-Marquardt optimization algo-

ithms respectively for MDT and cuDIMOT. Additionally, the NODDI

odel was also implemented using the python package of the AMICO

oolbox ( https://github.com/daducci/AMICO ). The fitting was achieved

ith an Oracle cloud server setup with two NVIDIA® Tesla® P100, four

ntel® Xeon® Gold 5120 CPUs @ 2.20 GHz, 187 GB RAM. Each tool-

ox produced three maps (ODI, v intra and v iso ) for NODDI model and

ix maps (ODI along primary and secondary direction ODI p and ODI s ,

otal ODI ODI tot , Dispersion Anisotropy DA, v intra and v iso ) for Bingham-

ODDI model. An analysis based on Region of Interest (ROI) was then

erformed to investigate test-retest reliability. To this purpose, indi-

idual FA maps were first computed by fitting Diffusion Tensor Model

n a multi-shell configuration and then aligned with Tract-Based Spa-

ial Statistics (TBSS) FSL pipeline ( Smith et al., 2006 ) to construct WM

ean skeleton. ROIs were automatically extracted from JHU-ICBM-DTI-

1 WM atlas and overlapped ( fslmath function) to the skeleton in order

o remove any cerebro-spinal fluid (CSF) and gray matter (GM) voxels

nd to ensure reproducibility to be evaluated on the same projections.

inally, the ROIs were back-projected from Montreal Neurological In-

titute (MNI) space into each subject space with inverse TBSS trans-

ormations. During the fitting, each tool approximates the noise stan-

ard deviation, whose estimate could be influenced by changes in the

rain mask and misalignment in the b0 images. For this reason we in-

estigated the effect of noise standard deviation estimates on the test-

etest variability. To this purpose we fitted both NODDI and Bingham

ODDI models on data from all shell configurations with MDT toolbox,

omparing reliability results obtained in standard setting with those

btained with specific noise standard deviation estimates, previously

omputed with specific approaches, i.e. Moments ( https://github.com/

amuelstjean/autodmri ) and MPPCA ( https://github.com/mrtrix3 ) ( St-

ean et al., 2020 ). A MANOVA analysis was performed between data

ith different noise standard deviation estimates both on ICC and VF

see Tables 20,21 of Supplementary Material). 
3 
.5. Test-retest reliability 

Diffusion parameter maps were computed for each shell configura-

ion for both NODDI ( Fig. 1 A) and Bingham-NODDI ( Fig. 1 B) models.

e evaluated ICC and VF distributions within multi-shell configura-

ions for the two fitting toolboxes. In particular, we compared results

rom seven different shell combinations (P 21 , P 22 , P 23 , P 31 , P 32 , P 33 

nd P 4 ) for MDT and cuDIMOT. This approach was used for SMS se-

uences acquired with different AF both for pediatric subjects (we re-

erred to children acquired with AF = 2/3 as PED_SMS2/PED_SMS3), and

dult volunteers (AD_SMS2/AD_SMS3). Since pediatric subjects were ac-

uired with limited acquisition stack to reduce exam time, we focused

heir reliability assessment within 36 supra-tentorial WM ROIs. Out of

6 ROIs, 32 were investigated for test-retest reliability in order to as-

ess effect of hemispheric side (16 ROIs for each hemispheric side).

or adults, ROI-based analysis was performed both within 32 supra-

nd 8 infra-tentorial ROIs. Both ICC and VF were obtained on all dif-

usion scalar metrics (ODI, v intra , v iso for NODDI and ODI s , ODI p , ODI tot ,

A, v intra , v iso for Bingham-NODDI) and for each ROI. The VF gives a

easure of within-subject variability ( Albi et al., 2018 ; Jovicich et al.,

014 ; Papinutto et al., 2013 ), where lower scores indicate better repro-

ucibility. It is computed as the ratio between the absolute test-retest

rror and their mean. The ICC is a widely used statistical approach

 McGraw and Wong, 1996 ; Shrout and Fleiss, 1979 ) which combine

oth within- and across-subject variability to assess agreement in test-

etest reliability ( Albi et al., 2018 ; Buchanan et al., 2014 ; Duan et al.,

015 ; Hodkinson et al., 2013 ). Particularly, according to the practical

uidelines reported in literature ( Koo and Li, 2016 ), we identified the

wo-way mixed effects model for single measurement as best ICC mea-

urement for our study ( McGraw and Wong, 1996 ), ranging from 0 (poor

eliability) to 1 (excellent reliability) and defined as follows: 

𝐶 𝐶 ( 𝐴, 1 ) = 

𝑀 𝑆 𝑅 − 𝑀 𝑆 𝐸 

𝑀 𝑆 𝑅 − ( 𝑘 − 1 ) 𝑀 𝑆 𝐸 + 

𝑘 

𝑛 

(
𝑀 𝑆 𝐶 − 𝑀 𝑆 𝐸 

)

here MS R is the mean square for rows (i.e. between subject), MS C is the

ean square of columns(i.e. within subjects), MS E is the mean square

rror, k is the number of measurements and n is the number of subjects.

Negative ICC values appear when the between-subject variation

s relatively small compared to the within-subject variation and are

heoretically difficult to interpret ( Giraudeau, 1996 ; Rousson et al.,

002 ). Therefore, negative ICCs were set to zero (i.e. completely

on-reliable), as suggested in other test–retest studies using the

CC ( Braun et al., 2012 ; Duan et al., 2015 ). Both VF and ICC

 https://www.mathworks.com/matlabcentral/fileexchange/22099- 

ntraclass-correlation-coefficient-icc ) estimates were performed on a

ATLAB R2019 environment ( Salarian, 2020 ). 

.6. Statistical analysis 

MANOVA analysis was performed on ICC and VF values for each

ODDI parameter as extracted from the different ROIs. The model in-

luded main effects of acceleration factor (SMS), adult or children group

Subj), shell configuration, software choice (Tools) and hemispheric

ide. For each factor (Tool, SMS, Configuration, Subj and Side), tables

f statistical results reported mean ICC (see Table 1 and Supplementary

aterial Tables 1,3) and VF (see Table 2 and Supplementary Material

ables 2,4) values and standard deviation, values of F statistic, signifi-

ance and effect size ( 𝜂) for each diffusion parameter. 

In order to assess significant differences between diffusion models

NODDI and NODDI-Bingham), we run a t -test analysis on the ICC and

F of common metrics (i.e. ODI, ODI tot , v intra and v iso ). Moreover, the

ffect of different noise standard deviation estimates on reliability was

lso investigated performing a MANOVA analysis (see Tables 20,21 of

upplementary Material). The statistics were carried out in Statistical

ackage for Social Science (SPSS) software. We also computed mean

https://github.com/mrtrix3
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://github.com/cbclab/MDT
https://users.fmrib.ox.ac.uk/~moisesf/cudimot/
https://github.com/daducci/AMICO
https://github.com/samuelstjean/autodmri
https://github.com/mrtrix3
https://www.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient-icc
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Table 1 

Mean values, standard deviation, F -statistics, p -value and size effect of ICC for NODDI and Bingham-NODDI metrics to assess effect 

of different factors (tool, SMS, configuration and side) within 32 supra-tentorial ROIs. N.S. means Not Significant. 

INTRA-CLASS CORRELATION COEFFICIENT ICC WITHIN SUPRA-TENTORIAL ROIS 

Parameter Type of parameter Mean (std dev) F (pval) ( 𝜂) 

EFFECT OF TOOL ODI MDT .847 (0.005) F(1,1781) = 7.657 

(5.71 e − 03 ) (4.28 

e − 03 ) 

cuDIMOT .827 (0.005) 

Vintra MDT .924 (0.004) F(1,1781) = 85.879 

(5.34e − 20 ) (0.046) 

cuDIMOT .876 (0.004) 

Viso MDT .812 (0.006) F(1,1781) = 25.376 

(5.19e − 07 ) (0.014) cuDIMOT .851 (0.006) 

DA MDT .822 (0.005) F(1,1781) = 8.453 

(3.69 e − 03 ) (4.72 

e − 03 ) 

cuDIMOT .842 (0.005) 

ODIp MDT .828 (0.005) N.S. 

cuDIMOT .825 (0.005) 

ODIs MDT .832 (0.005) N.S. 

cuDIMOT .834 (0.005) 

ODItot MDT .829 (0.005) N.S. 

cuDIMOT .831 (0.005) 

Vintra MDT .898 (0.004) F(1,1781) = 18.678 

(1.63e − 05 ) (0.01) cuDIMOT .876 (0.004) 

Viso MDT .845 (0.005) N.S. 

cuDIMOT .850 (0.005) 

EFFECT OF SMS ODI SMS2 .782 (0.005) F(1,1781) = 237.794 

(1.87e − 50 ) (0.118) SMS3 .892 (0.005) 

Vintra SMS2 .856 (0.004) F(1,1781) = 294.457 

(3.35e − 61 ) (0.142) SMS3 .944 (0.004) 

Viso SMS2 .814 (0.006) F(1,1781) = 20.268 

(7.17e − 06 ) (0.011) SMS3 .849 (0.006) 

DA SMS2 .794 (0.005) F(1,1781) = 120.255 

(4.01e − 27 ) (0.063) SMS3 .870 (0.005) 

ODIp SMS2 .785 (0.005) F(1,1781) = 126.873 

(1.77e − 28 ) (0.066) SMS3 .869 (0.005) 

ODIs SMS2 .776 (0.005) F(1,1781) = 219.357 

(6.83e − 47 ) (0.109) SMS3 .889 (0.005) 

ODItot SMS2 .771 (0.005) F(1,1781) = 251.088 

(5.27e − 53 ) (0.123) SMS3 .890 (0.005) 

Vintra SMS2 .825 (0.004) F(1,1781) = 575.393 

(2.05e − 110 ) (0.244) SMS3 .949 (0.004) 

Viso SMS2 .838 (0.005) F(1,1781) = 7.998 

(4.73 − 03 ) (4.47 − 03 ) SMS3 .857 (0.005) 

EFFECT OF 

CONFIGURATIONS 

ODI P 21 .843 (0.010) N.S. 

P 22 .841 (0.010) 

P 23 .832 (0.010) 

P 31 .837 (0.010) 

P 32 .837 (0.010) 

P 33 .835 (0.010) 

P 4 .834 (0.010) 

Vintra P 21 .869 (0.007) F(6,1781) = 8.793 

(1.82 − 09 ) (9.00e − 03 ) P 22 .893 (0.007) 

P 23 .915 (0.007) 

P 31 .886 (0.007) 

P 32 .894 (0.007) 

P 33 .923 (0.007) 

P 4 .920 (0.007) 

Viso P 21 .820 (0.010) F(6,1781) = 2.750 

(0.012) (0.029) P 22 .853 (0.010) 

P 23 .845 (0.010) 

P 31 .835 (0.010) 

P 32 .842 (0.010) 

P 33 .805 (0.010) 

P 4 .818 (0.010) 

DA P 21 .813 (0.009) N.S. 

P 22 .841 (0.009) 

P 23 .847 (0.009) 

P 31 .844 (0.009) 

P 32 .819 (0.009) 

P 33 .828 (0.009) 

P 4 .830 (0.009) 

ODIp P 21 .832 (0.010) N.S. 

P 22 .828 (0.010) 

P 23 .822 (0.010) 

P 31 .831 (0.010) 

P 32 .826 (0.010) 

P 33 .823 (0.010) 

P 4 .825 (0.010) 

( continued on next page ) 
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Fig. 1. Diffusion parameter maps obtained for different shell configurations. Maps within mid-axial slice for NODDI (A) and Bingham-NODDI (B) computed on adult 

dataset. 
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P  
nd standard deviation of VF and ICC values (see Tables 5–4 of Supple-

entary Material). For every model parameter, toolbox performances

nd shell configurations of each group were compared. We analyzed

esults with Bland-Altman plots, where parameter difference between

cquisitions was plotted against its mean value, averaged over ROIs for

ach subject. We exhibited outcomes from the two toolboxes, shell con-

gurations and datasets (see Supplementary Material). 

. Results 

We reported MANOVA analysis results obtained for both ICC and

F when considering supra-tentorial and infra-tentorial brain areas

eparately. The supra-tentorial MANOVA multivariate analysis for VF

eported a significant Trace of Pillai (ToP) for all factors (SMS Ac-

eleration factor: ToP = 0.111, F(9, 1773) = 24.475, p < 10 − 40 ;

oftware: ToP = 0.396, F(9, 1773) = 129.092, p < 10 − 187 ; Sub-

ect: ToP = 0.491, F(9, 1773) = 190.128, p < 10 − 252 ; Configuration:

oP = 0.243, F(54, 10,668) = 8.329, p < 10 − 62 ; Side: ToP = 0.052,

(9.1773) = 10.712, p < 10 − 16 ). The supra-tentorial MANOVA mul-

ivariate analysis for ICC reported a significant ToP for all factors

SMS Acceleration factor: ToP = 0.295, F(9, 1773) = 82.288, p <

0 − 127 ; Software: ToP = 0.111, F(9, 1773) = 24.547, p < 10 − 40 ; Sub-

ect: ToP = 0.421, F(9, 1773) = 142.985, p < 10 − 203 ; Configuration:

oP = 0.153, F(54, 10,668) = 5.157, p < 10 − 31 ; Side: ToP = 0.052,

(9,1773) = 10.813, p < 10 − 16 ). 

Focusing on adult dataset, the infra-tentorial MANOVA multivari-

te analysis for VF reported a significant ToP for all factors (SMS Ac-

eleration factor: ToP = 0.245, F(9, 262) = 9.462, p < 10 − 12 ; Software:

oP = 0.505, F(9, 262) = 29.717, p < 10 − 35 ; Configuration: ToP = 0.485,

(54, 1602) = 2.610, p < 10 − 9 ; Side: ToP = 0.067, F(9, 262) = 2.107,

 < 0.03). The infra-tentorial MANOVA multivariate analysis for ICC

eported a significant ToP for all factors excluding the configuration

actor. (SMS Acceleration factor: ToP = 0.643, F(9, 262) = 52.357,

 < 10 − 53 ; Software: ToP = 0.099, F(9, 262) = 3.20, p < 0.001; Con-

guration: ToP = 0.240, F(54, 1602) = 1.236, ns; Side: ToP = 0.122,

(9262) = 4.027, p < 10 − 05 ). 
5 
We also performed statistical analysis on a single dataset, obtained

erging data from pediatric and adult populations. The supra-tentorial

ANOVA multivariate analysis for ICC reported a significant ToP for all

actors (SMS Acceleration factor: ToP = 0.486, F(9, 878) = 92.069, p <

0 − 120 ; Software: ToP = 0.398, F(9, 878) = 64.627, p < 10 − 91 ; Configu-

ation: ToP = 0.321, F(54, 5298) = 5.538, p < 10 − 34 ; Side: ToP = 0.070,

(9, 878) = 7.317, p < 10 − 10 ). Multivariate VF analysis for complete

ataset reported significant ToP for all factors (SMS Acceleration factor:

oP = 0.217, F(9878) = 27.074, p < 10 − 41 ; Software: ToP = 0.638,

(9878) = 171.843, p < 10 − 187 ; Configuration: ToP = 0.517, F(54,

298) = 9.258, p < 10 − 69 ; Side: ToP = 0.118, F(9878) = 13.049, p <

0 − 19 ). 

Moreover, statistics on models (NODDI and Bingham-NODDI) re-

ealed no significant differences for ICC values of ODI, v intra and

 iso between the 2 NODDI models under investigation, while VF pro-

uced NODDI ODI values significantly reduced ( p < 10 − 07 ) with respect

o Bingham ODI (ODI tot ). 

.1. Dataset results 

Due to the lack of infra-tentorial acquisition in children, the com-

arison between the 2 datasets was performed on the 32 supra-tentorial

OIs. Children exhibited ICC values of roughly 0.9 for both NODDI

nd Bingham-NODDI models ( Table 1 ) and a VF values below 5.5%

 Table 2 ). Higher VF values were observed only for v iso (18% for NODDI

 iso and 15% for Bingham-NODDI v iso ). For adult supra-tentorial areas

e found ICC results for ODI and DA with value of around 0.75 whereas

 intra and v iso were around 0.8 ( Table 1 ). VF in adult dataset was in the

ange of 2–7% in all estimated parameters but v iso that had over 31%

ariation ( Table 2 ). The 2 datasets show significant differences in all

etrics both for ICC and VF ( Fig. 2 ). 

.2. Shell configurations results 

A comparison among the seven different shell combinations (P 21 ,

 22 , P 23 , P 31 , P 32 , P 33 and P 4 ) was performedFor supra-tentorial ROIs
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Table 1 ( continued ) 

INTRA-CLASS CORRELATION COEFFICIENT ICC WITHIN SUPRA-TENTORIAL ROIS 

Parameter Type of parameter Mean (std dev) F (pval) ( 𝜂) 

ODIs P 21 .840 (0.010) N.S. 

P 22 .842 (0.010) 

P 23 .832 (0.010) 

P 31 .839 (0.010) 

P 32 .826 (0.010) 

P 33 .823 (0.010) 

P 4 .826 (0.010) 

ODItot P 21 .839 (0.010) N.S. 

P 22 .838 (0.010) 

P 23 .826 (0.010) 

P 31 .834 (0.010) 

P 32 .825 (0.010) 

P 33 .826 (0.010) 

P 4 .824 (0.010) 

Vintra P 21 .876 (0.007) N.S. 

P 22 .889 (0.007) 

P 23 .880 (0.007) 

P 31 .896 (0.007) 

P 32 .888 (0.007) 

P 33 .891 (0.007) 

P 4 .890 (0.007) 

Viso P 21 .823 (0.009) F(6,1781) = 3.664 

(1.27 − 03 ) (0.012) P 22 .853 (0.009) 

P 23 .829 (0.009) 

P 31 .870 (0.009) 

P 32 .843 (0.009) 

P 33 .853 (0.009) 

P 4 .862 (0.009) 

EFFECT OF SUBJ ODI PED .917 (0.005) F(1,1781) = 499.197 

(1.11e − 97 ) (0.218) AD .757 (0.005) 

Vintra PED .962 (0.004) F(1,1781) = 578.017 

(7.59e − 111 ) (0.245) AD .838 (0.004) 

Viso PED .885 (0.006) F(1,1781) = 188.927 

(6.19e − 41 ) (0.095) AD .778 (0.006) 

DA PED .883 (0.005) F(1,1781) = 221.812 

(2.28e − 47 ) (0.111) AD .781 (0.005) 

ODIp PED .897 (0.005) F(1,1781) = 350.597 

(1.48e − 71 ) (0.164) AD .757 (0.005) 

ODIs PED .915 (0.005) F(1,1781) = 468.202 

(2.24e − 92 ) (0.208) AD .750 (0.005) 

ODItot PED .911 (0.005) F(1,1781) = 460.088 

(5.64e − 91 ) (0.205) AD .750 (0.005) 

Vintra PED .911 (0.004) F(1,1781) = 912.383 

(3.52e − 162 ) (0.339) AD .750 (0.004) 

Viso PED .965 (0.005) F(1,1781) = 145.324 

(3.16e − 32 ) (0.075) AD .809 (0.005) 

EFFECT OF SIDE ODI Left .846 (0.005) F(1,1781) = 6.222 

(0.013) (3.48e − 03 ) Right .828 (0.005) 

Vintra Left .896 (0.004) N.S. 

Right .904 (0.004) 

Viso Left .820 (0.006) F(1,1781) = 8.956 

(2.8e − 03 ) (5e − 03 ) Right .843 (0.006) 

DA Left .832 (0.005) N.S. 

Right .832 (0.005) 

ODIp Left .848 (0.005) F(1,1781) = 31.754 

(2.03e − 08 ) (0.017) Right .806 (0.005) 

ODIs Left .835 (0.005) N.S. 

Right .830 (0.005) 

ODItot Left .847 (0.005) F(1,1781) = 20.40 

(6.56e − 06 ) (0.011) Right .813 (0.005) 

Vintra Left .883 (0.004) N.S. 

Right .892 (0.004) 

Viso Left .835 (0.005) F(1,1781) = 13.791 

(2.11e − 04 ) (7.68e − 03 ) Right .860 (0.005) 

w  

o  

r  

c  

i  

r  

b  

v  
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w  

D  

t

e observed that shell configurations had a statistical significant effect

n VF on the values of v intra and v iso for both NODDI models and DA. As

eported in Fig. 3 A, the lowest VF values for v intra were obtained in the

onfiguration P 33 whereas the highest VF values were always obtained

n the P 21 configuration ( Table 2 ). We also observed that shell configu-

ations had a statistical significant effect on ICC on the values of v iso for

oth NODDI models and v of NODDI. Particularly, the highest ICC
intra 

6 
alues were obtained in v intra of NODDI in the P 33 configuration whereas

he lowest performances were obtained in P 21 ( Table 1 and Fig. 3 B),

hat seems to be in accordance with VF results. The infra-tentorial re-

ults did not show any significant effect of shell configuration on ICC,

hile slightly significant results were obtained for VF on the values of

A and Bingham v iso , both showing worst VF values for P 22 configura-

ion ( Tables 1 , 2 of Supplementary Material). 



M. Lucignani, L. Breschi, M.C.R. Espagnet et al. NeuroImage 238 (2021) 118234 

Table 2 

Mean values, standard deviation, F -statistics, p -value and size effect of VF for NODDI and Bingham-NODDI metrics to assess effect of 

different factors (tool, SMS, configuration and side) within 32 supra-tentorial ROIs. N.S. means not significant. 

VARIATION FACTOR VF WITHIN SUPRA-TENTORIAL ROIS 

Parameter Type of parameter Mean (std dev) F (pval) ( 𝜂) 

EFFECT OF TOOL ODI MDT 4.190 (0.070) N.S. 

cuDIMOT 4.266 (0.070) 

Vintra MDT 2.291 (0.044) F(1,1781) = 411.447 

(1.81e − 82 ) (0.188) cuDIMOT 3.541 (0.044) 

Viso MDT 34.510 (0.513) F(1, 1781) = 281.300 

(9.85e − 59 ) (0.136) cuDIMOT 22.342 (0.513) 

DA MDT 2.836 (0.060) F(1,1781) = 8.420 

(3.76e − 03 ) (5.00e − 03 ) cuDIMOT 2.588 (0.060) 

ODIp MDT 3.786 (0.064) F(1,1781) = 17.999 

(2.32e − 05 ) (0.01) cuDIMOT 3.399 (0.064) 

ODIs MDT 6.647 (0.112) F(1,1781) = 5.713 

(0.017) (3.00e − 03 ) cuDIMOT 6.267 (0.112) 

ODItot MDT 5.241 (0.087) F(1,1781) = 12.729 

(3.70e − 04 ) (7.00e − 03 ) cuDIMOT 4.800 (0.087) 

Vintra MDT 2.365 (0.041) F(1,1781) = 119.268 

(6.39e − 27 ) (0.063) cuDIMOT 2.997 (0.041) 

Viso MDT 28.459 (0.483) F(1,1781) = 236.280 

(3.65e − 50 ) (0.117) cuDIMOT 17.969 (0.483) 

EFFECT OF SMS ODI SMS2 4.454 (0.070) F(1,1781) = 20.737 

(5.63e − 06 ) (5.75e − 05 ) SMS3 4.002(0.070) 

Vintra SMS2 2.906 (0.044) N.S. 

SMS3 2.926 (0.044) 

Viso SMS2 25.767 (0.513) F(1,1781) = 53.747 

(3.44e − 13 ) (0.029) SMS3 31.085 (0.513) 

DA SMS2 2.454 (0.060) F(1,1781) = 36.319(2.03e − 09 ) 

(0.020) SMS3 2.970 (0.060) 

ODIp SMS2 3.714 (0.064) F(1,1781) = 7.147 

(7.58e − 03 ) (4.00e − 03 ) SMS3 3.471 (0.064) 

ODIs SMS2 6.917 (0.112) F(1,1781) = 33.582 

(8.06e − 09 ) (0.019) SMS3 5.997 (0.112) 

ODItot SMS2 5.343 (0.087) F(1,1781) = 27.254 

(1.99e − 06 ) (0.015) SMS3 4.698 (0.087) 

Vintra SMS2 2.563 (0.041) F(1,1781) = 16.564 

(4.91e − 05 ) (9.00e − 03 ) SMS3 2.799 (0.041) 

Viso SMS2 20.948 (0.483) F(1,1781) = 44.090 

(4.15e − 11 ) (0.024) SMS3 25.480 (0.483) 

EFFECT OF 

CONFIGURATIONS 

ODI P 21 4.285 (0.131) N.S. 

P 22 4.209 (0.131) 

P 23 4.262 (0.131) 

P 31 3.989 (0.131) 

P 32 4.263 (0.131) 

P 33 4.342 (0.131) 

P 4 4.244 (0.131) 

Vintra P 21 3.478 (0.082) F(6,1781) = 10.931 

(5.51e − 12 ) (0.036) P 22 2.785 (0.082) 

P 23 2.808 (0.082) 

P 31 2.894 (0.082) 

P 32 2.990 (0.082) 

P 33 2.640 (0.082) 

P 4 2.818 (0.082) 

Viso P 21 29.797 (0.960) F(6,1781) = 5.739 

(6.31e − 06 ) (0.019) P 22 26.770 (0.960) 

P 23 33.048 (0.960) 

P 31 27.404 (0.960) 

P 32 27.335 (0.960) 

P 33 28.027 (0.960) 

P 4 26.600 (0.960) 

DA P 21 2.948 (0.113) F(6,1781) = 3.258 

(3.45e − 03 ) (0.011) P 22 2.806 (0.113) 

P 23 3.000 (0.113) 

P 31 2.507 (0.113) 

P 32 2.623 (0.113) 

P 33 2.545 (0.113) 

P 4 2.555 (0.113) 

ODIp P 21 3.513 (0.120) N.S. 

P 22 3.817 (0.120) 

P 23 3.827 (0.120) 

P 31 3.369 (0.120) 

P 32 3.511 (0.120) 

P 33 3.594 (0.120) 

P 4 3.517 (0.120) 

( continued on next page ) 
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Table 2 ( continued ) 

VARIATION FACTOR VF WITHIN SUPRA-TENTORIAL ROIS 

Parameter Type of parameter Mean (std dev) F (pval) ( 𝜂) 

ODIs P 21 6.266 (0.210) N.S. 

P 22 6.745 (0.210) 

P 23 6.895 (0.210) 

P 31 6.080 (0.210) 

P 32 6.402 (0.210) 

P 33 6.462 (0.210) 

P 4 6.350 (0.210) 

ODItot P 21 4.892 (0.163) N.S. 

P 22 5.281 (0.163) 

P 23 5.305 (0.163) 

P 31 4.735 (0.163) 

P 32 4.964 (0.163) 

P 33 5.013 (0.163) 

P 4 4.955 (0.163) 

Vintra P 21 3.092 (0.077) F(6,1781) = 9.358 

(3.95e − 10 ) (0.031) P 22 2.758 (0.077) 

P 23 2.806 (0.077) 

P 31 2.525 (0.077) 

P 32 2.662 (0.077) 

P 33 2.366 (0.077) 

P 4 2.560 (0.077) 

Viso P 21 25.576 (0.903) F(6,1781) = 10.569 

(1.47e − 11 ) (0.034) P 22 26.218 (0.903) 

P 23 24.908 (0.903) 

P 31 17.567 (0.903) 

P 32 23.533 (0.903) 

P 33 22.949 (0.903) 

P 4 21.748 (0.903) 

EFFECT OF SUBJ ODI PED 3.339 (0.070) F(1,1781) = 321.3020 

(3.46e − 66 ) (0.153) AD 5.116 (0.070) 

Vintra PED 2.560 (0.044) F(1,1781) = 133.617 

(7.48e − 30 ) (0.070) AD 3.272 (0.044) 

Viso PED 17.843 (0.513) F(1,1781) = 851.230 

(2.75e − 153 ) (0.323) AD 39.009 (0.513) 

DA PED 2.812 (0.060) F(1,1781) = 5.472 

(0.019) (3.00e − 03 ) AD 2.612 (0.060) 

ODIp PED 3.151 (0.064) F(1,1781) = 94.198 

(9.76e − 22 ) (0.050) AD 4.034 (0.064) 

ODIs PED 5.505 (0.112) F(1,1781) = 144.057 

(5.70e − 32 ) (0.075) AD 7.409 (0.112) 

ODItot PED 4.267 (0.087) F(1,1781) = 149.121 

(5.41e − 33 ) (0.077) AD 5.775 (0.087) 

Vintra PED 2.477 (0.041) F(1,1781) = 49.595 

(2.69e − 12 ) (0.027) AD 2.885 (0.041) 

Viso PED 15.266 (0.483) F(1,1781) = 542.618 

(5.47e − 105 ) (0.234) AD 31.162 (0.483) 

EFFECT OF SIDE ODI Left 4.351 (0.070) F(1,1781) = 6.173 

(0.013) (3.00e − 03 ) Right 4.105 (0.070) 

Vintra Left 3.089 (0.044) F(1,1781) = 31.443 

(2.38e − 08 ) (0.017) Right 2.743 (0.044) 

Viso Left 29.664 (0.513) F(1,1781) = 11.646 

(6.58e − 04 ) (6.00e − 03 ) Right 27.188 (0.513) 

DA Left 2.787 (0.060) N.S. 

Right 2.637 (0.060) 

ODIp Left 3.637 (0.064) N.S. 

Right 3.547 (0.064) 

ODIs Left 6.488 (0.112) N.S. 

Right 6.426 (0.112) 

ODItot Left 5.018 (0.087) N.S. 

Right 5.023 (0.087) 

Vintra Left 2.819 (0.041) F(1,1781) = 22.743 

(2.00e − 06 ) (0.013) Right 2.543 (0.041) 

Viso Left 24.383 (0.483) F(1,1781) = 11.733 

(6.28e − 04 ) (7.00e − 03 ) Right 22.045 (0.483) 

3
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.3. Acceleration factor results 

We then assessed effects of AF on reliability results for both adult

nd pediatric datasets ( Fig. 4 ). Focusing on supra-tentorial analysis, we

ound that SMS3 ICC values were significantly higher compared to those

n SMS2 for all parameters ( Table 1 ). Concerning the VF, we observed

hat SMS2 VF values were significantly lower compared to those in SMS3
8 
or v iso in both models, v intra of Bingham as well as DA ( Table 2 ). Con-

ersely, ODI VF of both models were significantly higher when compar-

ng SMS2 vs SMS3. The infra-tentorial ICC confirmed evidences of supra-

entorial results, showing that ICC values were significantly higher when

omparing SMS3 vs SMS2 for all diffusion parameters ( Table 1 of Sup-

lementary Material). The infra-tentorial results showed that VF values
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Fig. 2. Boxplots of ICC (left) and VF (right) values within each dataset (pediatrics vs adults) for all diffusion parameter. Asterisks highlight significant differences 

between datasets. 

Fig. 3. Boxplots of ICC (left) and VF (right) values within each shell configuration (P 21 , P 22 , P 23 , P 31 , P 32 , P 33 and P 4 ) for NODDI v intra parameter. Asterisks highlight 

significant differences between shell configurations. 

Fig. 4. Boxplots of ICC (left) and VF (right) values within each acceleration factor (SMS2 vs SMS3) for all diffusion parameter. Asterisks highlight significant 

differences between acceleration factors. 

9 
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Fig. 5. Boxplots of ICC (left) and VF (right) values within each fitting tool (MDT vs cuDIMOT) for all diffusion parameter. Asterisks highlight significant differences 

between fitting tools. 

Table 3 

Average runtimes for NODDI and bingham-NODDI model fitting on oracle cloud server. 

cuDIMOT MDT 

NODDI Bingham-NODDI NODDI Bingham-NODDI 

P 21 2 min 5s 8 min 57s 35s 3 min 44s 

P 22 2 min 28s 12 min 22s 41s 4 min 14s 

P 23 2 min 35s 12 min 32s 45 s 4 min 27s 

P 31 2 min 48s 12 min 47s 35s 4 min 25s 

P 32 3 min 2s 12 min 50s 37s 4 min 32s 

P 33 3 min 40s 16 min 10s 44s 4 min 42s 

P 4 4 min 20s 16 min 25s 42s 4 min 50s 
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ere significantly different for ODI and v intra of both models, with lower

alues for SMS3 ( Table 2 of Supplementary Material). 

.4. Fitting toolboxes results 

Since the fitting was performed with two different GPU-based tools,

e compared their reliability results ( Fig. 5 ). Regarding the supra-

entorial data, a significant VF difference resulted for all the metrics,

ut not for NODDI ODI. In particular, MDT revealed significantly higher

F values than cuDIMOT toolbox in all metrics, except for v intra of both

ODDI models ( Table 2 ). ICC values were significantly higher in v intra 

nd ODI and lower in v iso and DA when comparing MDT to cuDIMOT

 Table 1 ). The infra-tentorial data results showed a strongly significant

ifference in VF values for v intra and v iso of both models, as well as DA,

DI p and ODI tot , where MDT revealed higher VF values than cuDIMOT

 Table 2 of Supplementary Material). The effect of tool revealed no sig-

ificant ICC results for all diffusion parameters excluding Bingham v iso ,

here MDT produced higher ICC than cuDIMOT ( Table 1 of Supplemen-

ary Material). Beyond that, an interesting difference between cuDIMOT

nd MDT was the fitting runtime ( Table 3 ). On Oracle Cloud server setup

two NVIDIA® Tesla® P100, four Intel® Xeon® Gold 5120 CPUs @

.20 GHz, 187 GB RAM), MDT performed fitting 400% faster than cuD-

MOT for Bingham-NODDI and up to 600% faster for NODDI. NODDI

odels was also performed on AMICO toolbox ( Table 4 ). Assessing the

ffect of tool, we found significantly increased ICC values for AMICO

hen compared to cuDIMOT in ODI and v intra metrics, while no dif-

erences were found in v iso . Compared to MDT, AMICO revealed better

CC values in v iso , while significantly reduced values appeared in v intra 

 Fig. 6 ). VF assessment reported significantly higher values in AMICO
10 
hen compared to both MDT and cuDIMOT in ODI and v intra metrics

 Fig. 6 ). 

.5. Hemispheric side results 

Based on recent evidences of hemispheric asymmetries in the NODDI

ignal ( Schmitz et al., 2019 ), we computed diffusion metrics within left

nd right ROIs, comparing their reliability results ( Fig. 7 ). For supra-

entorial ROIs, we observed that hemispheric side had a significant ef-

ect on ICC on the values of ODI and v iso of both models, with higher

CC values respectively on left and right sides ( Table 1 ). Concerning the

F, significant differences resulted for v intra and v iso of both models and

ODDI ODI, always with higher VF values for left ROIs ( Table 2 ). The

nfra-tentorial data confirmed VF significant results only for ODI, again

ith higher values for left ROIs ( Table 2 of Supplementary Material),

hile ICC results showed significant differences for Bingham ODI p and

 intra , where ICC was higher respectively within right and left ROIs. 

. Discussion 

The study investigated test-retest reliability of diffusion MRI met-

ics computed for different acquisition setting, with the aim to assess

hether fast acquisition and processing setting could help to translate

ODDI within the clinical setting.. To this purpose, we assessed relia-

ility for 7 different shell configurations and 2 AF. We also analyzed the

ata with 2 different GPU-based tools and compared the results. The

tudy made use of 2 metrics to assess reliability of the measurements,

CC and VF. 

Excellent reliability in terms of ICC was observed for all diffusion

arameters, especially for 𝜈intra (see Tables 1 and boxplots in the Sup-
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Table 4 

Mean values, standard deviation, F-statistics and p-value of ICC and VF for NODDI metrics to assess effect of different tools (MDT, 

cuDIMOT and AMICO) within 32 supra-tentorial ROIs. 

Parameter Type of parameter Mean (std dev) F (pval) 

Effect of Tool in ICC ODI MDT .847 (0.005) F (pval) 

F(2, 2676) = 4.953 

(7.13e − 03 ) 

cuDIMOT .827 (0.005) 

AMICO .847 (0.005) 

Vintra MDT .924 (0.004) F(2,2676) = 42.766 

(5.22e − 19 ) 

cuDIMOT .876 (0.004) 

AMICO .890 (0.004) 

Viso MDT .812 (0.005) F(2.2676) = 19.099 

(5.81e − 09 ) 

cuDIMOT .851 (0.005) 

AMICO .851 (0.005) 

Effect of Tool in VF ODI MDT 4.190 (0.081) F(2, 2676) = 105.696 

(6.60e − 45 ) 

cuDIMOT 4.266 (0.081) 

AMICO 5.661 (0.081) 

Vintra MDT 2.291 (0.047) F(2,2676) = 332.377 

(1.18e − 129 ) 

cuDIMOT 3.541 (0.047) 

AMICO 3.942 (0.047) 

Viso MDT 34.510 (0.474) F(2.2676) = 202.327 

(1.49e − 82 ) 

cuDIMOT 22.342 (0.474) 

AMICO 23.412 (0.474) 

Fig. 6. Boxplots of ICC (left) and VF (right) values within each fitting tool (MDT, cuDIMOT and AMICO) for NODDI diffusion parameter. Asterisks highlight significant 

differences between fitting tools. Fig. 7: Boxplots of ICC (left) and VF (right) values within each hemispheric side (left vs right) for all diffusion parameter. Asterisks 

highlight significant differences between hemispheric sides. 
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lementary materials); the observation is in accordance with previous

ODDI reproducibility studies performed on human brains ( Chang et al.,

015 ; Tariq et al., 2013 , 2012 ), on rat brains ( McCunn et al., 2019 ) and

n the spinal cord ( By et al., 2017 ; Grussu et al., 2015 ) by showing

hat those values are well fitted and robustly estimated in different ac-

uisition schemes. Conversely, our results show slightly lower ICC and

ery high VF values related to v iso (always above 15%). This is actually

onfirmed by recent literature findings ( Tariq, 2018 ) suggesting v iso is a

oorly reliable parameter, since it accounts for the isotropic volume frac-

ion and has generally very low values in the WM. Concerning Bingham-

ODDI metrics, ODI s , ODI tot , ODI p and v intra showed from good to excel-

ent reliability, while DA produced worse results, likely due to the fact

hat it is less robust to noise ( Tariq, 2018 ) and harder to estimate com-

ared to other diffusion parameters ( Tariq et al., 2016 ). As with NODDI,

he very low reliability of v iso was confirmed in Bingham-NODDI, thus

alidating the evidences found in other Bingham-NODDI reproducibility

ests elsewhere ( Tariq, 2018 ). Although NODDI and Bingham-NODDI

C  

11 
odels have a different number of parameters and are difficult to be

ompared, both of them produced very similar results in terms of reli-

bility, thus no differences were recorded between ICC values of these

odels. Conversely, we found significantly lower VF values of NODDI

DI when compared to ODI tot of Bingham model. 

.1. Dataset results 

Focusing on the reliability of the evaluation within the supra-

entorial areas, it was possible to compare results from the two different

atasets, pediatric and adult. Pediatric dataset always exhibited better

eliability results when compared to adult’s dataset, showing increased

CC values for ODI (about 21% both for NODDI and Bingham model),

 intra (15% for NODDI and 21% for Bingham model), v iso (14% and 19%

espectively for NODDI and Bingham model) and DA (13%). This evi-

ence occurred both for NODDI and Bingham-NODDI models ( Fig. 2 )

nd could be attributed to acquisition differences between populations.

hildren did not exit the scanner between test and retest sessions and
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Fig. 7. Boxplots of ICC (left) and VF (right) values within each brain side (left vs right) for all diffusion parameter. Asterisks highlight significant differences between 

fitting tools. 
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onsequently they had better data alignment when compared to adults,

hich led to an improved data stability. Moreover, in order to reduce pa-

ient discomfort and to collect images as fast as possible, acquisition was

imited to the supra-tentorial areas and no additional volumes with re-

ersed phase-encoding direction were acquired. The lack of these acqui-

itions prevented children to be preprocessed with the standard correc-

ion for susceptibility-induced distortion correction. Conversely, adult

olunteers received a longer acquisition for a whole-brain coverage fur-

her corrected for susceptibility-induced distortion. During ROI-based

nalysis, supra-tentorial and infra-tentorial areas were considered sepa-

ately for reliability assessment in adult dataset. Average reliability was

sually better in supra-tentorial areas ( Table 1 ) than in infra-tentorial

reas ( Table 1 of Supplementary Material). In particular, we recorded

lobal ICC reduction for all the metrics when analysis was performed

ithin the 8 infra-tentorial ROIs. The infra-tentorial data are indeed

ore affected by noise and more prone to fitting errors compared to the

upra-tentorial ROIs. 

.2. Shell configurations 

Comparing shell configurations, very small reliability differences ap-

eared and the only parameters that were affected by the configuration

ere v iso of both models and NODDI v intra . Referring to the Tables 1

nd Table 2 , v intra is better reproduced between the 2 sessions in the

onfiguration P 33 whereas the performance dropped in the case of P 21 

onfiguration, both in terms of ICC and VF ( Fig. 3 ). This trend suggests

ore extensive diffusion parameters variability when considering shell

onfiguration with lower b-values (e.g. 300 s/mm 

2 ), especially for sim-

le model like NODDI. The ODI from both models were not affected by

he configurations and that finding is in line with previous results show-

ng that orientation dispersion index is also well estimated with a single

hell whereas it is more sensitive to the number of gradient directions.

n our case, fewer shell ODI results were comparable in term of reliabil-

ty to those with up to 4 shells as it was already confirmed in a study

 Timmers et al., 2016 ) showing that single shell ODI analysis was able

o reproduce the group differences from multi-shell analysis. Further-

ore, our results seems to be in line with ODI value behavior seen in a

ecent study Parvathaneni et al., 2018 . The authors showed how in WM

he acquisitions with a single shell with b = 1000/2000s/mm 

2 outper-

orm in term of root mean square error (RMSE) the sequences acquired

ith 2 shells. Although we did not perform single shell acquisition, our

esults revealed a trend of increased ICC for lower number of shells (i.e.
12 
wo-shell configuration) in ODI (see Table 1 ). Moreover, similar results

ere obtained for DA, an evidence that might suggest the ability to reli-

bly fit the data even for more complex models such as Bingham model.

onversely, our finding confirmed the sensitivity of v intra to the choice

f outer shell b-value ( Zhang et al., 2012 ; Parvathaneni et al., 2018 ),

ince for equal number of shells, the ICC appeared increased when con-

idering higher b -values. 

.3. Acceleration factors 

The study observed that SMS3 ICC values were significantly higher

ompared to those in SMS2 for all diffusion parameters, while there was

ot a clear winner when looking at VF, that exhibited very high values

or v iso both in SMS2 and SMS3 ( Fig. 4 ). This parameter was already

hown to be unreliably fitted elsewhere and we might hypothesize how

he deviance from Gaussian noise towards a more non-central chi dis-

ribution in case of multiband acquisition ( St-Jean et al., 2020 ) could

ostly affect the model fitting in case of higher acceleration factors as

ue to their lower SNR. Better alignment of the data along different di-

ections and different shells, as in the case of shorter acquisition time

ight also be responsible for more reliable performances. The higher

cceleration factor protocol was indeed 5 min shorter than the one with

ower acceleration and then the data were more prone to having mo-

ion misalignment. Given the dependence on the number of directions

or diffusion parameters, the lower SMS2 ICC values are likely due to this

otion artifact only partially corrected via post-processing. In this con-

ext, head motion estimates corroborates the idea of an overall slightly

arger motion artefact in case of lower acceleration factor (see Fig. 11 in

upplementary Material). The effect of the head motion can be disrup-

ive of the reliability and it seems to be the main factor as due to slice

cceleration when looking ICC and VF (see Figs. 10–12 of Supplemen-

ary Material) 

VF values for v intra , v iso and DA were higher in SMS3 compared to

MS2, probably due to the higher acquisition noise of faster acquisition.

n this context, we hypothesized a possible competitive effect between

cquisition noise and motion artifacts, which could be evaluated when

ooking at the two datasets separately. Pediatric subjects were less prone

o motion artifacts since they did not exit the scanner, thus their relia-

ility values mainly account for acquisition noise. As we can see from

upplementary Material (Tables 5 and 7), although ICC values were al-

ays higher for SMS3 in both cohorts, the gap between different AF was

rominent in adults rather than children, reflecting the beneficial effect
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Fig. 8. NODDI v intra Bland-Altman plot for two-shell configurations adult dataset. CuDIMOT values are more spread than the ones from MDT. Each point in the plot 

represents one subject, averaged over 16 supra-tentorial ROIs of right hemisphere. 
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f faster acquisition over motion artifacts which indeed was strongly re-

uced in children. Focusing on diffusion parameter significantly affected

y AF, we found that SMS3 produced significantly higher VF values in all

arameter for children and in v intra , v iso and DA of adults (Tables 6 and

 of Supplementary Material), probably related to higher inter-subject

ariability caused by acquisition noise of faster protocol. 

.4. Fitting toolboxes 

Bland-Altman plot in Fig. 8 showed two clusters of results in adult

atasets for v intra . The data fitted with cuDIMOT had higher values

nd were more spread in the plot. Most of the spread difference be-

ween SMS2 and SMS3 was actually observed in cuDIMOT estimations

hereas MDT fitted parameters showed to be more clustered. Interest-

ngly, CuDIMOT’s VFs result in being generally lower than the MDT

ounterpart, whereas mean values for each metric is actually higher

see Bland-Altman plots in Supplementary Material). The latter might

ause the lower ICC seen thus leading to a less reliability in terms of

ow well the method can discriminate between individuals. We do not

ave a clear idea regarding the reasons why there is this discrepancy in

he results for v iso between the 2 toolboxes. Both the toolboxes use iter-
13 
tive optimization algorithms for the solution of non-linear least square

roblems. Even though they do not use the same way to reach the min-

mum (Powell for MDT and Levenberg-Marquardt for cuDIMOT), their

pproaches are very similar as they both interpolates between Gaussian-

ewton and gradient descendent and this may not be a reasonable cause

f this discrepancy. Eventually, we observed that boundary parameters

re tighter in MDT than cuDIMOT and this could give rise to more vari-

bility and overestimation of metrics for the latter. The use of different

ptimization methods might likely influence the analysis time, which in

DT resulted in being faster. Furthermore, both toolboxes have a cas-

ade method to fit complex models starting from simpler ones, and the

ay this is applied is similar in the two toolboxes. Furthermore, this

ifference occurs in both datasets and acceleration factors, so it appears

o be independent from either misalignment and motion artifacts, or

oise and SNR. Only MDT has the option to model noise distribution

Gaussian, Offset-Gaussian and Rician) and As far as we know, offset

aussian provides stable results ( Panagiotaki et al., 2012 ) when com-

ared to other noise distribution and that could explain better reliability

n terms of ICC for MDT compared to cuDIMOT for ODI and v intra pa-

ameters. Conversely, we did observe that MDT also showed to have a

igher VF and lower ICC compared to cuDIMOT for v iso and DA ( Fig. 5 ).
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ocusing on v iso , the effect of noise standard deviation estimates on VF,

e found that autodMRI noise standard deviation produced better re-

ults, almost comparable with those from cuDIMOT. Since the poorer

eliability performances seen in MDT for v iso are not well understood,

hese results could suggest that more precise noise standard deviation

stimate could be a possible solution for that. Despite the use of OpenCL

n MDT and CUDA in cuDIMOT better performances have been seen in

erms of run time for MDT vs cuDIMOT. This is not in line with what

s reported in the manuscript of the author of cuDIMOT who concludes

hat cuDIMOT would potentially achieve better perfomances for Nvidia

PU cards. 

.5. Hemispheric side 

Recent studies performed NODDI to investigate possible microstruc-

ural hemispheric asymmetries across the whole brain of adult

 Schmitz et al., 2019 ), children ( Dimond et al., 2020 ) and infants

 Dean et al., 2017 ). Particularly, they observed both leftward and right-

ard microstructural asymmetries over 22.78%, 12.78% and 6.11% of

he overall brain area respectively for v intra , ODI and v iso ( Schmitz et al.,

019 ). Multivariate analysis on diffusion data from right-handed

ubjects revealed significant effect of hemispheric side in ODI and

 iso reliability ( Fig. 7 ), thus suggesting the role of brain microstructure

n reliability estimation. 

Having said that, we also want to point out that the present study

uffers from a few limitations. First of all, even though the study has

n overall larger number of subjects compared to few other studies on

he topic ( Andica et al., 2020 ; Tariq, 2018 ), relatively few subjects per

cquisition were actually attained thus making the inference less ro-

ust and the results less interpretable. In this context, we provided re-

iability information assessing ICC and VF statistics on a single dataset

see Tables 3 , 4 of Supplementary Material), where pediatric and adult

ata were merged, but future studies should address it to strengthen

he study, recruiting a large number of adult subjects. Moreover, in this

tudy we used the default mode of NODDI fitting, thus neglecting that

ptimised intrinsic diffusivity in NODDI might be different in children

nd adults ( Guerrero et al., 2019 ). This aspect need to be further investi-

ated in future studies. Second limitation of this study is the heterogene-

ty of the acquired data, with differences between children and adult

atasets. Since pediatric data were much more difficult to acquire, a

ew sacrifices have been made in terms of protocol: only supra-tentorial

rain part was actually sampled and no additional volumes with re-

ersed phase-encoding direction were available for children, thus pre-

enting them to be pre-processed for susceptibility-induced distortions

orrections. Moreover, children did not exit the scan between test and

etest acquisitions, while adults were taken out of the scanner for about

0 min. 

. Conclusion 

In summary, we have applied the NODDI and Bingham NODDI mod-

ls to a cohort of pediatric and adult subjects and showed the effects

f different acquisitions and methods on the reliability of NODDI met-

ics. We observed how different metrics show different patterns when

ooking at the effects of multiband factors and shell configurations. The

ain achievement of the present study is to show how 10 min NODDI

cquisition with 3 shells can have reliable results in WM. More com-

lex models do not appear to be more prone to less data acquisition as

ell as noisier data thus stressing the idea of Bingham-NODDI having

reater sensitivity to true subject variability. Multiband acquisition did

ot result in worsening the reliability; conversely, shortening the acqui-

ition might be beneficial for attenuating the motion artifacts. Lastly,

e also performed a test to study GPU analysis by comparing two GPU-

oosted analysis toolboxes mainly showing that faster fittings does not

eopardize the reliability when compared to more stable methods. 
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