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Micro-computed tomography (mCT) obtained by synchrotron radiation (SR) enables magnified images

with a high space resolution that might be used as a non-invasive and non-destructive technique for the

quantitative analysis of medical images, in particular the histomorphometry (HMM) of bony mass. In

the preprocessing of such images, conventional operations such as binarization and morphological

filtering are used before calculating the stereological parameters related, for example, to the trabecular

bone microarchitecture. However, there is no standardization of methods for HMM based on mCT

images, especially the ones obtained with SR X-ray. Notwithstanding the several uses of artificial neural

networks (ANNs) in medical imaging, their application to the HMM of SR-mCT medical images is still

incipient, despite the potential of both techniques. The contribution of this paper is the assessment and

comparison of well-known training algorithms as well as the proposal of training strategies

(combinations of training algorithms, sub-image kernel and symmetry information) for feed-forward

ANNs in the task of bone pixels recognition in SR-mCT medical images. For a quantitative comparison,

the results of a cross validation and a statistical analysis of the results for 36 training strategies are

presented. The ANNs demonstrated both very low mean square errors in the validation, and good

quality segmentation of the image of interest for application to HMM in SR-mCT medical images.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The synchrotron radiation (SR) [1] is obtained from high-
velocity charged particles that move into magnetic fields, and
may be produced in different wavelengths of the electromagnetic
spectrum, for example, X-rays [2,3]. Nowadays, third generation
SR facilities have increased the utilization of SR X-ray imaging in
many scientific areas. SR sources have revolutionized many
existing techniques as a basis for novel experimental approaches
as well. SR sources offer a much higher brilliance compared to
X-ray tubes and very high flux at small source size, at least a
thousand times larger, such that the investigation of samples at
the micro- and even sub-micrometer level becomes feasible. For
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medical purposes, the SR X-rays might be used in the micro-
computed tomography (mCT) [4] for several applications. One
application is the non-invasive and non-destructive quantitative
analysis of biological tissues for studies related to diseases such as
cancer and osteoporosis.

In the case of the osteoporosis, a disease whose spread has
impacts on both economy and society [5], both bone mass
quantification and histomorphometry (HMM [6], the quantitative
measurement parameters for the structural characterization) of
bony tissue are critically important. For example, with histomor-
phometric analyses of medical images, it is possible to assess the
structure of trabecular bone, which can provide important
information for diagnosis and treatment [7].

High resolution techniques might be great allies of the HMM:
Chappard et al. [8] review the technologies and parameters used
to measure trabecular bone microarchitecture. Nevertheless,
according to the authors, ‘‘mCT is only at its beginning and there
is yet no standardization of parameters between manufacturers’’.
However, the development of new imaging techniques with high
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Fig. 1. The image of interest: a slice of a rodent’s tibia cortical bone obtained with

synchrotron radiation X-Ray mCT at the ELETTRA Laboratory, at Trieste.
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definition, such as SR-mCT, plays an important role for the
progress of diagnosis based on medical imaging.

Simple examples where the usage of medical imaging-based
diagnosis might be particularly important in comparison to the
diagnosis based on biopsies are in Refs. [9–11]. In Refs. [9,10] the
bone biopsies were obtained during surgeries. In Ref. [11], a study
on periodontal HMM was performed in sheep, requiring the
sacrifice of the animals. In fact, standardized analysis methods
for high resolution three-dimensional medical images, that are
equivalent to classical methods, would have the enormous
advantage of reducing the necessity of surgeries and animal
sacrifice. In addition, it might indirectly lead to a greater number
of assessments and studies as well.

Moreover, Schouten et al. [12] indicate drawbacks of histolo-
gical sectioning such as the time consumed, the prevention of the
specimen for being used for other experiments and loss of
material, asserting that ‘‘however, as mCT is still relatively new,
the procedures utilized to assess and analyze bone structure
quantitatively are not yet fully standardized’’.

Still in Ref. [12], the assessment and comparison among
conventional and mCT-based HMM is performed with a different
threshold for each image based on their histogram, selected to
preserve the bone tissue in the images, which, according to the
authors, might have the drawback of variability among observers.
The authors remark that the measurement with the mCT images is
not reliable with respect to conventional HMM despite the impor-
tant three-dimensional information provided by mCT images.
Unfortunately, the use of threshold-dependent techniques for
medical imaging has this sort of disadvantage.

Thus, to progress in computational methods for the application
to SR X-ray mCT images for HMM might be an important step
towards advances in treatment and diagnosis of diseases such as
osteoporosis. In this article, we survey the application of neural
computing to high-resolution SR medical images for HMM. Neural
computing represents a consolidated branch of artificial intelli-
gence (AI) with successful applications of the artificial neural
networks (ANNs) [13] in several fields, used in classification,
pattern recognition and regression. The usage of ANNs is interest-
ing due to its attractive characteristics for pattern recognition and
classification and contrasting with the conventional techniques
that impose a threshold during the analysis.

In this case, bone pixel classification for the segmentation
focused on HMM requires an accuracy and precision which might
be provided by the high quality of the SR X-ray mCT images. Those
accuracy issues are not commonly investigated in applications
such as the segmentation in medical images for visualization of
organs or physiological behavior, and therefore a survey of the
application of ANNs for this task in this context is proposed in this
article.

A recent investigation [14] demonstrated that feed forward
(FF) ANNs are suitable for the recognition of bone pixels in raw SR
X-ray mCT medical image slices, that is, without any sort of
preprocessing such as normalization, filters or binarization. In
fact, to the best of our knowledge, there are very few papers
describing AI techniques applied to SR medical images for HMM.
Therefore, as a first step towards the application of AI techniques
for HMM in SR X-ray mCT images, we here present a study
comprising the statistical analysis and assessment of different
architectures, training algorithms and symmetry strategies of
FF-ANNs with the back-propagation [15] training algorithm.

In this article, our main concern is the assessment of training

strategies for FF-ANNs in the bone pixel classification in SR
medical images for HMM. Training strategies represent the
combination of training algorithms with kernels (dimensions of
the training subimages, such as 3�3, or 5�5, or 7�7 pixels) and
a type of symmetry. The latter are alternative ways of presenting
input information to the ANN, such as raw grayscale values,
averages of different groups of pixels related to their orientation
symmetry in relation to the central pixel, or averages of different
groups of pixels that surround the central pixel (for details, see
Section 3). It is well-known that different training algorithms
have different performance on the same problem, which leads to
the necessity of their comparison. Going one step further, we
compare results not only for training algorithms, but also for full
training strategies. The assessment of the classification perfor-
mance of ANNs trained using those training strategies was based
on the leave one out cross validation (LOOCV) methodology [16].

The image used for the experiments is depicted in Fig. 1. It
represents a slice of a rodent’s tibia cortical bone obtained with SR
X-ray mCT at the synchrotron radiation for medical physics
(SYRMEP) beam line of the ELETTRA Laboratory at Trieste, Italy
(www.elettra.trieste.it). The darker grayscale pixels are back-
ground, and the intermediate grayscale pixels region is marrow.
The region of interest is the lighter one, which is bone.

The remaining of this article is organized as follows: Section 2
presents the aspects of the SR-mCT medical imaging and the
HMM, as well as details about the instrumentation; Section 3
focuses on the ANNs and the training strategies applied to the SR-
mCT medical images for HMM; the methodology is described in
Section 4; Section 5 presents the experimental results; we discuss
them in Section 6 before concluding in Section 7.
2. Synchrotron radiation medical imaging for
histomorphometric analysis

2.1. Synchrotron radiation medical imaging at ELETTRA laboratory

SR facilities such as the ELETTRA Laboratory (Trieste, Italy)
provide important characteristics for the acquisition of medical
images. The image of interest was obtained at the synchrotron
radiation for medical physics (SYRMEP) beam line, which is
designed for in-vitro samples X-Ray imaging. The beam is laminar
and extremely collimated. The SR beams are, to a good extent,
coherent, allowing higher sensitivity and better spatial resolution
and this is an important factor for innovative imaging techniques.
Moreover, the high brilliance of the synchrotron light allows
the use of monochromatic radiation, i.e., the selection of single
photon energy. Monochromaticity avoids beam hardening and
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therefore turns a reconstructed radiography in a quantitative
mapping of X-ray attenuations.

Despite the enhancement of biological tissue imaging due to
the monochromaticity and coherence of SR beams, radiological
imaging based only on absorption effects results in poor image
contrast [17]. Notwithstanding, the information carried by the
phase of X-Ray wavefield, or phase effects, may be exploited by
techniques that convert it into image contrast, enhancing detail
visibility [18].

Lewis [19] reviewed the three experimental techniques used in
order to obtain images with contrast enhancement based on
phase-shift effects: X-Ray interferometry, diffraction enhanced
imaging and in-line holography (also called free-space propaga-
tion or merely phase contrast imaging [18]).

In phase contrast imaging, waves are refracted by details,
interfering with unrefracted waves, resulting in strong interfer-
ence patterns that are detected [17], enhancing the contrast of the
detail borders, for example. The effect of the phase contrast may
be noticed in the image of interest (Fig. 1): the borders of bony
tissue and marrow became lighter.

Phase contrast imaging is one such technique that exploits
differences in the real part of the refractive index distribution of
an object to form an image using a spatially coherent light source.
It may permit the visualization of objects that have very similar X-
ray absorption properties, and therefore is particularly useful for
biological tissue imaging in medical applications. In addition,
microtomographic processing techniques can be applied readily
to phase contrast images [20].

2.2. Micro-computed tomography (mCT)

The mCT is an emerging technique for the non-destructive
assessment and analysis of the 3D trabecular bone structure. The
basis of tomography is X-ray radiography. According to the
equation that governs the image intensity in projection imaging,
an X-ray beam is sent through a sample and the transmitted beam
is recorded on a charge-coupled device (CCD). The Beer–Lambert
law (Eq. (1)) is the linear relationship between absorbance and
concentration of an absorbing species. The ratio of transmitted
intensity I(x) to incident intensity I0(x) is related to the line
integral of the absorption coefficient of the material m(x, y) along
the path L that the photons follow through the sample:

IðxÞ ¼ I0ðxÞexp �

Z
L
mðx,yÞdy

� �
: ð1Þ

The SR-mCT is a very useful technique when it comes to three-
dimensional imaging of many geometries. The SR properties
enable SR-mCT to reconstruct the highly resolved 3D image even
with a high signal-to-noise ratio [21].

2.3. Histomorphometric analysis

Histomorphometric analysis has been used to evaluate
different complex structures such as ceramic filters, net structures
and cancellous objects (e.g. bone), which have inner connected
structures. In the last years, histomorphometric analysis has been
studied to quantify cortical bone or vascular canal network
structure. The three-dimensional HMM, obtained from mCT,
corresponds to an evolution of the conventional method that is
based on 2D analysis [22,23]. The measured parameters are
sample volume (BV), sample surface (BS), ratio of sample volume
to total volume (BV/TV), ratio of surface to volume of the sample
(BS/BV), connection thickness (TbTh), connection number (TbN)
and connection separation (TbSp). These first five parameters form
the base of histomorphometric analysis [24,25] and some
parameters like BV, BS and TV may be transferable to the analysis
of the cortical bone.

The 3D reconstructed data are a collection of coefficients
distributed regularly in space. Each set of eight coefficients (seen
as pixels), displaced as a cube, forms a voxel. Once the 3D map of
the bone specimens is achieved using mCT, the specimen is
fragmented into voxels, each one representing a single solid,
following the same procedure established to compute the 3D
histomorphometric parameters. For conventional techniques and
the Feldkamp procedure [6], all parameters are evaluated from
slices. The 3D HMM is more compatible with the morphologic
parameters volume and surface. The obtained results reveal the
potential in using 3D tomography to extract and evaluate
histomorphometric parameters, compared to 2D analysis, since
it avoids extrapolations.

The 3D tomography yields all the spatial information needed
to evaluate the parameters BV/TV and BS/BV directly from the
volume. The total volume (TV) is the number of voxels contained
on the volume data file. The total surface and the volume of the
microstructure are computed by summing the areas and volumes
of each individual model found in the data volume.
2.4. Instrumentation

All specimens were imaged using SR mCT at SYRMEP beam line,
on the ELETTRA SR facility. The beam line provides a monochro-
matic laminar-section X-ray with a maximum area of about
160�5 mm2 at 20 keV, at a distance of about 23 m from the
source. The system consists of a Si (1 1 1) crystal working at Bragg
configuration. The useful energy range is 8–35 keV. The intrinsic
energy resolution of the monochromator is about 10�3. Typical
flux measured at the sample position at 17 keV is about
1.6�108 photons/mm2 s with a stored electron beam of 300 mA
as ELETTRA operates at 2 GeV [17]. A custom-built ionization
chamber is placed upstream to the sample to determine the
exposure on the sample. A micrometric vertical and horizontal
translation stage allows the positioning and the scanning of the
sample with respect to the stationary beam and a rotational stage
allows CT acquisition with a resolution of 0.0011.

The detector system is comprised of a 16-bit CCD camera, with
2048�2048 pixels2, 14�14 mm2 pixel size, coupled to an
intensifier screen with no magnification (1:1). The CCD camera
can move along the sample-detector axis, in order to set the
desired sample-to-detector distance d. According to the choice of
the sample-to-detector distance, one may distinguish between
the absorption and phase sensitive regimes. If the CCD is mounted
very close to the sample we are in the absorption regime.
For higher d values, free space propagation transforms the
phase modulation of the transmitted beam into an amplitude
modulation.
3. Training strategies for artificial neural networks in
synchrotron radiation medical imaging

3.1. Artificial neural networks and their application to synchrotron

radiation medical imaging

Neural computing is part of the field of computational
intelligence. It studies and develops models inspired by the brain,
seen as a ‘‘highly complex, non-linear and parallel’’ computer [13].
ANNs are models based upon the relationships among neurons,
synapses and learning, and are used for tasks such as regression
and classification.
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Egmont-Petersen et al. [26] review the solutions involving
ANNs in image processing and analysis. In order to systematically
cover and comprehensibly explain the role of ANNs in image
processing, the authors adopt a taxonomy for image processing
tasks that comprises preprocessing, data reduction, segmentation,
object recognition, image understanding and optimization. The
work depicted herein aims to assess the performance of bone
pixel classification provided by ANNs, for application to the
segmentation of SR X-ray mCT images. Although some of the
works cited in [26] are on FF-ANNs applied to medical images,
none of them is related to SR images and their specificities.
Neither do they report precision or accuracy of classification
performed by ANNs focused on quantitative analysis for medical
imaging (HMM in particular), which operates under a different set
of goals and requirements than for example segmentation for
visualization.

In Ref. [14], bone pixel recognition by FF-ANNs in SR X-ray mCT
medical images was demonstrated with an assessment performed
with the receiver operating characteristic curves methodology. In
order to accomplish the pattern recognition task, the FF-ANNs in
Ref. [14] had 9 neurons in the input layer, 5 neurons in the hidden
layer and 3 neurons in the output layer. They were trained with
30 vectors corresponding to 30 patterns (subimages), 10 for each
phase (bone, background and marrow). Each vector was com-
posed by 9 (nine) grayscale values of the pixels, and during the
training, the neurons of the input layer received these real values
between 0 (black) and 1 (white), corresponding to the grayscale
value of each pixel. Since the training was supervised, for each
input pattern, an output vector was associated: (1 0 0) for
background, (0 1 0) for bone and (0 0 1) for marrow. Besides,
three different types of supervised learning algorithms were
tested: gradient descent, gradient descent with momentum and
gradient descent with variable learning rate. The results in Ref.
[14] demonstrated the viability of application of FF-ANNs to bone
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9 5 2 1 2 5 9

7 8 9 6 9 8 7

8 4 5 3 5 4 8
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Kernel 5x5:
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Fig. 2. Symmetry information SymAv1 for the subimages used to train the ANNs

(average intensity of groups of grayscale pixels, related to the orientation):

3 inputs for a 3�3 kernel—white pixels; 6 inputs for a 5�5 kernel—white and

light gray pixels; and 10 inputs for a 7�7 kernel—white, light gray and dark gray
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Fig. 3. Symmetry information SymAv2 for the subimages used to train the ANNs

(average intensity of groups of grayscale pixels, surrounding the central pixel): 2

inputs for a 3�3 kernel—white pixels; 3 inputs for a 5�5 kernel—white and light

gray pixels; and 4 inputs for a 7�7 kernel—white, light gray and dark gray pixels.
pixel recognition in SR X-ray medical images, although an
assessment of the accuracy was not included. The promising
results sparked an interest in examining a broader range of
different training strategies, which will be discussed in the next
subsection.
3.2. Training strategies

In the present survey we have used FF-ANNs with more
complex training algorithms than in Ref. [14]: gradient descent
with adaptive learning rate and momentum training (GDLRM),
resilient backpropagation (RB), the quasi-Newton BFGS and
Levenberg–Marquardt (LM) [27].

The combination of those training algorithms with different
kernels and symmetry information yielded what we call training
strategies. We were interested in presenting as input to the ANNs
kernels (‘‘masks’’ for the subimages) of different dimensions and
symmetry information aiming to convey context information
based on the pixels’ intensity. We have tested the dimensions
3�3, or 5�5 and 7�7 pixels for the kernels in the training
strategies.
Fig. 4. (a) Box plots of the MSEs (log) for different training strategies with the

algorithm GDLRM. (b) As an example, the image of Fig. 1 segmented with the

classification provided by the ANN trained with the strategy GDLRM 3�3 SymAv2.
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Our approach is different from both Ref. [28] and Ref. [29],
which uses a symmetric architecture in order to perform rotation-
invariant pattern recognition, or reduce redundant weights of the
ANN using a symmetrical architecture or by imposing equal
weights. In the assessment of training strategies we compared
ways of conveying symmetry information, which we call Asym,
SymAv1 and SymAv2. In the conventional asymmetric approach
(Asym), the numbers of inputs of the pixel’s grayscale values
were: 9 inputs for a 3�3 kernel, 25 inputs for a 5�5 kernel and
49 inputs for a 7�7 kernel. On the other hand, in the symmetric
approach (SymAv1 and SymAv2), the average of intensity
(grayscale values) of different groups of pixels was used, as
depicted in Figs. 2 and 3. In the case of the average value for
groups related to the orientation (SymAv1), Fig. 2 exhibits 3 inputs
for a 3�3 kernel (instead of 9 inputs), 6 inputs for a 5�5 kernel
(instead of 25 inputs) and 10 inputs for a 7�7 kernel (instead of
49 inputs); for average values of groups surrounding the central
pixel (SymAv2), Fig. 3 exhibits 2 inputs for a 3�3 kernel (instead
of 9 inputs), 3 inputs for a 5�5 kernel (instead of 25 inputs) and 4
inputs for a 7�7 kernel (instead of 49 inputs). The main idea with
this approach is the following: with a smaller number of inputs,
Fig. 5. (a) Box plots of the MSEs (log) for different training strategies with the

algorithm RB. (b) The image of Fig. 1 segmented with the classification provided by

the ANN trained with the strategy RB 3�3 SymAv2.
there are fewer weights to be adjusted in the ANN, reducing
redundancy and thereby making ANN learning both more efficient
and less prone to overfitting.

In short, each training algorithm (GDLRM, RB, BFGS and LM)
was combined with a type of kernel (3�3, 5�5 or 7�7) and one
type of symmetry assumption (Asym, SymAv1 or SymAv2),
resulting in 9 combinations for each training algorithm, that is,
36 training strategies.
4. Methodology

A classifier is a function which is able to map from unlabeled
instances to class labels. It is induced by an algorithm that builds
it from a data set [16]. In our case, the ANNs are the classifiers,
and supervised learning (with the specificities of each training
strategy as stated before) plays the role of the induction algorithm
and the instances are the pixels to be classified. A description of
the supervised learning methodology for ANNs is given in
Ref. [13].

Some methods such as bootstrap, holdout or LOOCV may be
used to estimate the future prediction accuracy of a classifier [16].
Fig. 6. (a) Box plots of the MSEs (log) for different training strategies with the

algorithm BFGS. (b) The image of Fig. 1 segmented with the classification provided

by the ANN trained with the strategy BFGS 3�3 SymAv1.
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In our work we used the LOOCV and the mean square errors
provided by the LOOCV. The main idea with the LOOCV is that the
classifier will be initialized and trained k times by the induction
algorithm. Given a set S with k instances S¼{X1, X2, y, Xk} and
their respective classification, for each test ti in T¼{t1, t2, y, tk},
the classifier is trained with k�1 instances, since during the test
ti, the instance Xi is left out from the training phase in ti, and Xi will
be submitted to classification and therefore an estimation of
misclassification of Xi can be calculated. In other words, the
classifier is always trained with a subset of instances and tested
with the instance that was not used in the training phase. Thus, it
is possible to estimate the accuracy of classifiers based on the
classification of an instance that was not presented during the
training phase in order to compare, choose, combine or estimate
the bias and variance of future processes of classification.

Our ANNs had one hidden layer with 5 neurons, and only one
output for the classification (0 for no-bone, or 1 for bone). The
number of neurons in the input layer depended on the training
strategy, as mentioned in Section 3.2 (Asym: 9, 25 or 49 inputs;
SymAv1: 3, 6 or 10 inputs; SymAv2: 2, 3 or 4 inputs).

In this work, 50 pixels of interest from Fig. 1 were selected and
classified in order to compose the set S (25 bone pixels, 13
Fig. 7. (a) Box plots of the MSEs (log) for different training strategies with the

algorithm LM. (b) The image of Fig. 1 segmented with the classification provided

by the ANN trained with the strategy LM 3�3 Asym.
marrow pixels and 12 background pixels). The same set S was
used for all training strategies, for all ANNs tested. During the
training phases, the stopping criterion was either 4000 epochs or
an MSE of the training phase lower than 10�5. The pixel intensity
information corresponding to the 49 instances, according to the
information symmetries depicted in Figs. 2 and 3, was presented
to the ANN as well as their classification during the training phase
with a given training strategy. Then, the trained ANN was used for
the classification of the left-out pixel, yielding, for the test ti a
square error SEi of the output provided by the ANN in relation to
the pixel’s classification (0 for no-bone, or 1 for bone). For the test
ti + 1, the ANN is re-initialized randomly and the process is started
over again. Then, the MSE over the 50 SEs was calculated. This
procedure (MSE for the LOOCV of the 50 pixels of the set S) was
repeated 30 times for each training strategy, yielding 30 MSEs,
and the box plots were plotted with the log of the MSEs for a
better visualization.

In short, each LOOCV yielded one MSE and we repeated 30
times the LOOCV for each training strategy. The comparison
between the results is useful to determine which training
strategies are likely to have a good accuracy in bone pixel
classification for SR X-ray mCT images for HMM.
5. Computational experimental results

The box plots of the log MSEs for the LOOCVs of the ANNs
trained with the algorithms GDLRM, RB, BFGS and LM are
depicted in Figs. 4a–7a. Images obtained by segmentation
performed by ANNs (trained with training strategies chosen
after the analysis) are presented in Figs. 4b–7b. They are
illustrative examples of the final results of the segmentation of
Fig. 1. Although they look very similar, slight differences may be
noticed.

Tables 1–4 exhibit the average MSE for each training strategy,
as well as its standard deviation and confidence interval of the
mean at level 95%. Fig. 8 depicts the box plots of the best training
Table 1
Average MSEs, standard deviations and t-Intervals for different training strategies

for the training algorithm GDLRM.

Av. MSE St. dev. t-Int1 t-Int2

GDLRM 3�3 Asym 3.20�10�3 7.25�10�4 2.93�10�3 3.47�10�3

GDLRM 3�3 SymAv1 2.98�10�3 8.77�10�4 2.66�10�3 3.31�10�3

GDLRM 3�3 SymAv2 2.69�10�3 6.23�10�4 2.46�10�3 2.92�10�3

GDLRM 5�5 Asym 6.10�10�3 2.24�10�3 5.26�10�3 6.93�10�3

GDLRM 5�5 SymAv1 4.06�10�3 1.49�10�3 3.50�10�3 4.62�10�3

GDLRM 5�5 SymAv2 3.33�10�3 1.38�10�3 2.82�10�3 3.85�10�3

GDLRM 7�7 Asym 9.79�10�3 3.83�10�3 8.36�10�3 1.12�10�2

GDLRM 7�7 SymAv1 5.74�10�3 1.75�10�3 5.08�10�3 6.39�10�3

GDLRM 7�7 SymAv2 4.59�10�3 1.38�10�3 2.82�10�3 3.85�10�3

Table 2
Average MSEs, standard deviations and t-Intervals for different training strategies

for the training algorithm RB.

Av. MSE St. dev. t-Int1 t-Int2

RB 3�3 Asym 1.78�10�3 8.42�10�4 1.46�10�3 2.09�10�3

RB 3�3 SymAv1 1.21�10�3 4.68�10�4 1.04�10�3 1.39�10�3

RB 3�3 SymAv2 9.82�10�4 5.99�10�4 7.59�10�4 1.21�10�3

RB 5�5 Asym 3.69�10�3 1.21�10�3 3.23�10�3 4.14�10�3

RB 5�5 SymAv1 2.33�10�3 1.70�10�3 1.70�10�3 2.97�10�3

RB 5�5 SymAv2 1.49�10�3 1.15�10�3 1.06�10�3 1.92�10�3

RB 7�7 Asym 8.59�10�3 4.22�10�3 7.02�10�3 1.02�10�2

RB 7�7 SymAv1 3.47�10�3 1.71�10�3 2.83�10�3 4.11�10�3

RB 7�7 SymAv2 2.66�10�3 1.89�10�3 1.95�10�3 3.36�10�3



Table 5
Average MSE, standard deviation on interval of confidence for the best results

training strategies considered.

Av. MSE St. dev. t-Int1 t-Int2

GDLRM 3�3 SymAv2 2.69�10�3 6.23�10�4 2.46�10�3 2.92�10�3

RB 3�3 SymAv2 9.82�10�4 5.99�10�4 7.59�10�4 1.21�10�3

BFGS 3�3 SymAv1 1.52�10�4 1.41�10�4 9.90�10�5 2.04�10�4

LM 3�3 Asym 3.17�10�4 9.37�10�4 0 6.67�10�4

Fig. 8. The box plots of best training strategies considered for each training

algorithm (GDLRM, RB, BFGS and LM).

Table 4
Average MSEs, standard deviations and t-Intervals for different combinations of

Kernel/Strategy for the training algorithm LM.

Av. MSE St. dev. t-Int1 t-Int2

LM 3�3 Asym 3.17�10�4 9.37�10�4 0 6.67�10�4

LM 3�3 SymAv1 3.72�10�4 9.29�10�4 2.45�10�5 7.19�10�4

LM 3�3 SymAv2 2.56�10�4 2.22�10�4 1.73�10�4 3.39�10�4

LM 5�5 Asym 2.06�10�3 2.85�10�3 1.00�10�3 3.13�10�3

LM 5�5 SymAv1 5.03�10�4 9.74�10�4 1.40�10�4 8.67�10�4

LM 5�5 SymAv2 2.29�10�4 2.05�10�4 1.53�10�4 3.06�10�4

LM 7�7 Asym 1.66�10�2 1.34�10�2 1.16�10�2 2.16�10�2

LM 7�7 SymAv1 1.63�10�3 1.63�10�3 1.03�10�3 2.24�10�3

LM 7�7 SymAv2 4.28�10�4 4.90�10�4 2.45�10�4 6.11�10�4

Table 3
Average MSEs, standard deviations and t-Intervals for different training strategies

for the training algorithm BFGS.

Av. MSE St. dev. t-Int1 t-Int2

BFGS 3�3 Asym 1.61�10�3 3.56�10�3 2.75�10�4 2.94�10�3

BFGS 3�3 SymAv1 1.52�10�4 1.41�10�4 9.90�10�5 2.04�10�4

BFGS 3�3 SymAv2 1.72�10�4 1.36�10�4 1.21�10�4 2.23�10�4

BFGS 5�5 Asym 7.73�10�3 8.14�10�3 4.69�10�3 1.08�10�2

BFGS 5�5 SymAv1 9.54�10�4 3.25�10�3 0 2.17�10�3

BFGS 5�5 SymAv2 3.77�10�4 1.23�10�3 0 8.37�10�4

BFGS 7�7 Asym 2.56�10�2 1.26�10�2 2.09�10�2 3.03�10�2

BFGS 7�7 SymAv1 4.22�10�3 6.00�10�3 1.98�10�3 6.46�10�3

BFGS 7�7 SymAv2 4.36�10�4 1.02�10�3 5.47�10�5 8.16�10�4

A.A.M. Meneses et al. / Nuclear Instruments and Methods in Physics Research A 621 (2010) 662–669668
strategies assumed for each training algorithm. Table 5 exhibits
the average MSE, standard deviation and confidence interval of
the mean at level 95% for the best training strategies considered.
6. Discussion

A visual analysis of the segmented images in Figs. 4b–7b gives
an idea of the classification processes for the image of interest
(Fig. 1), based on the classification task performed by the ANNs
trained with the algorithms GDLRM 3�3 SymAv2, RB 3�3
SymAv2, BFGS 3�3 SymAv1 and LM 3�3 Asym. The visual results
of the segmentation are evidence that the training strategies
presented are satisfactory.

Comparing the symmetry information (Asym, SymAv1 and
SymAv2) used as input, according to Tables 1–4, the symmetries
SymAv1 and SymAv2 reduce the average of the MSEs (exception
for LM 3�3 SymAv1) and the values of standard deviation
(exceptions for GDLRM 3�3 SymAv1 and RB 5�5 SymAv2) in
most of the cases, with respect to the strategy Asym. The probable
reason is that, for SymAv1 and SymAv2, there was a reduction of
the dimensionality of the inputs given to the ANNs and therefore
the weights to be adjusted during the training phase. In addition,
the intensity averaging reduced the noise of the input information
presented to the ANNs.

Comparing the kernels, according to Tables 1–4, for the
training algorithms GDLRM and RB, the use of the strategies
3�3 leads to lower averages than the corresponding 5�5 and
7�7 strategies (with the exception of LM 5�5 SymAv2). Broadly
speaking, the best training strategies among the tested ones use a
3�3 kernel and information symmetries SymAv1 or SymAv2, and
are likely to yield a lower MSE.

As many training strategies give good results, selecting a single
best one for bone pixel recognition in SR X-ray mCT images is non-
trivial: in Fig. 6a (algorithm BFGS) for example, we find the
combinations 2 and 3 to have very similar box plots. The same
happens in Fig. 7a (algorithm LM) for the combinations 1 and 3.

In an additional comparison, we found that the best combina-
tions were GDLRM 3�3 SymAv2, RB 3�3 SymAv2, BFGS 3�3
SymAv1 and LM 3�3 Asym, whose box plots are depicted in Fig. 8.
According to Table 5, it is possible to say that for all these
combinations the average MSE is very low, but still lower for the
best combinations of the algorithms BFGS and LM. Going back to
the initial problem of recognizing bone pixels in SR X-ray mCT
images, our methodology of validation now allows us to affirm
that the tests were successful, in the sense that the ANNs achieve
very low average MSE for the image of interest. In addition, the
LOOCV methodology provides a good estimate of bias and
variance for future processes of classification.
7. Conclusion

SR X-ray mCT enables magnified images which may be used as
a non-invasive and non-destructive technique for diagnosis and
treatment of diseases, for example, the osteoporosis which has
become a major public health problem. Not only bony mass
quantification is important, but recent studies point out to the fact
that structural analysis is also important for such diseases. HMM
provides parameters that allow the structural analysis of the
bone. However, as the mCT is relatively new, there is no full
agreement or standardization of methods and procedures for
HMM based on mCT images, especially in the case of SR X-ray mCT
images, therefore requiring further investigation. In this article, an
extensive assessment of well-known architectures and training
algorithms for ANNs, symmetries and kernels was performed,
with an analysis of the results, as a first step in order to survey
techniques for bone HMM based on SR mCT images. Several
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training strategies have yielded outstanding results for the bone
pixel recognition to be applied to HMM, with a satisfactory
segmentation of the image of interest based on the bone pixel
classification performed by the ANNs.
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