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The Gevrey hypoellipticity of a class of models generalizing the Oleı̆nik–Radkevič operator
is studied. Some partial regularity result is also given. It is studied the partial and
microlocal regularity of the operator

L(t, x; Dt , Dx) = D2
t +

n∑
j=1

t2(r j−1) D2
x j

on Ω , open neighborhood of the origin in Rn+1, where the r j ’s are positive integers such
that r1 < r2 < · · · < rn .

© 2013 Published by Elsevier Inc.

1. Introduction

In [2] and [4] A. Bove, D.S. Tartakoff and M. Christ have proved that certain models of “sum of squares” operators of real
vector fields with analytic coefficients have a Gevrey hypoellipticity threshold better than that one would have expected.
In [2] moreover a detailed Gevrey partial regularity is obtained showing that the Gevrey regularity in some directions is
better than in other directions.

More precisely in [2] the Oleı̆nik–Radkevič operator, [8], is studied:

P = D2
t + t2(p−1)D2

x + t2(q−1)D2
y,

where p � q and p,q ∈ N. It is proved that P is Gq/p-hypoelliptic and moreover that if u solves the problem P u = f , f is
analytic, then u ∈ G(s0,s1,s2) , where s0 � 1 − 1

q + 1
p , s1 � 1 and s2 � q

p ; their result is sharp.

In this paper we present a regularity result which concerns a more general class of Oleı̆nik–Radkevič type of operators
generalizing the result in [2] and [4]. Let us consider the “sum of squares” operator

L(t, x; Dt, Dx) =
n∑

j=0

X2
j (t, x, Dt, Dx) = D2

t +
n∑

j=1

t2(r j−1)D2
x j

(1.1)

on Ω , open neighborhood of the origin in Rn+1, where the r j ’s are positive integers such that r1 < r2 < · · · < rn .
By Hörmander’s theorem [7] it is well known that these operators are C∞-hypoelliptic. The classical results of Derridj

and Zuily [5] and Rothschild and Stein [9] prove that for the operator L we have the following sub-elliptic a priori estimate
with loss of 2(1 − 1/rn) derivatives. We state it in the quadratic form version:
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‖u‖2
1/rn

+
n∑

j=0

‖X ju‖2 � C
(∣∣〈Lu, u〉∣∣ + ‖u‖2). (1.2)

Here X0 = Dt , X j = tr j−1 D j , ‖ · ‖s denotes the Hs Sobolev norm and ‖ · ‖ = ‖ · ‖0 denotes the L2 norm on a fixed open
set Ω .

The results in [9] and [5] are actually applicable in a more general setting: for any operator being a sum of squares
of real vector fields we have that if the fields and their brackets of length at most r span the tangent space then the
sub-elliptic estimate with loss of 2(1 − 1/r) derivatives holds. Moreover the results obtained by Derridj and Zuily [5] say
that the operator is hypoelliptic in all Gevrey classes Gs with s � r.

To understand in a clearer way the analytic (or Gevrey) hypoellipticity of sums of squares, F. Treves in [12] introduced
the concept of Poisson stratification for such an operator.

We recall, without giving a definition, the main properties of the Poisson–Treves stratification for a “sum of squares”:

Theorem 1.1. ([12], see also [3].) Let P be the operator P (x; D) = ∑k
1 X2

j (x; D), X j(x; D) vector fields with real analytic coefficients
on an open neighborhood of the origin in R

n. Let X j(x, ξ) be the symbol of the vector field X j . Let Σ = Char(P ) be the characteristic
set of P that is

Σ = {
(x, ξ) ∈ T ∗

R
n \ {0}: X j(x, ξ) = 0 ∀ j ∈ {1, . . . ,k}}.

Then there is a stratification of Σ such that

1. Each stratum is a real analytic manifold.
2. The symplectic form σ has constant rank on each stratum.
3. There is a sequence of integers, ν1 < ν2 < · · · < νp−1 < νp = r (r denotes the maximum length of the Lie brackets involved in the

Hörmander condition), and real analytic relatively open connected disjoint manifolds (strata) Σν j ,l , l = 1, . . . , l j , j < p. Here the
index l counts the connected components at level ν j . Moreover, all the Poisson brackets of the vector fields of length ν j vanish on
Σν j ,l , l = 1, . . . , l j , but there is at least one bracket of length ν j+1 which is non-identically zero.

The length of a Poisson bracket of vector fields is just the number of vector fields forming the bracket; for example X j(x, ξ) is a bracket
of length one while {X1, {X1, X2}}(x, ξ) is a bracket of length three.

Fore more details on the subject we refer to the papers [13] where it was first introduced and [3] for a different,
constructive definition.

We recall the definition of depth of a point in Σ :

Definition 1.1. (See [1].) Let ρ ∈ Σ be a characteristic point. Let νρ be the smallest number such that there is a bracket of
length νρ which is non-zero at ρ . We define νρ to be the depth of the point ρ and if ρ ∈ Σ ′ , where Σ ′ denotes a stratum
in the stratification, νρ will also be called the depth of the stratum Σ ′ .

We remark that the depth of a point is less or equal than the maximum length of the Lie brackets needed to generate
the tangent space.

In the case of the operator L we have

Σ = Char L = {
(t, x;τ , ξ) ∈ T ∗

R
n+1 \ {0}: t = 0, τ = 0

}
and the related stratification is given by

Σr1−1,± = {
(t, x;τ , ξ) ∈ T ∗

R
n+1 \ {0}: t = 0, τ = 0, ξ1 ≷ 0

}
,

Σr2−1,± = {
(t, x;τ , ξ) ∈ T ∗

R
n+1 \ {0}: t = 0, τ = 0, ξ1 = 0, ξ2 ≷ 0

}
,

...

Σr j−1,± = {
(t, x;τ , ξ) ∈ T ∗

R
n+1 \ {0}: t = 0, τ = 0, ξ1 = · · · = ξ j−1 = 0, ξ j ≷ 0

}
,

...

Σrn−1−1,± = {
(t, x;τ , ξ) ∈ T ∗

R
n+1 \ {0}: t = 0, τ = 0, ξ1 = · · · = ξn−1 = 0, ξn ≷ 0

}
,

Σrn = {∅}.
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We recall the result in [1]:

Theorem 1.2. (See [1].) Let P be a “sum of squares” operator. Let (x0, ξ0) be a point in the characteristic set Σ of P and ν(x0,ξ0) its depth.
Denote by Ω a neighborhood of (x0, ξ0). Then P is Gevrey-ν(x0,ξ0) microlocally hypoelliptic at (x0, ξ0) i.e. if W Fν(x0,ξ0)

(P u) ∩ Ω = ∅

then (x0, ξ0) /∈ W Fν(x0,ξ0)
(u).

Here u ∈ D ′(U ), U is open subset in R
n , and W Fs(u) is the Gevrey-s wave front set of the distribution u.

In accordance with the above theorem we have that at the point ρ j = (0,0,0, e j), with depth νρ j = r j , the operator L is
Gevrey-r j microlocally hypoelliptic at ρ j i.e. ρ j /∈ W Fr j (u).

In virtue of the above results the operator L is Grn -hypoelliptic.
The non-isotropic Gevrey classes are defined as follows:

Definition 1.2. A smooth function f (x0, x1, . . . , xn) belongs to the Gevrey space G(α0,α1,...,αn) at the point x0 provided that
there exists a neighborhood, U , of x0 and a constant C f such that for all multi-indices β∣∣Dβ f

∣∣ � C |β|+1
f β!α in U ,

where β!α = β0!α0β1!α1 · · ·βn!αn .

Our result can be stated as follows:

Theorem 1.3. The operator L in (1.1) is Grn/r1 -hypoelliptic and not better. More precisely we have that if u solves the equation Lu = f
and f is analytic then if ρ j ∈ Σr j−1 then ρ j /∈ W Fr j/r1(u) and moreover u ∈ G(s0,s1,...,sn) where

s0 � r∗, s j = β j �
rn(r j − 1)

rn(r1 − 1) + r j − r1
with j = 1, . . . ,n;

where r∗ = sup j{1 − 1
r j

+ β j
r j

}, in particular s1 � 1 and sn � rn/r1 .

Remark 1.1. The result stated above can be extended to the operators

L(t, x; Dt, Dx) = D2
t +

v∑
j=1

t2(r j−1)�2
n j

where r j are positive integers such that r1 < r2 < · · · < rv and �n j = ∑n j

j=n j−1
D2

j with n0 = 1, nv = n + 1 and n0 < n1 <

· · · < nv ; in this case the points (0,0;0, e j) with n j−1 + 1 � j � n j are not in the
r j
r1

-Gevrey wave front set of u and

u ∈ G(s0,s1,...,sn) where s0 � r∗ and s j � (rn(r j −1))/(rn(r1 −1)+r j −r1). This situation does not present additional difficulties
compared to that we are going to handle.

This is the plan of the paper: we will study the direction t and x j using the same technique in [2], while the microlocal
regularity will be obtained using the FBI technique (Fourier–Bros–Iagolnitzer (FBI) transform) and the microlocal version of
the Rothschild–Stein estimate (1.2) obtained in [1]; for the sharpness of the result we will follow the ideas in [8] and [2].

We point out here that the Gevrey regularity rn/r1 is optimal, as is shown in the final section of the paper. We are also
able to prove that the partial regularity w.r.t. t and xn are also optimal. We have no claim of optimality for s j , 1 � j � n − 1.

2. Microlocal regularity

We investigate the microlocal regularity of the operator L related with the Poisson–Treves stratification of Σ = Char(L)

introduced above. The primary tools will be the Fourier–Bros–Iagolnitzer (FBI) transform (for more details on this we refer
to [11,10,6]) and the microlocal version of the sub-elliptic a priori estimate obtained in [1] via FBI. We recall some basic
definitions and results which will be useful for our purpose, see [11,6,1].

We consider the FBI transformation with the classical phase function

T u(z, λ) =
∫

e− λ
2 ((z0−t)2+(z′−x)2)u(t, x)dt dx,

where λ � 1, z = (z0, z′) ∈C
1+n , (t, x) ∈ R

1+n and u is a compactly supported distribution.
Let us denote by Ω an open neighborhood of the point z0 = π ◦ HT (z0, ζ 0) in C

n+1; π denotes the space projection
π :Cn+1

z × C
n+1
ζ → C

n+1
z and HT denotes the complex canonical transform associated to T . Let ϕ0 be the weight function

corresponding to the classical FBI transformation:
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ϕ0(z) = − sup
(t,x)∈Rn+1

Im − i

2

(
(z0 − t)2 + (

z′ − x
)2)

.

HT maps T ∗
R

n+1 into Λϕ0 = {(z, 2
i ∂zϕ0(z))}. If we denote by L̃ our operator after the FBI we have that L̃|Λϕ0

= L. We
recall briefly the characterization of the s-Gevrey wave front set in the FBI setting, see [11]: a point (x0, ξ0) ∈ U , U open
subset of T ∗

R
n+1 \ {0}, does not belong to W Fs(u) if and only if exists a neighborhood Ω of x0 − iξ0 in C

n+1 and positive
constants C1 and C2 such that

∣∣e−ϕ0(z)T u(z, λ)
∣∣ � C1e−λ

1
s /C2

for every z ∈ Ω .
Since in the following we will work on the FBI side we will continue to denote with L the operator after the FBI

transform. We recall the following result:

Theorem 2.1. (See [1].) Let P be a “sum of squares” operator after the FBI transform and ν the depth of the point (x0, ξ0) ∈ Char(P ).
Let Ω1 � Ω , Ω is a neighborhood of the point x0 − iξ0 . Then

λ2/ν‖u‖2
ϕ0

+
k∑

j=1

∥∥XΩ
j u

∥∥2
ϕ0

� C
(〈

PΩu, u
〉
ϕ0

+ λα‖u‖2
ϕ0,Ω\Ω1

)
, (2.1)

where α is a positive integer.

Here PΩ is the Ω-realization of the operator, for more details see [6], and

‖u‖2
ϕ0

=
∫
Ω

e−2λϕ0(z)
∣∣u(z)

∣∣2
dz ∧ dz̄.

In the special case of the operator L, (1.1), if we take ρ j ∈ Σr j−1, we can choose without loss of generality ρ j =
(0,0,0, e j), j � 2, then we have that the depth of ρ j is r j and applying the above theorem we have

λ2/r j ‖u‖2
ϕ0

+
n∑

j=0

∥∥XΩ
j u

∥∥2
ϕ0

� C
(〈

LΩu, u
〉
ϕ0

+ λα‖u‖2
ϕ0,Ω\Ω1

)
, (2.2)

where Ω is a neighborhood of the point 0 − ie j , Ω1 � Ω and LΩ is the Ω-realization of the operator L.
We perturb canonically ϕ0 using an analytic function r(z, ζ, λ) and solve, for small positive s, the Hamilton–Jacobi prob-

lem ⎧⎨
⎩2

∂ϕ

∂s
(s, z, λ) = r

(
z,

2

i

∂ϕ

∂z
(s, z, λ), λ

)
,

ϕ(0, z, λ) = ϕ0(z).

Since R
2(n+1) and Λϕ0 are isomorphic it is easier to construct the function r in R

2(n+1) near the characteristic point
ρ j ∈ Σr j−1.

We choose

r(t, x, τ , ξ) = τ 2 + t2r j +
n∑

l=1
l �= j

ξ2
j + (ξ j − 1)2 +

j−1∑
i=1

λ−θi x2
i +

n∑
i= j

x2
i

where θi = r j−ri
r j

. We remark that r(0,0,0, e j, λ) = 0 and r|Λϕ0 \{(ie j ,−e j)} is strictly positive.

We write Λϕs = exp(isHr)(Λϕ0 ). Our purpose is to use the estimate (2.2) with the new weight function ϕs . Consider the
restriction to Λϕs of the symbol of L, denoted by Ls . We have

Ls = L + s
n∑

j=0

X j{r, X j} + s2
n∑

j=0

{r, X j}2 +O
(
s2λ

2
r j

)
.

We want to estimate∥∥{r, Xi}Ω u
∥∥2

with i = 0, . . . ,n.

ϕs
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We have{
X0, r(t, x, τ , ξ, λ)

} = {
τ , r(t, x, τ , ξ, λ)

} = 2r jt
2r j−1 = a0(t, ξ)X j,{

Xi, r(t, x, τ , ξ, λ)
} = {

tri−1ξi, r(t, x, τ , ξ, λ)
} = −2(ri − 1)tri−2ξiτ + 2λ−θi tri−1xi

= a1i(t, x, ξ)X0 + a(x)λ−θi tri−1, i = 1, . . . , j − 1,

and {
Xi, r(t, x, τ , ξ, λ)

} = {
tri−1ξi, r(t, x, τ , ξ, λ)

} = −2(ri − 1)tri−2ξiτ + 2tri−1xi

= a2i(t, x, ξ)X0 + a3i(x, ξ)Xi, i = j, . . . ,n.

The choice of θi allows us to take advantage of the inequality

λ2(1−θi)t2(ri−1) � λ
2
r j + λ2t2(r j−1) = λ

2
r j + a(ξ)λ2 X2

j .

In view of the above inequality and of Proposition (1.3) in [6] we have∥∥{r, Xi}Ωu
∥∥2
ϕs

�
∥∥XΩ

0 u
∥∥2
ϕs

+ ∥∥XΩ
j u

∥∥2
ϕs

+ λ2/r j ‖u‖2
ϕs

, i = 1, . . . , j − 1,

and ∥∥{r, Xi}Ωu
∥∥2
ϕs

�
∥∥XΩ

0 u
∥∥2
ϕs

+ ∥∥XΩ
i u

∥∥2
ϕs

, i = j, . . . ,n.

Rewriting (2.2) with the new weight ϕs

λ2/r j ‖u‖2
ϕs

+
n∑

j=0

∥∥XΩ
j u

∥∥2
ϕs

� C
(〈

LΩu, u
〉
ϕs

+ λα‖u‖2
ϕs,Ω\Ω1

)
.

We can conclude that there are a neighborhood Ω0 of 0 + ie j , a positive number δ and a positive integer α such that, for
every Ω1 �Ω2 �Ω ⊂ Ω0, there exists a constant C > 0 such that, for 0 < s < δ, we have

λ2/r j ‖u‖ϕs,Ω1 � C
(∥∥LΩ u

∥∥
ϕs,Ω2

+ λα‖u‖ϕs,Ω\Ω1

)
. (2.3)

We now prove that if Lu is analytic in ρ j then the point ρ j does not belong to W Fr j/r1(u).
Since Lu is real analytic the first term in (2.3) can be estimated by Ce−λ/C for a positive constant C .
On the other hand we have

ϕs(z) = ϕ0(z) + s

2
r

(
z,

2

i

∂ϕ

∂z
(0, z), λ

)
+O

(
s2).

Hence

ϕs(z) − ϕ0(z) ∼ s

( j−1∑
i=1

λ−θi |zi |2 +
n∑

i= j+1

|zi |2 + |z0|2 + |z j − i|2
)

.

Since on Ω \ Ω2 r > β + ∑
λ−θi βi we have

ϕs(z)|Ω\Ω2 � ϕ0(z) + s
(
β +

∑
λ−θi βi

)
.

The second term on the right hand side of (2.3) can be estimated by

‖u‖2
ϕs,Ω\Ω2

� e−λC1(s)−∑
λ1−θi Ci(s).

From (2.3) and the above argument we have

‖u‖2
ϕs,Ω1

� e−λC1(s)−∑
λ1−θi Ci(s).

Let Ω3 be a sufficient small neighborhood of the point 0 + ie j , then for a fixed positive s we obtain

‖u‖2
ϕ0,Ω3

� C̃se−ελ1−θ

,

where

1 − θ = inf
j
{1 − θ1, . . . ,1 − θ j−1} = inf

j

{
r1

r
, . . . ,

r j−1

r

}
,

j j
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that is

‖u‖2
ϕ0,Ω3

� C̃se−ελ
r1/r j

.

Proposition 2.1. The operator L in (1.1) is
r j
r1

-Gevrey hypoelliptic microlocally at the stratum Σr j−1 , i.e. the point ρ j ∈ Σr j−1 is not in

the
r j
r1

-Gevrey wave front set of u.

3. Partial regularity

To study the partial regularity of the solutions we estimate the high order derivatives of the solutions in L2 norm.
As a matter of fact we estimate a suitable localization of a high derivative using (1.2). Actually we estimate ϕ(t, x)Dα

j u,
j = 1, . . . ,n, and ϕ(t, x)Dα

t u. For t �= 0 the operator L is elliptic and we shall not examine this region, elliptic operators are
Gevrey hypoelliptic in any class Gs for s � 1.

3.1. Direction D1

Let ϕ(t, x) be a localizing function of Ehrenpreis–Hörmander type: for any Ω1 and Ω , with Ω1 compactly contained
in Ω , there exists a constant C and a family of functions {ϕm} ∈ C∞

0 (Ω) such that ϕm ≡ 1 on Ω1 for every m and such
that for |α| � 2rnm we have |Dαϕm| � C |α|+1m|α| . We may assume that ϕ is independent of the variable t since every
t-derivative landing on ϕ would leave a cut-off function supported where t is bounded away from zero, where the operator
is elliptic. Let ϕ be a cut-off function of the type described above. We replace u by ϕ(x)Dα

1 u in (1.2). We have

∥∥ϕDα
1 u

∥∥2
1/rn

+
n∑

j=0

∥∥X jϕDα
1 u

∥∥2 � C
(∣∣〈LϕDα

1 u,ϕDα
1 u

〉∣∣ + ∥∥ϕDα
1 u

∥∥2)
. (3.1)

The scalar product in the right hand side leads to

〈
ϕDα

1 Lu,ϕDα
1 u

〉 + n∑
j=1

〈[
X2

j ,ϕDα
1

]
u,ϕDα

1 u
〉 = 2

n∑
j=1

〈[
X j,ϕDα

1

]
u, X jϕDα

1 u
〉 + n∑

j=1

〈[[
X j,ϕDα

1

]
, X j

]
u,ϕDα

1 u
〉

+ 〈
ϕDα

1 Lu,ϕDα
1 u

〉
. (3.2)

The last term is trivial to estimate since Lu is analytic; we may assume, without loss of generality, that it is zero. For
every j, 1 � j � n, we have∣∣〈[X j,ϕDα

1

]
u, X jϕDα

1 u
〉∣∣ = ∣∣〈tr j−1ϕ(1)Dα

1 u, X jϕDα
1 u

〉∣∣
�

∣∣〈tr j−1 D1ϕ
(1)Dα−1

1 u, X jϕDα
1 u

〉∣∣ + ∣∣〈tr j−1ϕ(2)Dα−1
1 u, X jϕDα

1 u
〉∣∣.

We use Cauchy–Schwartz on the first scalar product and repeat the procedure on the second:

∣∣〈[X j,ϕDα
1

]
u, X jϕDα

1 u
〉∣∣ � C1

∥∥X1ϕ
(1)Dα−1

1 u
∥∥2 + 1

C1

∥∥X jϕDα
1 u

∥∥2 + ∣∣〈tr j−1ϕ(2)Dα−2
1 u, X jϕDα

1 u
〉∣∣

+ ∣∣〈tr j−1ϕ(3)Dα−2
1 u, X jϕDα

1 u
〉∣∣.

The latter can be handled as before with a constant C2:

∣∣〈[X j,ϕDα
1

]
u, X jϕDα

1 u
〉∣∣ � C1

∥∥X1ϕ
(1)Dα−1

1 u
∥∥2 + 1

C1

∥∥X jϕDα
1 u

∥∥2 + C2
∥∥X1ϕ

(2)Dα−2
1 u

∥∥2 1

C2

∥∥X jϕDα
1 u

∥∥2

+ ∣∣〈tr j−1ϕ(3)Dα−2
1 u, X jϕDα

1 u
〉∣∣.

Iterating we obtain

∣∣〈[X j,ϕDα
1

]
u, X jϕDα

1 u
〉∣∣ � α∑

�=1

{
C�

∥∥X1φ
(�)Dα−�

1 u
∥∥2 + 1

C�

∥∥X jϕDα
1 u

∥∥2
}

+ Cα+1
∥∥φ(α+1)u

∥∥2 + 1

Cα+1

∥∥X jϕDα
1 u

∥∥2
.

Recalling that the constants C� are arbitrary we make the choice C� = ε−12� , for a suitable fixed positive ε , we may
absorb each second term in the above two lines on the left hand side of (3.1). Choosing ϕ = φm , with m ∼ α, we have
Cα+1‖φ(α+1)u‖ � Cα+1α!. Finally to estimate the terms C�‖X1φ

(�)Dα−�u‖2, we observe that for each of them there has
1
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been a shift of one or more x1-derivatives from u to φ, but that they have the same form as ‖X1φDα
1 u‖2. We have to

estimate the sum

α∑
�=1

ε−12�
∥∥X1φ

(�)Dα−�
1 u

∥∥2 = ε−12
∥∥X1φ

(1)Dα−1
1 u

∥∥2 +
α∑

�=2

ε−12�
∥∥X1φ

(�)Dα−�
1 u

∥∥2
. (3.3)

We use the Rothschild–Stein sub-elliptic estimate replacing u with ϕ(1)Dα−1
1 u on the first term; repeating the above proce-

dure we have

∥∥X1φ
(1)Dα−1

1 u
∥∥2 �

α−1∑
�=1

{
ε−12�

∥∥X1φ
(�+1)Dα−�−1

1 u
∥∥2 + ε

2�

∥∥X jφ
(1)Dα−1

1 u
∥∥2

}

modulo terms which give analytic growth or which have the form |〈[[X j,ϕ
(1)Dα−1

1 ], X j]u,ϕ(1)Dα−1
1 u〉|, we observe that

for each of them there has been a shift of one x1-derivative from u to φ, but that they have the same form as
|〈[[X j,ϕDα

1 ], X j]u,ϕDα
1 u〉| in (3.2), for the discussion of these terms see in the continuation of the proof. As above we

may absorb the second term in the left hand side of the estimate. Therefore we have to estimate the sum

α∑
�=2

1

ε

(
1 + 1

ε

)
2�

∥∥X1φ
(�)Dα−�

1 u
∥∥2 = 1

ε

(
1 + 1

ε

)
22

∥∥X1φ
(2)Dα−2

1 u
∥∥2 +

α∑
�=3

1

ε

(
1 + 1

ε

)
2�

∥∥X1φ
(�)Dα−�

1 u
∥∥2

.

Repeating the above process p times we have

α∑
�=1

ε−12�
∥∥X1φ

(�)Dα−�
1 u

∥∥2 �
α∑

�=p

1

ε

(
1 + 1

ε

)p−1

2�
∥∥X1φ

(�)Dα−�
1 u

∥∥2

modulo terms which can be absorbed on the left side or which give analytic growth or which have the form
|〈[[X j,ϕ

(�)Dα−�
1 ], X j]u,ϕ(�)Dα−�

1 u〉|, 1 � � � p − 1, we remark that they have the same form as |〈[[X j,ϕDα
1 ], X j]u,ϕDα

1 u〉|
in (3.2).

Keeping on with the same procedure, after α − 1 iterates, we obtain a term of the form

1

ε

(
1 + 1

ε

)α−1

2α
∥∥X1ϕ

(α)u
∥∥2

.

Choosing ϕ = ϕm with m ∼ α we have ε−α(1 + ε)α−12α‖X1ϕ
(α)u‖� Cα+1α!.

To conclude this part of the estimate we thus need to bound the term with the double commutator.
We turn our attention to the second sum on the right hand side of (3.2). For every j we have∣∣〈[[X j,ϕDα

1

]
, X j

]
u,ϕDα

1 u
〉∣∣ = ∣∣〈t2(r j−1)ϕ(2)Dα

1 u,ϕDα
1 u

〉∣∣
�

∣∣〈tr j−1 D1ϕ
(2)Dα−1

1 u, tr j−1 D1ϕDα−1
1 u

〉∣∣ + ∣∣〈tr j−1 D1ϕ
(2)Dα−1

1 u, tr j−1ϕ(1)Dα−1
1 u

〉∣∣
+ ∣∣〈tr j−1ϕ(3)Dα−1

1 u, tr j−1 D1ϕDα−1
x1

u
〉∣∣ + ∣∣〈tr j−1ϕ(3)Dα−1

1 u, tr j−1ϕ(1)Dα−1
1 u

〉∣∣
= I1 + I2 + I3 + I4.

We study each single term. Term I1:

I1 � 2

∥∥∥∥ 1

m
X1ϕ

(2)Dα−1
1 u

∥∥∥∥
2

+ 1

2

∥∥mX1ϕDα−1
1 u

∥∥2
.

We have introduced the “weight” m to balance the number of x1-derivatives on u with the number of derivatives on ϕ;
In other words we take the factor m like a derivative on ϕ and m−1ϕ(2) as ϕ(1) . Hence the terms on the right hand side
have the same form as ‖X1ϕDα

1 u‖2.
The term I2:

I2 = ∣∣〈tr j−1 D1ϕ
(2)Dα−1

1 u, tr j−1ϕ(1)Dα−1
1 u

〉∣∣
� ε1

∥∥X1ϕ
(2)Dα−2

1 u
∥∥2 + 1

ε1

∥∥X1ϕ
(1)Dα−1

1 u
∥∥2 + ∣∣〈tr j−1ϕ(3)Dα−2

1 u, tr j−1 D1ϕ
(1)Dα−1

1 u
〉∣∣

� · · ·�
α∑

j=1

ε j
∥∥X1ϕ

( j)Dα− j
1 u

∥∥2 + Cε

∥∥X1ϕ
(1)Dα−1

1 u
∥∥2 + εα

∥∥ϕ(α+1)u
∥∥2

.

The above sum can be handled with the same process used to estimate the sum (3.3).
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The term I3:

I3 = ∣∣〈tr j−1ϕ(3)Dα−1
1 u, tr j−1 D1ϕDα−1

1 u
〉∣∣

� C1

∥∥∥∥ 1

m2
X1ϕ

(3)Dα−1
1 u

∥∥∥∥
2

+ 1

C1

∥∥m2 X1ϕDα−2
1 u

∥∥2 + C2

∥∥∥∥ 1

m
X1ϕ

(3)Dα−2
1 u

∥∥∥∥
2

+ 1

C2

∥∥mX1ϕ
(1)Dα−2

1 u
∥∥2

+ ∣∣〈tr j−1ϕ(4)Dα−2
1 u, tr j−1 D1ϕ

(1)Dα−2
1 u

〉∣∣
� · · ·�

α∑
k=1

C1

∥∥∥∥ 1

m2
X1ϕ

(k+2)Dα−k
1 u

∥∥∥∥
2

+
α−1∑
k=1

1

C1

∥∥m2 X1ϕ
(k−1)Dα−(k+1)

1 u
∥∥2

+
α∑

k=1

{
C2

∥∥∥∥ 1

m
X1ϕ

(k+2)Dα−(k+1)
1 u

∥∥∥∥
2

+ 1

C2

∥∥mX1ϕ
(k)Dα−(k+1)

1 u
∥∥2

}
+ ∣∣〈tr j−1ϕ(α+2)u, tr j−1 D1ϕ

(α−1)u
〉∣∣.

Choosing ϕ = φm , with m ∼ α, we have |〈tr j−1ϕ(α+2)u, tr j−1 D1ϕ
(α−1)u〉| � Cα+1α!. To estimate the terms in the sums, we

observe that with the help of the weight m we have essentially, on each of them, shifted one or more x1-derivatives from u
to φ, but that they have the same form as ‖X1φDα

1 u‖2.
The term I4:

I4 = ∣∣〈tr j−1ϕ(3)Dα−1
1 u, tr j−1ϕ(1)Dα−1

1 u
〉∣∣

�
∣∣〈tr j−1 D1ϕ

(3)Dα−2
1 u, tr j−1 D1ϕ

(1)Dα−2
1 u

〉∣∣ + ∣∣〈tr j−1 D1ϕ
(3)Dα−2

1 u, tr j−1 D1ϕ
(1)Dα−2

1 u
〉∣∣

+ ∣∣〈tr j−1ϕ(4)Dα−2
1 u, tr j−1 D1ϕ

(1)Dα−2
1 u

〉∣∣ + ∣∣〈tr j−1ϕ(4)Dα−2
1 u, tr j−1ϕ(2)Dα−2

1 u
〉∣∣.

Iterating we obtain

I4 �
∑
k=1

∣∣〈tr j−1 D1ϕ
(k+2)Dα−(k+1)

1 u, tr j−1 D1ϕ
(k)Dα−(k+1)

1 u
〉∣∣ +

∑
k=1

∣∣〈tr j−1ϕ(k+2)Dα−(k+1)
1 u, tr j−1ϕ(k+1)Dα−(k+1)

1 u
〉∣∣

+
∑
k=1

∣∣〈tr j−1ϕ(k+3)Dα−(k+1)
1 u, tr j−1 D1ϕ

(k)Dα−(k+1)
1 u

〉∣∣ + ∣∣〈tr j−1ϕ(α+2)u, tr j−1ϕ(α)u
〉∣∣.

Observing that the terms in the first sum have the same form as I1, the terms in the second sum have the same form
as I2 and those in the third sum have the same form as I3 we can handle each of them as above. Finally, the last term, for
ϕ = ϕm with m ∼ α can be estimated by Cα+1α!.

Using the estimate (1.2) with u replaced by mkϕ( j)Dα−( j+k)
1 u or m−kϕ( j+k)Dα− j

1 u and applying recursively the same
strategy followed above we are able to shift all free derivatives on ϕ . Hence we have

∥∥ϕDα
1 u

∥∥2
1/rn

+
n∑

j=0

∥∥X jϕDα
1 u

∥∥2 � Cα+1mα.

Choosing ϕ = ϕm , with m ∼ α, we have the analytic growth in the direction x1.

3.2. Direction Dn

Let ϕ(x) be a cut-off function of Ehrenpreis–Hörmander type described above. We replace u by ϕDα
n u in (1.2). We have

∥∥ϕDα
n u

∥∥2
1/rn

+
n∑

j=0

∥∥X jϕDα
n u

∥∥2 � C
(∣∣〈LϕDα

n u,ϕDα
n u

〉∣∣ + ∥∥ϕDα
n u

∥∥2)
. (3.4)

The scalar product in the right hand side leads to

2
n∑

j=2

〈
X j

[
X j,ϕDα

n

]
u,ϕDα

n u
〉 + n∑

j=2

〈[
X j,

[
X j,ϕDα

n

]]
u,ϕDα

n u
〉 + 〈

ϕDα
n Lu,ϕDα

n u
〉
.

The last term has a trivial estimate since Lu is analytic. For the sake of simplicity we assume that it is zero. In the case
j = n we have〈

X j
[

X j,ϕDα
n

]
u,ϕDα

n u
〉 + 〈[

X j,
[

X j,ϕDα
n

]]
u,ϕDα

n u
〉

� C
∥∥trn−1ϕ(1)Dα

n u
∥∥2 + 1 ∥∥XnϕDα

n u
∥∥2 + 〈

t2(rn−1)ϕ(2)Dα
n u,ϕDα

n u
〉
.

C
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Thus ∥∥trn−1ϕ(1)Dα
n u

∥∥2 = 〈
trn−1ϕ(1)Dα

n u, trn−1ϕ(1)Dα
n u

〉
� C1

∥∥Xnϕ
(1)Dα−1

n u
∥∥2 + 1

C1

∥∥trn−1ϕ(2)Dα−1
n u

∥∥2 � · · ·

� C
s∑

k=1

∥∥Xnϕ
( j)Dα− j

n u
∥∥2 + 1

C

∥∥trn−1ϕ(s+1)Dα−s
n u

∥∥2
. (3.5)

Choosing s + 1 = α we have∥∥trn−1ϕ(s+1)Dα−s
n u

∥∥ = ∥∥trn−1ϕ(α)Dnu
∥∥ �

∣∣ϕ(α)
∣∣‖Xnu‖.

We obtain analytic growth choosing ϕ = ϕm with m ∼ α. We further observe that the terms in the sum have the same form
as ‖XnϕDα

n u‖2 where one or more xn-derivatives have been shifted from u to ϕ . In addition, we have

〈
t2(rn−1)ϕ(2)Dα

n u,ϕDα
n u

〉
� 2

∥∥mXnϕDα−1
n u

∥∥2 +
∥∥∥∥ 1

m
Xnϕ

(2)Dα−1
n u

∥∥∥∥
2

+ ∥∥Xnϕ
(1)Dα−1

n u
∥∥2 + ∥∥trn−1ϕ(2)Dα−1

n u
∥∥2

+ 2

∥∥∥∥ 1

m
trn−1ϕ(3)Dα−1

n u

∥∥∥∥
2

+ ∥∥mtrn−1ϕ(1)Dα−1
n u

∥∥2
.

The role of the weight m—a derivative on ϕ—allows us to estimate the last three terms as well the first three as in (3.5)
i.e. like terms of the type ‖Xnϕ

(l)Dα−l
n u‖2 for which we use estimate (3.4) with u replaced by ϕ( j)Dα− j

n , mkϕ( j)Dα− j−k
n or

m−kϕ( j+k)Dα− j
n . Therefore we can conclude that these terms will give an analytic growth.

The case 1 � j � n − 1. We have∣∣〈X j
[

X j,ϕDα
n

]
u,ϕDα

n u
〉∣∣ = ∣∣〈tr j−1ϕ(1)Dα

n u, X jϕDα
n u

〉∣∣
� C1

∥∥tr j−1ϕ(1)Dα
n u

∥∥2 + 1

C1

∥∥X jϕDα
n u

∥∥2

and ∣∣〈[X j,
[

X j,ϕDα
n

]]
u,ϕDα

n u
〉∣∣ = ∣∣〈t2(r j−1)ϕ(2)Dα

n u,ϕDα
n u

〉∣∣
�

∥∥∥∥ 1

m
tr j−1ϕ(2)Dα

n u

∥∥∥∥
2

+ ∥∥mtr j−1ϕDα
n u

∥∥2
.

The last term in the first inequality will be absorbed on the right hand side of (3.4), if C−1
1 is chosen small enough.

Since the first term does not have sufficient powers of t to take maximal advantage of the a priori estimate (1.2), we will
use the sub-ellipticity. We will analyze in detail the first term in the first inequality. The same strategy can be used to
analyze the terms on the right hand side of the second inequality. We work with the elliptic pseudo-differential operator Λ,
whose symbol is (1 + |ξn|2)1/2. We write

∥∥tr j−1ϕ(1)Dα
n u

∥∥2 = ∥∥tr j−1ϕ(1)D
α− 1

rn
n u

∥∥2
1/rn

+ ∥∥tr j−1[ϕ(1),Λ
1

rn
]

D
α− 1

rn
n u

∥∥2

where

[
ϕ(1),Λ

1
rn

] =
∑
k�1

1

k! Dk
n

(
ϕ(1)

)
∂k
ξn

(
Λ

1
rn

)
.

Remark that the bracket has a whole asymptotic expansion in decreasing powers of Λ and increasing number of derivatives

on ϕ . The second term will produce terms of the form (k!)−1‖tr j−1ϕ(k+1)D
α−k− 1

rn
n u‖2

1/rn
which can be handled as the first

term. To estimate the first term we use the sub-elliptic estimate (1.2) replacing u with tr j−1ϕ(1)D
α− 1

rn
n u. We have

∥∥tr j−1ϕ(1)D
α− 1

rn
n u

∥∥2
1/rn

+
∑
l�0

∥∥Xlt
r j−1ϕ(1)D

α− 1
rn

n u
∥∥2

� 2
∑∣∣〈Xl

[
Xl, tr j−1ϕ(1)

]
D

α− 1
rn

n u, tr j−1ϕ(1)D
α− 1

rn
n u

〉∣∣ + ∥∥tr j−1ϕ(1)D
α− 1

rn
n u

∥∥2
l�0
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+
∑
l�0

∣∣〈[Xl,
[

Xl, tr j−1ϕ(1)
]]

D
α− 1

rn
n u, tr j−1ϕ(1)D

α− 1
rn

n u
〉∣∣ + ∥∥tr j−1ϕ(1)D

α− 1
rn

n Lu
∥∥2

� 2(r j − 1)
∣∣〈tr j−2ϕ(1)D

α− 1
rn

n , X0tr j−1ϕ(1)D
α− 1

rn
n

〉∣∣ + ∥∥tr j−1ϕ(1)D
α− 1

rn
n u

∥∥2

+ (r j − 1)(r j − 2)
∣∣〈tr j−3ϕ(1)D

α− 1
rn

n , X0tr j−1ϕ(1)D
α− 1

rn
n

〉∣∣
+ 2

∑
l�1

2
∣∣〈tr j+rl−2ϕ(2)D

α− 1
rn

n , Xlt
r j−1ϕ(1)D

α− 1
rn

n
〉∣∣ + ∥∥tr j−1ϕ(1)D

α− 1
rn

n Lu
∥∥2

+
∑
l�1

∣∣〈tr j−1+2(rl−1)ϕ(3)D
α− 1

rn
n , tr j−1ϕ(1)D

α− 1
rn

n
〉∣∣

� 2C(r j − 1)
∥∥tr j−2ϕ(1)D

α− 1
rn

n

∥∥2 + (r j − 1)(r j − 2)
∥∥tr j−3ϕ(1)D

α− 1
rn

n

∥∥2

+ 2C
∑
l�1

∥∥trl+r j−2ϕ(2)D
α− 1

rn
n

∥∥2 + 1

m

∥∥trl+r j−2ϕ(3)D
α− 1

rn
n

∥∥2 + m
∥∥trl+r j−2ϕ(1)D

α− 1
rn

n

∥∥2

modulo terms which can be absorbed on the left or which give analytic growth. The only way to handle the first term on
the right is to capitalize on sub-ellipticity again. We have

∥∥tr j−2ϕ(1)D
α− 1

rn
n u

∥∥2 ∼ ∥∥tr j−2ϕ(1)D
α− 2

rn
n u

∥∥2
1/rn

modulo terms involving the bracket of Λ1/rn with ϕ(1) . Iterating the above strategy at the k-th step we obtain a term of the

form ‖tr j−(k+1)ϕ(1)D
α− k+1

rn
n u‖2

1/rn
. When k = r j − 1 we have ‖ϕ(1)D

α− r j
rn

n u‖2
1/rn

. Iterating this cycle s times we obtain, if we
focus our analysis only on the field X j , j fixed, a term of the form

C s
∥∥ϕ(s)D

α−s
r j
rn

n u
∥∥2

1/rn
. (3.6)

Using up all xn-derivatives we estimate the left hand side of (3.4) with CC̃αmα(rn/r j) , choosing ϕ = ϕm with m ∼ α we have

a growth corresponding to Grn/r j . More in general we obtain terms of the type ‖ϕ(β)D
α−∑

βl(rql /rn)

n u‖2
1/rn

, β = ∑
βl and

using all xn-derivatives we can estimate the left hand side of (3.4) with a term of the type Cα+1mα(rn/rk) , rk = infl{rql }, that
is we have rn

r j
-Gevrey growth. We can conclude that these terms give a growth corresponding to Gs where s = sup j{ rn

r j
} = rn

r1
.

On the other side we have to estimate terms of the form ‖tr j+rl−2ϕ(2)D
α− 1

rn
n u‖2 and m−1‖tr j+rl−2ϕ(3)D

α− 1
rn

n u‖2. If
r j + rl − 2 � rn − 1 we take maximal advantage of the a priori estimate reducing α by one and obtaining terms of the

type ‖Xntr j+rl−rn−1ϕ(2)D
α−1− 1

rn
n u‖2 and m−1‖Xntr j+rl−rn−1ϕ(3)D

α−1− 1
rn

n u‖2 on which we use the estimate (1.2) replacing u

by tr j+rl−rn−1ϕ(2)D
α−1− 1

rn
n u and by tr j+rl−rn−1ϕ(3)D

α−1− 1
rn

n u restarting the cycle. If r j + rl − 2 < rn − 1 we use the sub-
ellipticity, as we did above. Iterating these processes many times, removing powers of t with Dn and taking profit from the
sub-ellipticity, we obtain terms of the form

m−k
∥∥t

∑
c j(rl j−1)−cn(rn−1)−p

ϕ(c+k)D
α−cn− p

rn
− c

rn
+ cn

rn
n u

∥∥2

where c = ∑
c j . We remark that the quantity cn/rn in the exponent of Dn is due to the fact that when we take maximal

advantage of the a priori estimate (1.2) reducing by one the number of xn-derivatives we do not take profit from the
sub-ellipticity, hence we must add it. We remark that in the particular case in which cn = 0, c = c j = s and p = s(r j − 1)− 1
we have (3.6).

Iterating the procedure until all the xn-derivatives are used up, we come to estimate the left hand side of (3.4) with
terms of the form

Cαm−k
∣∣ϕ(c+k)

∣∣∥∥t
∑

c j(rl j−1)−cn(rn−1)−p
u
∥∥2

where 0 <
∑

c j(rl j−1) − cn(rn − 1) − p � rn − 1 and α − cn − p
rn

− c−cn
rn

= 0.
We obtained that

∥∥ϕDα
n u

∥∥2
1/rn

+
n∑∥∥X jϕDα

n u
∥∥2 � Cα+1

1 mc + Cα+1
2 m

α rn
r1
j=0
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where c denotes the maximum constant. Since 0 <
∑

c j(rl j−1) − cn(rn − 1) − p < rn − 1 and p � 1 we have that c < α rn
r1

and we can conclude that

∥∥ϕDα
n u

∥∥2
1/rn

+
n∑

j=0

∥∥X jϕDα
n u

∥∥2 � Cα+1m
α rn

r1 .

Choosing ϕ with m ∼ α we have a growth corresponding to Grn/r1 in the direction xn .

3.3. The direction Dk, 2 � k � n − 1

Let ϕ(x) be a cut-off function of Ehrenpreis–Hörmander type described above. With k fixed, 2 � k � n − 1, we replace u
by ϕ(x)D2α

k u in (1.2). We write

∥∥ϕD2α
k u

∥∥2
1/rn

+
n∑

j=0

∥∥X jϕD2α
k u

∥∥2 � C
(∣∣〈LϕD2α

k u,ϕD2α
k u

〉∣∣ + ∥∥ϕD2α
k u

∥∥2)
. (3.7)

Without loss of generality we may consider an even number of free derivatives. We stress that if u is a solution of the
problem Lu = 0 then Dku is again solution of the same problem, since Dk and L commute.

The scalar product in the right hand side leads to

2
k−1∑
j=1

〈
X j

[
X j,ϕD2α

k

]
u,ϕD2α

k u
〉 + 2

n∑
j=k

〈
X j

[
X j,ϕD2α

k

]
u,ϕD2α

k u
〉 + k−1∑

j=1

〈[
X j,

[
X j,ϕD2α

k

]]
u,ϕD2α

k u
〉

+
n∑

j=k

〈[
X j,

[
X j,ϕD2α

k

]]
u,ϕD2α

k u
〉 + 〈

ϕD2α
k Lu,ϕD2α

k u
〉
.

The last term has a trivial estimate since Lu is analytic. We assume that it is zero.
For the terms with j � k, that is when r j � rk , we have

〈
X j

[
X j,ϕD2α

k

]
u,ϕD2α

k u
〉
� C

∥∥tr j+1ϕ(1)D2α
k u

∥∥2 + 1

C

∥∥X jϕD2α
k

∥∥2
.

While the last term is absorbed on the right hand side of (3.7), for the first we have

∥∥tr j+1ϕ(1)D2α
k u

∥∥2 �
∥∥∥∥ 1

2m
Xkϕ

(1)D2α
k u

∥∥∥∥
2

+ ∥∥4mXkϕ
(1)D2α−2

k u
∥∥2 +

∥∥∥∥ 1

2m
Xkϕ

(3)D2α−2
k u

∥∥2 + ∥∥tr j+1ϕ(3)D2α−2
k u

∥∥2
.

With s steps we get

∥∥tr j+1ϕ(1)D2α
k u

∥∥2 � C
s∑

l=1

∥∥(2m)−1 Xkϕ
(2l+1)D2α−2l

k u
∥∥2 + 1

C

s∑
l=1

∥∥2mXkϕ
(2l+1)D2α−2(l+1)

k u
∥∥2

+ ∥∥tr j+1ϕ(2s+1)D2α−2s
k u

∥∥2
.

We observe that the terms in the sums have the same form as ‖XkϕD2α
k u‖2. We use the a priori estimate (1.2) where u

is replaced by (2m)−1ϕ(2s+1)D2α−2s
k u and by 2mϕ(2s+1)D2α−2(s+1)

k u to restart the process. For 2s + 1 = 2α − 1 the last term
can be estimated by

∥∥tr j+1ϕ(2s+1)D2α−2s
k u

∥∥2 � 1

4m2

∥∥Xkϕ
(2α−1)D2

k u
∥∥2 + C

∣∣ϕ(2α)
∣∣2 + C1(2m)2

∣∣ϕ(2α−1)
∣∣2

.

Choosing ϕ with m ∼ α the last two terms give analytic growth.
On the other hand we have∣∣〈[X j,

[
X j,ϕD2α

k

]]
u,ϕD2α

k u
〉∣∣ = ∣∣〈t2(r j−1)ϕ(2)D2α

k u,ϕD2α
k u

〉∣∣
�

∣∣〈t2(r j−1)D2
kϕ

(2)D2α
k u,ϕD2α

k u
〉∣∣ + ∣∣〈t2(r j−1)ϕ(2)D2α

k u,ϕ(2)D2α
k u

〉∣∣
� C

∥∥∥∥ 1

4m2
Xkϕ

(2)D2α
k u

∥∥∥∥
2

+ 1

C

∥∥(2m)2 XkϕD2α−2
k u

∥∥2 + ∥∥Xkϕ
2 D2α−2

k

∥∥2

+ ∣∣〈t2(r j−1)ϕ(4)D2α−2u,ϕ(2)D2α−2u
〉∣∣� · · ·
k k
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� C
s∑

f =0

∥∥∥∥ 1

4m2
Xkϕ

(2( f +1))D2α−2 f
k u

∥∥∥∥
2

+ 1

C

s∑
f =0

∥∥(2m)2 Xkϕ
(2 f )D2α−2( f +1)

k u
∥∥2

+ ∣∣〈t2(r j−1)ϕ(2(s+1))D2α−2s
k u,ϕ(2(s+1))D2α−2(s+1)

k u
〉∣∣.

We restart the process using the a priori estimate (1.2), replacing u by 4m2ϕ(2( f +1))D2α−2 f
k u and by (2m)−2ϕ(2 f ) ×

D2α−2( f +1)

k u. We remark that at the step 2(s + 1) = 2α we can estimate the last term in the right hand side with
|ϕ(2α)|2(‖u‖2

2 + ‖u‖2) which gives analytic growth.
The case j � k − 1. We have

∣∣〈X j
[

X j,ϕD2α
k

]
u,ϕD2α

k u
〉∣∣ � C

∥∥tr j−1ϕ(1)D2α
k u

∥∥2 + 1

C

∥∥X jϕD2α
k u

∥∥2
.

The last term is absorbed on the right hand side of (3.7). Since the first term does not have sufficient powers of t to take
maximal advantage of the a priori estimate we write∥∥tr j−1ϕ(1)D2α

k u
∥∥2 = 〈

t2(r j−1)ϕ(1)D2α
k u,ϕ(1)D2α

k u
〉
.

Let Λ = (1 + |ξk|2)1/2 and let β j be a positive parameter which will be chosen later. We write

∥∥tr j−1ϕ(1)D2α
k u

∥∥2 �
∣∣〈t2(r j−1)Λ2β j ϕ(1)D

2α−β j

k u,ϕ(1)D
2α−β j

k u
〉∣∣ + ∣∣〈t2(r j−1)Λ2β j ϕ(1)D

2α−β j

k u,
[
ϕ(1),Λβ j

]
D2α

k u
〉∣∣

+ ∣∣〈t2(r j−1)
[
ϕ(1),Λ−β j

]
D2α

k u,Λ2β j ϕ(1)D
2α−β j

k u
〉∣∣

+ ∣∣〈t2(r j−1)Λβ j
[
ϕ(1),Λ−β j

]
D2α

k u,Λ−β j
[
ϕ(1),Λ−β j

]
D2α

k u
〉∣∣

= H1 + H2 + H3 + H4.

Set

β j = rn(r j − 1) + rk − r j

rn(rk − 1)
.

Because of the inequality

t2(r j−1)Λ2β j � t2(rk−1)Λ2 + Λ
2

rn , (3.8)

we obtain

H1 �
∣∣〈(t2(rk−1)Λ2 + Λ

2
rn

)
ϕ(1)D

2α−β j

k u,ϕ(1)D
2α−β j

k u
〉∣∣

�
∥∥Xkϕ

(1)D
2α−β j

k u
∥∥2 + ∥∥ϕ(1)D

2α−β j

k u
∥∥2

1/rn
+ ∥∥trk−1ϕ(1)D

2α−β j

k u
∥∥2

. (3.9)

On the first two terms we restart the process using the sub-elliptic estimate (1.2) with u replaced by ϕ(1)D
2α−β j

k u. Iterating,
if we focus our analysis on the field X j , j fixed, at the step s we obtain terms of the form

∥∥Xkϕ
(s)D

2α−sβ j

k u
∥∥2 + ∥∥ϕ(s)D

2α−sβ j

k u
∥∥2

1/rn
.

Using up all xk-derivatives we estimate the left hand side of (3.7) with∣∣ϕ(s+1)
∣∣2(‖Xku‖2 + ‖u‖2

1/rn

)
� C1C2α(2m)s+1

where s + 1 = 2α/β j . Choosing ϕ = ϕm with m ∼ α we have a growth corresponding to G1/β j . More in general we obtain
terms of the type∥∥Xkϕ

(s)D
2α−∑

s jβ j

k u
∥∥2 + ∥∥ϕ(s)D

2α−∑
s jβ j

k u
∥∥2

1/rn

where s = ∑
s j . Using all xn-derivatives we can estimate the right hand side of (3.7) with C2α+1(2m)2α/β where β =

inf j{β j}. These terms give the growth Gs where

s = sup
1� j�k−1

{
1

β j

}
= rn(rk − 1)

rn(r1 − 1) + rk − r1
.

We turn our attention to the last term in (3.9). We have
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∣∣〈t2(r j−1)ϕ(1)D
2α−β j

k u,ϕ(1)D
2α−β j

k u
〉∣∣ � 2

C

∥∥2mXkϕ
(1)D

2α−2−β j

k u
∥∥2 + C

∥∥∥∥ 1

2m
Xkϕ

(1)D
2α−β j

k u

∥∥∥∥
2

+ 1

2m

∥∥Xkϕ
(3)D

2α−2−β j

k u
∥∥2 + ∥∥trk−1ϕ(3)D

2α−β j−2
k u

∥∥2 � · · ·

� 2

C

s∑
f =1

∥∥2mXkϕ
(2 f −1)D

2α−β j−2 f
k u

∥∥2 + C
s∑

f =1

∥∥∥∥ 1

2m
Xkϕ

(2 f +1)D
2α−β j−2 f
k u

∥∥∥∥
2

+ ∥∥trk−1ϕ(2s+1)D
2α−β j−2s
k u

∥∥2
.

When 1 � 2α − β − 2s < 2 the last term can be estimated by |ϕ(2s)+1|‖u‖2
1, where 2s + 1 � 2α − β j < 2α/β j .

The term H2:∣∣〈t2(r j−1)Λ2β j ϕ(1)D
2α−β j

k u,
[
ϕ(1),Λ−β j

]
D2α−β

k u
〉∣∣

where

[
ϕ(1),Λ−β j

] =
∑
p�1

(−1)p
(

β j

p

)
ϕ(p+1)Λ−p−β j =

∑
Cβ j ,pϕ

(p+1)Λ−p−β j .

We examine a generic term of the sum and obtain〈
t2(r j−1)Λ2βϕ(1)D2α−β

k u,ϕ(p+1)D2α−β−p
k u

〉
�

〈(
X2

k + t2(rk−1) + Λ
2

rn
)
ϕ(1)D2α−β

k u,ϕ(p+1)D2α−β−p
k u

〉
� 2

(∥∥Xkϕ
(1)D

2α−β j

k u
∥∥2 + ∥∥ϕ(1)D

2α−β j

k u
∥∥2

1/rn

)
+ 1

2

(∥∥Xkϕ
(p+1)D

2α−β j−p
k u

∥∥2 + ∥∥ϕ(p+1)D
2α−β j−p
k u

∥∥2
1/rn

)
+ 2

∥∥trk−1ϕ(1)D
2α−β j

k u
∥∥2 + 1

2

∥∥trk−1ϕ(p+1)D
2α−β j−p
k u

∥∥2
.

The last two terms can be handled as the last term in (3.9) while the first is taken care of using the sub-elliptic a priori
inequality. The terms H3 and H4 can be treated like H2.

Using the same strategy we have∣∣〈[X j,
[

X j,ϕD2α
k

]]
u,ϕD2α

k u
〉∣∣ = 〈

t2(r j−1)ϕ(2)D2α
k u,ϕD2α

k u
〉

�
∣∣〈t2(r j−1)Λ2β j ϕ(1)D

2α−β j

k u,
[
ϕ(1),Λβ j ,

]
D2α

k u
〉∣∣

+ ∣∣〈t2(r j−1)
[
ϕ(1),Λ−β j

]
D2α

k u,Λ2β j ϕ(1)D
2α−β j

k u
〉∣∣

+ ∣∣〈t2(r j−1)Λβ j
[
ϕ(1),Λ−β j

]
D2α

k u,Λ−β j
[
ϕ(1),Λ−β j

]
D2α

k u
〉∣∣

= R1 + R2 + R3 + R4.

We have

R1 �
(

C

2m

)2(∥∥Xkϕ
(2)D

2α−β j

k u
∥∥2 + ∥∥ϕ(2)D

2α−β j

k u
∥∥2

1/rn
+ ∥∥trk−1ϕ(2)D

2α−β j

k u
∥∥2)

+
(

2m

C

)2(∥∥XkϕD
2α−β j

k u
∥∥2 + ∥∥ϕD

2α−β j

k u
∥∥2

1/rn
+ ∥∥trk−1ϕD

2α−β j

k u
∥∥2)

.

These terms can be studied with the same method used for H1, (3.9). The terms R2, R3 and R4 can be treaded like the
terms H2, H3 and H4.

Iterating this process, using (3.8) the sub-elliptic estimate, we may estimate the left hand side of (3.7) with terms of the
form

(2m)−2p(∥∥Xkϕ
(p+c+s)D

2α−∑
s jβ j−c

k u
∥∥2 + ∥∥ϕ(p+c+s)D

2α−∑
s jβ j−c

k u
∥∥2

1/rn

)
where s = ∑

s j . Iterating until all the xk-derivatives are used up, that is until 2α − ∑
s jβ j − c ∼ 0, since for c � 1 we have

that c + s � 2α/βk , βk = inf j{β j}, we can conclude that

∥∥ϕD2α
k u

∥∥2
1/rn

+
n∑∥∥X jϕD2α

k u
∥∥2 � C2α+1(2m)2α/βk
j=0
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where C depends on u and β j . Choosing ϕ = ϕm with m ∼ α we have a growth corresponding to G1/βk in the direction xk
where

βk = rn(r1 − 1) + rk − r1

rn(rk − 1)
.

We remark that β−1
k < rn/r1 for all k = 2, . . . ,n − 1.

3.4. Direction Dt

Once again our primary tool will be the sub-elliptic estimate (1.2). As in the case of direction x j , we replace u by
ϕ(x)Dα

t u in (1.2); ϕ is a cut-off function. We recall that ϕ does not depend on t , indeed every t-derivative landing on ϕ
would leave a cut-off function supported in a region where t is bounded away from zero, where the operator is elliptic. We
have

∥∥ϕDα
t u

∥∥2
1/rn

+
n∑

j=0

∥∥X jϕDα
t u

∥∥2 � C
(∣∣〈LϕDα

t u,ϕDα
1 u

〉∣∣ + ∥∥ϕDα
t u

∥∥2)
. (3.10)

We consider the scalar product in the right hand side of the above inequality. We must study terms of the type∣∣〈[X j,ϕDα
t

]
u, X jϕDα

t u
〉∣∣

where j = 1, . . . ,n. We have[
X j,ϕDα

t

]
u = [

tr j−1 D j,ϕDα
t

] = tr j−1ϕ(1)Dα
t u − ϕ

[
Dα

t , tr j−1]D ju

= tr j−1ϕ(1)Dα
t u − ϕ

r j−1∑
l=1

α!(r j − 1)!
(i)ll!(α − l)!(r j − 1 − l)! tr j−1−l Dα−l

t D ju.

Without loss of generality we analyze one of the terms. A similar method can be used for the other terms.
Consider α(r j −1)Dttr j−2ϕDα−2

t D ju, that is we have to estimate α(r j −1)‖X0tr j−2ϕDα−2
t D ju‖. Applying the sub-elliptic

estimate with u = α(r j − 1)tr j−2ϕDα−2
t D ju and arguing as above, we study the first term coming from the commutator

with X j . We obtain the term α(α − 2)Cr j t
2r j−4ϕDα−3

t D ju. We stress that another vector field does not produce additional

difficulties. We have to estimate Cr j α(α − 2)‖X jtr j−3ϕDα−3
t D ju‖. Hence after two steps we have∥∥X jϕDα

t u
∥∥ → Cr j α(α − 2)

∥∥X jt
r j−3ϕDα−3

t D ju
∥∥.

Repeating the process p times, we have∥∥X jϕDα
t u

∥∥2 → ·· · → Cr j

α!
(α − 1)(α − (p + 1))!

∥∥X jt
r j−(p+1)ϕDα−(p+1)

t D ju
∥∥2

.

In this way after r j − 1 iterates we have to analyze a term of the form Cr j (α!)/((α − 1)(α − r j)!)D
α−r j
t D ju. Arguing in the

same way after l steps we have

∥∥X jϕDα
t u

∥∥2 → ·· · → Cr j α!
(α − 1) · · · (α − 1 − (l − 1)r j)(α − r jl)!

∥∥X jϕD
α−lr j
t Dl

ju
∥∥2

.

Iterating this cycle α/r j times we use up all free derivatives in t and we are left with

α!((α/r j)!
)−1∥∥X jϕD

α/r j

j u
∥∥.

Since in the direction x j we have a growth as Gβ j where β j = (rn(r j − 1))/(rn(r1 − 1) + r j − r1) we can estimate this

term with C |α|+1(α!)1− 1
r j

+ β j
r j . Since j ∈ {1, . . . ,n} we must take the sup j{1 − 1

r j
+ β j

r j
} = s0. We have obtained a growth

corresponding to Gs0 in the direction t .

3.5. Sharpness

By Lemma 1 in [8] we know that there exists a real number z such that the ordinary differential equation

u′′ =
n∑

j=2

t2(r j−1)u − ztr1−1u

has a non-trivial solution u defined on the whole real line, rapidly decreasing at infinity and such that u(0) �= 1.
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We define

v(t, x) =
+∞∫
0

eiρxn+∑n−1
j=2 iρr j/rn x j+

√
zρr1/rn

e−ρr1/rn
u
(
ρ1/rn t

)
dρ.

v is a solution to the problem Lu = 0 and we have

∣∣∂α
xn

v(0)
∣∣ ∼ C

∞∫
0

ραe−ρ
r1
rn dρ ∼ Cα+1α!rn/r1

and

∣∣∂α
x1

u(0)
∣∣ ∼ C

∞∫
0

ρα
r1
rn e−ρ

r1
rn dρ ∼ Cα+1α!.

We can conclude

Proposition 3.1. The Gevrey regularity rn/r1 is optimal. Moreover the operator L, in (1.1), is analytic in the direction x1 and rn/r1 in
the xn-direction. The latter values are optimal.
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