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Abstract

The automatic detection of unreachable coverage goals and generation of tests for
”corner-case” scenarios is crucial to make testing and simulation based verification
more effective. In this paper we address the problem of coverability analysis and test
case generation in modular and component based systems. We propose a technique
that, given an uncovered branch in a component, either establishes that the branch
cannot be covered or produces a test case at the system level which covers the
branch. The technique is based on the use of counterexamples returned by model
checkers, and exploits compositionality to cope with large state spaces typical of
real applications.

1 Introduction

Code coverage metrics, such as statement coverage and branch coverage, are
largely used in testing and simulation based verification, both for software
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and hardware design, to measure the progress of the verification effort and
to identify areas of the design where further tests are needed. Code coverage
metrics report on areas of the design which were not exercised during sim-
ulation. These will also include portions of code which are unreachable. A
common objective of simulation based verification is that of achieving 100%
justified branch coverage. The process of manually identifying the unreach-
able portions of code or producing test cases for ”corner-case” scenarios is time
consuming and error prone. The verification process is made more efficient by
automatically and reliably establishing if a coverage goal, like the coverage of
a branch in the control flow, is achievable or not. This process is the subject
of coverability analysis [14].

A typical situation in which non-coverable goals can be found occurs when
the unreachability is the result of constraints imposed on a component by the
environment in which it operates. For example, this kind of unreachability
can be due to a partial usage of the component’s functionality in a particular
application. [14] and [15] describe how symbolic model checking and static
analysis can be used to calculate coverability at the component level. Cov-
erabiliy at the system level can, in principle, be calculated by applying the
same symbolic model checking technique used at the module level, but the
size of the state space of real world examples is often beyond the capacity of
a general purpose symbolic model checker. In [9] this problem was attacked
by means of a-priori abstractions: the state space is reduced by test-case pre-
serving abstractions. In [12] SAT-based bounded model checking is applied,
together with simulation, to look for reachable states within a bounded depth.

In this paper we propose a method for coverability analysis and test case
generation for uncovered branches at the system level which is based on the
use of counterexamples returned by model checkers, exploiting composition-
ality to cope with large state spaces typical of real applications.
Counterexamples are one of the most useful outcomes of formal verification
based on model checking [3], and have been extensively used for diagnosis of
problems detected in the models of systems. Here a richer notion of coun-
terexample is used, that is, the notion of ”counterexample automaton”, which
expresses all finite linear counterexamples of a given formula on a given model.

The paper is organized as follows. Section 2 introduces the proposed tech-
nique in general terms. Section 3 introduce the framework (formalism, logic
and tools) used in our proposal and describes by means of an example the
method. The complexity of the method is then discussed in 4. The coun-
terexample automaton generation algorithm is reported in the appendix.
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2 The proposed technique

2.1 The basic principle

The technique we propose to check coverability and derive test cases from
uncovered branches of a system is based on the following principles.

• we suppose that the system can be modeled as a finite state Labelled Transi-
tion System (LTS) [13], and that the testing process is able, through proper
tools, to provide both the coverage measure and information about the un-
covered branches.

• starting from each uncovered branch, we build a temporal logic formula
expressing the property: ”the uncovered branch can never be reached”

• we apply a model checker to the LTS which models the system, to check
the given temporal logic formula on the model: if this returns TRUE, the
branch cannot be covered;

• otherwise, we ask the model checker for a counterexample, which is a path
that exercises the uncovered branch: this path contains information about
the input needed to exercise it - that is, the sought test case.

2.2 Compositionality

This apparently simple process is however complicated by the fact that real
applications have very large state spaces, and hence model checking becomes
soon unfeasible. The technique we propose exploits compositionality to ad-
dress this problem:

• We assume that the system is composed of a chain of modules (see Fig. 1),
and that the uncovered branch we want to address can be localized in the
inner module S0. Note that this assumption is less restrictive than what can
appear at a first sight: indeed, a system where components interact with a
more complex structure can be sliced in modules according to this assump-
tion, by grouping more components in a single module (this is why in the
following we refer to ”modules” rather than to ”components”); moreover,
this structure is typical of the client-server interaction paradigm.

• We apply the process described in sect. 2.1 to the module S0, obtaining a
path which shows which inputs the module needs to exercise the uncovered
branch. We assume that such inputs to S0 come, as outputs, by the previous
module S1.

• From this sequence of outputs of S1, we then elaborate a temporal logic
formula φ1 expressing the property: ”it is never possible to produce such
an output sequence”.

• We apply the model checker on the model of the module S1 to check the
formula φ1: again, this should return FALSE (if not, again, the sequence
of outputs of S1 is unfeasible and hence the uncovered branch in S0 is not
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reachable).

• We ask the model checker for a counterexample. This counterexample is
a path of S1 which gives the output sequence that exercises the uncovered
branch in S0. This path also contains information about the input needed
to exercise it.

• The system being structured as a chain of modules, each one producing
input for the following one and receiving the output of the previous one, we
can repeat the application of the process above to each module encountered.
The final counterexample, produced on Sn is actually the sought test case
for the interface of the module Sn, which when given as input to Sn causes
the intermediate counterexamples to be given as input to the next modules,
which finally causes the uncovered branch in S0 to be exercised.

S0S1S2Sn-1Sn ...

Fig. 1. A chain of modules

2.3 Coping with false counterexamples

It may be the case that the single counterexample trace returned by the
method above for a given module does not correspond to any feasible path of
the previous module in the chain. This does not mean that no test case ex-
ists to cover the uncovered branch. Actually, the model checker has produced
a single counterexample trace, which has shown to be not executable under
the input sequences that can be provided by the previous module. We need
therefore not to extract a single counterexample, but all the possible coun-
terexample traces: actually, the number of the possible counterexample traces
may be infinite. We are interested therefore to a finite representation of the
possible counterexamples, and this can be achieved by considering that the set
of the counterexamples is the language generated by the “counterexample au-
tomaton”. A counterexample automaton for a LTS A and a formula phi is an
automaton which recognizes the language of all finite linear counterexamples
of phi on A.

As a next step, from the counterexample automaton we need to extract a
formula expressing “there exists in the model no path with a sequence of ac-
tions which is recognized by the counterexample automaton”, but exchanging
the role of corresponding input and output actions, and not observing other
actions not involved in the interaction between the considered modules. In
the following we will also refer to this formula as “counterexample formula”.

At this point, we can pass to model check the next module for satisfaction
of this counterexample formula, in order to obtain a new counterexample
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automaton and then a new counterexample formula for the next module, and
so on, repeating this process until we arrive at the borders of the system, that
is, the last module, for which any linear counterexample provides a test case
that is the desired test case. This case is to be used directly to test the whole
module chain, and it will cover the originally uncovered branch.

2.4 The overall test case generation procedure

The overall approach can be described by the following procedure, the details
of which will be discussed in the next section by means of a running exam-
ple, and with reference to a particular modeling formalism and verification
environment.

We assume a chain structure such as that represented in Figure 1: Gi

the set of common actions between Si and Si+1. φi is the temporal logic
formula that is checked at the i-th step. φ0 will therefore be the formula
expressing: ”the uncovered branch can never be reached”. The algorithm
calls the following operators:

• MC, which model checks a formula on a LTS, giving a boolean result

• AC, which calculates the counterexample automaton from a formula and a
LTS,

• FC, indexed on a set of communication actions, which calculates the char-
acteristic formula of a LTS, relative to the given set of actions,

• A/GB, an indexed synchronization operator used to filter out spurious coun-
terexamples.

procedure testcasegen(φ0, S0)
if MC(φ0, S0) = true
then "unfeasible path"

else AC0 := AC(φ0, S0)
φ1 := FCG0(AC0)
for i := 1,n do

if MC(φi, Si) = true
then "unfeasible path"

else

ACi := AC(φi, Si)/Gi−1
ACi−1

if i 6= n then φi+1 := FCGi
(ACi)

"any path of ACi is a test case for the system"

3 Feasibility of the approach with JACK

In the following, in order to show the feasibility of the approach, we develop
the technique described above basing on the explicit model checker AMC
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included in the integrated verification environment JACK [1] 5 . Hence, we
inherit from JACK the formalisms in which models are described (Labelled
Transition Systems) and the logic in which properties can be described, namely
ACTL (Action-based Computation Tree Logic) [7], which is an action-based
version of the branching time temporal logic CTL [3].

3.1 Labelled Transition Systems

We use the graphical notation of Labelled Transition Systems (LTSs) and
networks of LTSs inherited in JACK from Autograph [16].

An example of a LTS is reported in Figure 2. The initial state of the LTS is
represented by a double circle and labels are associated to edges representing
transitions of the LTS.

?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b

?c?c?c?c?c?c?c?c?c?c?c?c?c?c?c?c?c

?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d

?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a

?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b

?c?c?c?c?c?c?c?c?c?c?c?c?c?c?c?c?c

?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b

?c?c?c?c?c?c?c?c?c?c?c?c?c?c?c?c?c

?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d

?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d

?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a

?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?e?e?e?e?e?e?e?e?e?e?e?e?e?e?e?e?e

?e?e?e?e?e?e?e?e?e?e?e?e?e?e?e?e?e

Fig. 2. The graphical specification of an example automaton (Mod0)

To express synchronous communication between two LTSs we use the
graphical notation of networks. A process surrounded by a box is said to
be a network and the ports at the border are its places of interconnection. If
two networks are drawn at the same level, they can synchronize via the ac-
tions they execute by linking the corresponding ports. In this case the actions
executed at the linked ports are no more observable, and the silent τ action
is shown when they are executed.

The graphical representation of an example network is reported in Fig. 3.

5 Detailed information about the environment are available at http://fmt.isti.cnr.it/fmt-
tools.htm
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?h?h?h?h?h?h?h?h?h?h?h?h?h?h?h?h?h

Fig. 3. An example network

3.2 The logic

The particular temporal logic we use is called ACTL (Action-based Compu-
tation Tree Logic) [7], which is an action-based version of the branching time
temporal logic CTL [3]. ACTL is based on actions rather than states, and
hence it is naturally interpreted over LTSs.

We use in the following a subset of the ACTL logic, which includes all
the formulae which are useful for the test case generation process. Indeed,
what we need are formulae of the kind: ”the uncovered branch can never be
reached” and “there exists no path with a sequence of actions recognized by
the counterexample automaton”. Limiting to formulae of these kinds allows
the notion of counterexample itself and the counterexample automaton to be
defined in a much more accurate and effective manner.

We can observe that all the formulae that interest us are of the kind: ∼ φ,
where ∼ is the negation operator, and φ is an existential formula.

The formulae ψ we will use are hence defined according the following syn-
tax:

ψ ::= ∼ φ

φ ::= φ|φ | φ ⇒ φ | EX{act} φ | EGφ | EFφ | << actfor >> φ

The syntax of the φ formulae is a subset of the positive existential frag-
ment of ACTL, including the propositional disjunction and implication, the
existential next operator (”there exists a next state reachable with an action
act and which satisfies φ”), the usual existential always and eventually op-
erators, and a new modality that absorbs all the input actions which occur
before the output actions considered in the given action formula. An action
formula is a propositional combination of actions. The informal meaning of
<< actfor >> φ is: ”there exist a path composed of input and/or unob-
servable actions, but for the last action satisfying the action formula actfor,
which reaches a state where φ holds”.
We refer to [7] for the formal definition of the previous operators, but for the
<< actfor >> φ modality, which is actually derived from the ACTL Until
operator. as

Since we use the negation only at the beginning of a formula, counterex-
amples are actually ”witnesses” [4] of the corresponding positive formula. It
can be seen that all the formulae of kind ψ, when not satisfied on a LTS,
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admit linear counterexamples; correspondingly, φ formulae, when satisfied on
a LTS, admit linear witnesses.

3.3 A test case generation example

We show the overall test case generation procedure by means of a simple
example, a system composed by two modules, as represented by the network
in Figure 3. The modules Mod0 and Mod1 are defined respectively by the LTSs
in Figures 2 and 4.

?h?h?h?h?h?h?h?h?h?h?h?h?h?h?h?h?h

!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a

!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b

!d!d!d!d!d!d!d!d!d!d!d!d!d!d!d!d!d

!c!c!c!c!c!c!c!c!c!c!c!c!c!c!c!c!c

!d!d!d!d!d!d!d!d!d!d!d!d!d!d!d!d!d

!e!e!e!e!e!e!e!e!e!e!e!e!e!e!e!e!e

!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a

!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b

!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b

!c!c!c!c!c!c!c!c!c!c!c!c!c!c!c!c!c
?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f

?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f

?g?g?g?g?g?g?g?g?g?g?g?g?g?g?g?g?g

Fig. 4. The graphical specification of the module Mod1

We assume that a testing activity has not covered the branch labelled by
the action ?e, (after ?a and ?b) in Mod0.

We modify the LTS of Mod0 by adding a transition just after the uncovered
branch, labelled with the fresh action !k (Figure 5)

The property: ”the action k is never possible” is represented by the for-
mula: ∼ EFEX{!k}true

Applying the model checker AMC to verify this formula on Mod0 we ob-
tain, as expected, a negative answer. We then generate the witness automaton
for the formula EFEX{!k}true . A witness automaton for a LTS A and a
formula phi is an automaton which recognizes the language of all finite linear
witnesses of phi on A. The algorithm that extracts the witness automaton
from the labelling of the states produced by the model checker, is reported in
the Appendix. The automaton AC0 we obtain is therefore the counterexample
automaton of the formula: ∼ EFEX{!k}true and is represented in Figure 6.

We need now to provide a formula expressing “there exists no path with a
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?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b

?c?c?c?c?c?c?c?c?c?c?c?c?c?c?c?c?c

?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d

!k!k!k!k!k!k!k!k!k!k!k!k!k!k!k!k!k

?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d

?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a

?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?e?e?e?e?e?e?e?e?e?e?e?e?e?e?e?e?e

Fig. 5. Adding a transition to mark the uncovered branch in Mod0

FFFFFFFFFFFFFFFFF

?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a

?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b

?c?c?c?c?c?c?c?c?c?c?c?c?c?c?c?c?c
?e?e?e?e?e?e?e?e?e?e?e?e?e?e?e?e?e

?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d?d

Fig. 6. The counterexample automaton AC0

sequence of actions recognized by the counterexample automaton”. This can
be achieved by giving the characteristic formula of the automaton [2,17], that
is, a formula which describes completely the automaton itself. Actually, we
need only the existential part of the characteristic formula, and we adopt the
method shown in [8] to give an ACTL characteristic formula, exploiting the
notion of implicit fixed point, which requires no explicit fixed point operators.
A description of the algorithm that calculates the characteristic formula is
reported in the Appendix.

Back to our running example, from the automaton AC0 we derive the
formula FCG, with G = (a, b, c, d, e):

<<!a>><<!b>>((<<!e>>true) |

(EG ( EX{!c} true => (EX{!c}<<!d>><<!e|!c>>true))))

In the second step we apply then the model checker to the Mod1 LTS and
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to the formula:

~<<!a>><<!b>>((<<!e>>true) |

(EG ( EX{!c} true => (EX{!c}<<!d>><<!e|!c>>true))))

and we then obtain the counterexample automaton AC1 (Figure 7).

FFFFFFFFFFFFFFFFF

?g?g?g?g?g?g?g?g?g?g?g?g?g?g?g?g?g

!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a

!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b

!d!d!d!d!d!d!d!d!d!d!d!d!d!d!d!d!d

!e!e!e!e!e!e!e!e!e!e!e!e!e!e!e!e!e

?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f
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!c!c!c!c!c!c!c!c!c!c!c!c!c!c!c!c!c

Fig. 7. The counterexample automaton AC1

The counterexample automaton AC1 shows a loop with !b and ?f actions,
which would correspond to a cycle of ?b on Mod0, which is not feasible; only
a single ?b action is indeed performed by Mod0 at that point. This means
that AC1 generates false counterexamples which should be avoided.

This phenomenon is due to the fact that, within ACTL, it is not possible
to predicate a complex formula on a path without using state formulae, each
of which should be individually quantified. Hence it is not possible to express
a predicate of the type ”there exists a path having a complex behaviour” but
only ”there exist a path, which, after a simple behaviour, reaches a state from
which there exist a path....”. This means that computing the Characteristic
Formula we introduce spurious traces.

In order to cut this kind of false counterexamples we should consider only
the paths of AC1 that correspond to paths of AC0. This operation is essentially
a synchronization operation between AC0 and AC1 on the common actions.
We will use for this operation the notation AC1/GAC0, where G is the set
of common actions, in our case (a,b,c,d,e). A formal description of the
operator is reported in the Appendix.

Actually, after this operation, we still need to cut away all the terminating
branches not ending in a final state. If this is done in the example, the
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operation produces the automaton represented in Figure 8.
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!c!c!c!c!c!c!c!c!c!c!c!c!c!c!c!c!c

!d!d!d!d!d!d!d!d!d!d!d!d!d!d!d!d!d

!e!e!e!e!e!e!e!e!e!e!e!e!e!e!e!e!e

FFFFFFFFFFFFFFFFF

Fig. 8. The automaton AC1/GAC0

The obtained counterexample reduces to the path ?g; !a; !b; !c; !d; !e., from
which we extract the input sequence formed only by ?g, which is the test case
that we were looking for.

Notice that producing a single linear counterexample at the first step,
instead of the counterexample automaton AC0, could have produced at the
end the path: ?g; !a; !b; !c;, which is actually the shortest counterexample, but
is not feasible in the Mod1 LTS.

This process can be repeated, as long as we have modules connected in
a chain; for each intermediate module the counterexample automaton and
formula should be calculated and the latter should be checked on the next
module. For the last module the counterexample automaton, once false coun-
terexamples have been filtered out, defines a set of test cases, each covering
the originally uncovered branch.

4 Complexity of the procedure

The following elements add up to the computational complexity of the proce-
dure:

• Model checking (MC) is linear with the product of state space size times
the length of the formula (that is, the maximum nesting of operators);

• The length of characteristic formula (FC) is linear in the size of the au-
tomaton. Linear as well is the complexity of the characteristic formula
generation;
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• Synchronization of automata (/G) has a complexity of at most the product of
the sizes of the automata; here it is applied to two successive counterexample
automata;

• Counterexample automata (AC) tend to be small, since they generate new
test cases: if we assume that the approach is applied only when the ”eas-
iest” test cases have already been exercised and only ”corner-case” test
cases remain to be discovered, the counterexample automata is a small sub-
automaton of the considered module (not really a sub-automaton, because
some loops may be unfolded depending on the length of the formula).

• The model complexity is anyway attacked compositionally

The order of complexity is therefore n∗m∗c, where n is the number of modules
in the chain, m the (average) state space of a module, c the (average) state
space of a counterexample automaton. Note that this may be substantially
better than n ∗m ∗m, due to the generally low dimensions of the counterex-
ample automata, especially for ”corner-case” counterexamples.

We claim that the above procedure is of minimal complexity achievable
basing on explicit state space enumeration, if compared with a similar proce-
dure that could have been defined using the explicit synchronization of two
successive modules instead of the characteristic formula plus model checking
process.

5 Conclusions and Further Work

We have detailed the proposed approach using a single running example, and
particular formalisms and verification tools. Nevertheless, we believe that
the approach has a general validity. Work is in progress on implementations
of the approach both using explicit model checking (as shown in the paper)
and BDD-based symbolic model-checking, but still focusing on LTSs and on
action-based temporal logics.

It seems reasonable that the approach works as well with a state based
formalism (Kripke Structures) and a state based temporal logic (such as CTL).
This needs to be verified: the very definition of counterexample, witness and
counterexample automaton is actually highly sensitive to the logic used and
to the assumptions on the models.

A result which is related to our work is the definition of more expressive
tree-like counterexamples for Kripke Structures and CTL; such counterexam-
ples are used as a support to guide a refinement technique [5]. The main
difference with respect to our approach is that a tree-like counterexample is in
its entirety a proof that the formula is not valid. Our counterexample automa-
ton gives instead the set of all linear counterexamples, each of which can be
taken separately as a traditional counterexample. A recent evolution of tree-
like counterexamples is represented by proof-like counterexamples [11], used
to extract proofs for the non satisfiability of a formula over a model. Closer
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to our approach is the multiple counterexamples generation of [6,10], which
generates all the counterexamples to a given length, expressed as a single
counterexample trace annotated with possible values of binary variables.
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Appendix

Counterexample automaton

We give here an algorithm that, given a formula φ and a LTS A, on which a
labelling has been computed by an explicit model checker during the successful
check of φ, computes an automaton WA whose recognized language is the set
of finite linear witnesses of the formula φ over the LTS A. We assume the
formula φ belongs to the positive existential logic defined in sect 3. We will
call this automaton the “witnesses automaton”.

The algorithm proceeds by visiting the portion of the state space of A
which is labelled by sub-formulae of φ; the visit is guided by the structural
analysis of the formula itself, hence it is terminated when the leaves of the
formula are reached (notice that for the used logic, the leaves are always the
true sub-formula). If needed, A is unfolded if a sequence of actions in φ
matches with a loop in A. The visit is implemented by a depth-first search by
recursion, and hence suitable information have to be associated to each state,
to say whether the state has already been visited, and with which sub-formula
φ).

The algorithm is defined in a Pascal-like style, and uses some auxiliary
functions and procedures which are defined first, employing shared structures
that represent the automata and the information related to them (labelling
by the model-checker, bookkeeping information, etc. . . ).

The auxiliary procedures work on A and WA as global variables, therefore
working also on the final states set F and on the relation R, both formally
included in WA. The build procedure builds a new transition and a new state
in WA, corresponding to a transition and state in A. The condbuild proce-
dure calls the previous one, only in the case that the state in A has not yet
been visited.
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procedure build (in s: State, a: Act, s1: State, t: Wstate; out t1: Wstate)
begin

create a new state t1 in WA;
add the transition t

a−→ t1 in WA;
add the pair (t1,s1) to R.

end

procedure condbuild (in s: State, a: Act, s1: State, t: Wstate; out t1:
Wstate)
begin

if s1 has already been visited then
t1 := Wstate associated to s1 in R;

else
build(s, act, s1, t, t1)

end

The following are the main functions, which also work on A and WA (there-
fore including F and R) as global variables.

procedure WAgenINIT (in s: State, φ: TL) – (s is the initial state)
begin

create a new state t in WA;
t is the initial state of WA;
add the pair (t,s) to R;
WAgen (s, t, φ).

end

procedure WAgen (in s: State, t: Wstate, φ: TL)
begin
if s, t have not been already visited with φ then
begin

record that s, t have been visited with φ;
case φ:

true: add t to F;

φ1|φ2: if φ1 ∈ L(s) then WAgen(s,t,φ1);
if φ2 ∈ L(s) then WAgen(s, t, φ2);

φ1 ⇒ φ2: if φ1 ∈ L(s) then WAgen(s, t, φ2);

EF φ1: if φ1 ∈ L(s) WAgen(s, t, φ1);

forall s’: State, act such that s
act−→ s’ ∈ A and EF φ1 ∈ L(s′) do

begin
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condbuild(s, act, s’, t, t’)
WAgen(s’, t’, EF φ1);

end;

EG φ1: WAgen(s, t, φ1);

forall s’ : State such that s
act−→ s’ ∈ A do

begin
condbuild(s, act, s’, t, t’)
WAgen(s’, t’, EG φ1);

end;

EX{act} φ1: forall s’ : State such that s
act−→ s’ ∈ A and φ1 ∈ L(s′) do

if s’ has not been visited with φ1, then
begin

build(s, act, s’, t, t’)
WAgen(s’, t’, φ1);

end;
else
begin

taken t’ the Wstate associated to s’ in the last visit with φ,

add the transition t
act−→ t1 in WA;

end;

<< χ >> φ1: if s
act−→, act satisfies χ then

forall s’ : State such that s
act−→ s’ ∈ A and φ1 ∈ L(s) do

if s’ has not been visited with φ1, then
begin

build(s, act, s’, t, t’)
WAgen(s’, t’, φ1);

end;
else
begin

taken t’ the Wstate associated to s’ in the last visit with φ,

add the transition t
act−→ t1 in WA;

end;
else
forall s’: State, act such that s

act−→ s’ ∈ A and << χ >> φ1 ∈ L(s′)
do
begin

condbuild(s, act, s’, t, t’);
WAgen (s’, t’, << χ >> φ1);

end;
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The automaton WA we obtain is deterministic, due to the determinism we
assume of the original LTS A. For applying the definition of Characteristic
Formula given in sect. 3.3 we actually need a non minimal, nondeterministic
equivalent automaton obtained by the following rule:
for any final state s ∈ F with outgoing transitions, such that r

a1−→ s
a2−→ p,

split s in two states s’ and s” such that:

• r
a1−→ s’, s’ ∈ F, s’ 6→

• r
a1−→ s”

a2−→ p, s” 6∈ F

Characteristic formula

The algorithm FCG to produce the characteristic formula can be described
informally (that is, without detailing particular cases) as follows:
We visit each state s of the counterexample automaton A, starting from the
initial state, building the formula with the following rules, where G is the set
of actions on which the two modules of interest synchronize:

• FCG(s) = true if s ∈ F (F is the set of final states of A)

• FCG(s) = (
∨

a:s
a−→s”,a∈G

<< a >> FCG(s”)) | (
∨

a:s
a−→s”,a6∈G

FCG(s”))

| EG(EX{b}true ⇒
EX{b}((

∨

a:s′ a−→ŝ,a∈G

<< a >> FCG(ŝ))|(
∨

a:s′ a−→ŝ,a6∈G

FCG(ŝ))))

if s is the first state of a loop, s” stands for any next state of s not belonging

to the loop, b is the first action in G of the loop, such as s
b−→ s′, and ŝ

stands for any of the next states of s′.
• FCG(s) = true if s a first state of a loop, and has already been visited by

the above clause (that is, we are ending a loop)

• FCG(s) = (
∨

a:s
a−→s′,a∈G

<< a >> FCG(s)) | (
∨

a:s
a−→s′,a6∈G

FCG(s)) otherwise.

Filtering synchronization operator

This operator AC1/GAC0 can be defined operationally as follows:

AC1
α−→ AC1′ AC0

α′−→ AC0′

AC1/GAC0
α−→ AC1′/GAC0′

if α =!a, α′ =?a or α =?a, α′ =!a and a ∈ G

AC1
∗a−→ AC1′

AC1/GAC0
∗a−→ AC1′/GAC0

if a 6∈ G, ∗ =!, ?
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