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Abstract

Multiparty interactions are common place in today’s distributed systems. An agent usually communicates,
in a single session, with other agents to accomplish a given task. Take for instance an online transaction
including the vendor, the client, the credit card system and the bank. When specifying this kind of system,
we probably observe a single transaction including several (binary) communications leading to changes in
the state of all the involved agents. Multiway synchronization process calculi, that move from a binary
to a multiparty synchronization discipline, have been proposed to formally study the behavior of those
systems. However, adopting models such as Bodei, Brodo, and Bruni’s Core Network Algebra (CNA),
where the number of participants in an interaction is not fixed a priori, leads to an exponential blow-up in
the number of states/behaviors that can be observed from the system. In this paper we explore mechanisms
to tackle this problem. We extend CNA with constraints that declaratively allow the modeler to restrict the
interaction that should actually happen. Our extended process algebra, called CCNA, finds application in
balancing the interactions in a concurrent system, leading to a simple, deadlock-free and fair solution for the
Dinning Philosopher problem. Our definition of constraints is general enough and it offers the possibility
of accumulating costs in a multiparty negotiation. Hence, only computations respecting the thresholds
imposed by the modeler are observed. We use this machinery to neatly model a Service Level Agreement
protocol. We develop the theory of CCNA including its operational semantics and a behavioral equivalence
that we prove to be a congruence. We also propose a prototypical implementation that allows us to verify,
automatically, some of the systems explored in the paper.
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1 Introduction

Nowadays concurrent and mobile systems are ubiquitous in several domains and

applications. They pervade different areas in science (biological and chemical sys-
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tems), engineering (security protocols and mobile and service oriented computing)

and even the arts (tools for multimedia interaction). In general, concurrent systems

exhibit complex forms of interaction, not only among their internal components,

but also with the surrounding environment. Hence, a legitimate challenge is to pro-

vide computational models allowing us to understand the nature and the behavior

of such complex systems. As an answer to this challenge, process algebra such as

CCS [17], the π-calculus [18] and CSP [13] among several others have arisen as

mathematical formalisms to model and reason about concurrent systems.

It is worth noticing that there is no unified model for concurrency, as in the case

of the λ-calculus for sequential computations. Concurrency is, in fact, a relatively

young area in computer science, and there are many models that accurately capture

some behaviors but ignore/abstract some others. For instance, CCS focuses on the

synchronization of processes: by exhibiting complementary actions two processes

handshake and synchronize. However, no message is indeed sent among the agents.

Data-passing extensions of CCS allow to overcome this problem, but the underlying

communication network remains invariant during computation since processes can-

not create and communicate new/private communication channels. The π-calculus

gives a step forward and allows the communication of names (representing data

and also communication links) that can later be used in other interactions. Many

other process algebras have emerged as extensions of existing ones to cope with

specific behaviors or they have taken inspiration from particular systems as in the

case of calculi for system biology. For instance, the Spi Calculus [1] incorporates

cryptographic primitives into the π-calculus for the specification and verification of

security protocols and the Brane Calculi [10] took inspiration from the interaction

of cell’s membranes to model biological interactions. The beauty of all these for-

malisms relies on their simplicity (few operators), formal semantics and reasoning

techniques, including behavioral equivalences (e.g., bisimulation), modal logics and

model checking for specifying and verifying system’s properties.

Most of the process algebras in the literature focus on binary interactions. Con-

sider for instance CCS where a process a.P (P prefixed by the input action a) can

synchronize with a.Q (Q prefixed by the output action a) when they are in a parallel

composition (e.g., as in a.P | a.Q). Such synchronization is made explicit via a spe-

cial action τ (called the silent action) and what we observe is the synchronization of

these processes in the transition a.P | a.Q τ−→ P | Q where, after the handshake,

P and Q continue their executions.

In this paper we shall focus on a multiparty extension of CCS, the so called Core

Network Algebra (CNA) [4,6,5], a multiparty process algebra where the number of

participants in each synchronization is not fixed a priori. In CNA, the binary inter-

action of CCS is extended and the usual input and output prefixes are generalized

to links, e.g., a\b, that can be thought of as the forwarding of a message received

on channel a (the input channel) to another channel b (the output channel). The

standard input and output prefixes of CCS are recovered when links expose only

an output ( τ\b ), or an input ( a\τ ); these particular actions are the ends of a

link chain where τ is the silent action (as in CCS). A link chain is the mechanism
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in CNA by which n ≥ 2 entities can synchronize. Each entity must offer a link that

has to match with an adjacent link offered by another entity. For instance, if three

processes offer, respectively, the links a\b, b\c and c\d, they can synchronize and

produce the link chain a\bb\cc\d, where information flows from a to d through b and

c.

In [7,8] the authors showed that the multiparty and open (arbitrary number

of participants) nature of CNA poses interesting problems for the point of view of

verification. In particular, while the number of possible successor states from a CCS

process is quadratic on the number of its outermost prefixes, it is exponential in

the case of a CNA process. Moreover, it is possible to specify a graph of agents as

a CNA process P (some examples in Section 4.2) and we can check that there is a

Hamiltonian path in the graph iff there is exactly one immediate successor of P .

We explored in [7,8] symbolic techniques aiming to tame the inherent complexity

of the CNA transition system.

The goal of the present paper is to define a suitable extension of CNA that

allows the specifier to control, in a declarative way, the behavior of processes. More

precisely, we provide mechanisms that allow us to include in a CNA specification

certain restrictions that appear naturally in the modeled system at hand. For

instance, we may be interested in transitions/paths in a graph to have certain

length or to specify upper bounds on the number of participants in an open

interaction. This is the purpose of introducing constrains and values in prefixes:

the process a\b〈!vp〉(?cp).P offers the link a\b at a given cost/value vp and checks

whether the interaction with some other processes satisfies the constraint cp. When

this process interacts with, e.g., b\c〈!vq〉(?cq).Q, the synchronization a\bb\c has a

final cost v = vp+ vq and it can actually happen if v satisfies both cp and cq. As we

shall see, the control mechanism due to constraints have interesting properties and,

in the quest of defining such extensions, we found solutions to distributed problems

that do not have a simple solution in other process calculi. Quoting José Meseguer

[16], “increased expressiveness is not a theoretical luxury, but an eminently practical

goal, since formal specification languages should describe as simply and naturally

as possible the widest possible class of systems.”. This is precisely our goal here.

Contributions and organization. We start in Section 2 recalling the CNA frame-

work. In Section 3 we introduce the notion of constraints based on complete lattices

and monoids. Such structure allows us to compare values (e.g, c < 42 ) and also to

accumulate values (e.g., adding the length/cost of two paths in a graph). We then

extend the language of CNA to allow processes to communicate such values and

also to query constraints on them. Hence, a transition can happen only if all the

involved agents satisfy their own constraints. We call this new calculus constrained

CNA (CCNA). We shall show that CCNA is a conservative extension of CNA (No-

tation 3.7): CNA processes can be seen as CCNA processes that exchange the less

restrictive value and query the always-true constraint. In Section 3.2 we endow

CCNA with a suitable operational semantics. This semantics has some novelties wrt

the standard one for CNA: we follow a late approach in contrast to the early one
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used in [5]. Our semantics is then a good middle point between the inherent non-

deterministic early semantics and the (more involved) symbolic semantics in [8].

Section 3.3 introduces the notion of (network) bisimulation for CCNA process and

we prove that this equivalence is a congruence (thus allowing us to replace equals

by equals in larger systems). In Section 4.1 we show that the use of constraints

leads to a simple solution for the Dinning Philosopher problem where concurrent

processes compete for the use of some resources. Our solution is deadlock-free and

fair: all the agents can progress infinitely often. Fairness is usually imposed as an

external condition but here, the constrained transition system satisfies such prop-

erty. In Section 4.2 we model a graph representing a transportation system and we

show how constraints allow us to discard some (undesired) behaviors. Moreover, in

Section 4.3, we present an application in the context of a Service Level Agreement

(SLA) protocol where constraints naturally represent restrictions such as the upper

bound for the price of the service to be paid and the minimal quality (bandwidth)

the client is expecting. Section 5 concludes the paper and present related work. We

have also implemented a tool using the Maude system [16]. We shall not describe

in depth such system here but we shall exemplify its use in Section 5. We thus con-

tribute with a formal framework to specify constrained multiparty interactions and

a prototypical tool showing its appropriateness as (automatic) reasoning technique.

2 Background on link chained interactions

Let C be the set of channel names, ranged over by a, b, c, ..., and τ,� two distin-

guished symbols not in C. A = C ∪ { τ } ∪ {� } is the set of actions, ranged over by

α, β, ..., where the symbol τ denotes a silent action, while the symbol � denotes a

virtual (non-specified) action.

Definition 2.1 (Links: solid, virtual and valid) A link is a pair � = α\β, with
α, β ∈ A. We call α the source site of � and β the target site of �. A link α\β
is solid if α, β �= �; the link �\� is called virtual. A link is valid if it is solid or

virtual. We shall use L to denote the set of valid links.

Intuitively, a\b records an action a (or equivalently an input on channel a) and a

co-action b (or an output on b), such that the input on a (receiving from the source

of a communication) can be forwarded (to the target of the communication) along

channel b. The τ -action is used when no interaction is required on the left (as in
τ\a), on the right (as in a\τ ) or on both sides (as in τ\τ ). The link τ\τ is called

τ -link. A virtual link �\� represents a non-specified interaction that will be later

completed. Examples of valid links are �\�, a\a, τ\a, b\a, τ\τ . The links �\a, a\�
are not valid.

Links can be combined in link chains. Intuitively, a link chain s = �1...�n represents

a multiparty interaction where each �i records the source and the target sites of

each hop.

Definition 2.2 (Link Chain) A link chain is a finite sequence s = �1...�n of valid

links �i =
αi\βi

. We say that s is valid if:
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(i) for all i ∈ [1, n),

⎧
⎨
⎩

βi, αi+1 ∈ C implies βi = αi+1

βi = τ iff αi+1 = τ
; and

(ii) ∃i ∈ [1, n]. �i �= �\�.
We shall use VC to denote the set of valid link chains. The length of a link

chain s (i.e., the number of links in s) will be denoted as |s|.
Condition (i) says that two adjacent solid links must match on their adjacent

sites. In order to highlight such a matching, we shall write link chains as, e.g.,
a\bb\cc\d instead of sequences of links as in a\b b\c c\d. Condition (i) also says that

the silent action τ cannot be matched by a virtual action �. As we shall see, this is

required since a τ -action can be only matched with τ when processes synchronize

on restricted channels. Condition (ii) says that a valid link chain must have at least

one solid link (i.e., the chain �\��\� is not valid). Some examples of valid link chains

are: �\a�\bb\τ , a\�b \c�\d, and τ\aa\τ . The first chain represents an interaction where

there is a pending synchronization on the left of a\b; similarly, the second chain

represents an interaction where a third-party process must offer a link joining b and

c (i.e., b\c). Finally, the last chain is the result of a binary interaction between a

process performing the output τ\a and a process performing the input a\τ . The

following are examples of link chains that are not valid: a\cb\d, �\τ�\a, and a\cτ\d.
Hereafter, we only consider valid links and valid link chains. We shall use ⊥ to

denote non-valid links and chains.

Now we introduce the merge operator s • s′ that acts on two link chains of the

same length, i.e. |s| = |s′|. Intuitively, s • s′ makes the two link chains collapse into

one link chain where some of the virtual links in s (resp. s′) have been substituted

with the corresponding solid links in s′ (resp. s).

Definition 2.3 (Merge) Let α, β ∈ A be actions. The merge operator on actions

is defined as follow:

α • β = α if β = � α • β = β if α = � α • β = ⊥ otherwise

For links, let �1 =
α1\β1 and �2 =

α2\β2 be valid links and α1•α2 = xα, β1•β2 = xβ.

If xα, xβ �= ⊥, then �1 • �2 = xα\xβ
. Otherwise, �1 • �2 = ⊥. For the merge

on chains, let s = �1...�n and s′ = �′1...�′n be valid chains with �i = αi\βi
and

�′i =
α′
i\β′

i
. If �i • �′i �= ⊥ for all i ∈ [1, n] and (�1 • �′1)...(�n • �′n) is a valid chain,

then s • s′ = (�1 • �′1)...(�n • �′n). Otherwise, s • s′ = ⊥.

As an example, the chains �\��\a�\b and c\�a \� cannot merge, as they have

different length; a\�b \� and �\c�\d cannot merge since a\cb\d is not a valid chain; a

chain s cannot merge with itself; finally, c\�a \b�\d and �\a�\�b \� merge into c\aa\bb\d.
As usual in process calculi, names are restricted in order to force interactions.

Let s = �1...�n = . . . αi\αi+1

βi
\βi+1 . . . be a link chain. We say that a is matched in s

if both

(1) a �= α1 and a �= βn (i.e., a cannot occur in the endpoints), and
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(2) for any i ∈ [1, n), either βi = αi+1 = a or βi, αi+1 �= a.

Otherwise, we say that a is unmatched (or pending) in s. For example, a and b

are matched in τ\aa\bb\d. Instead, neither a nor b are matched in d\�a \c�\b.
Definition 2.4 (Restriction) Let α, β ∈ A be actions and a ∈ C be a channel

name. We define the following operations on actions and links:

(ν a)α =

⎧
⎨
⎩

τ if α = a

α otherwise
and (ν a) α\β = ((ν a)α)\((ν a)β)

We lift those operations to link chains as follow:

(ν a)s =

⎧
⎨
⎩

((ν a)�1) . . . ((ν a)�n) if a is matched in s

⊥ otherwise

For instance, in s = τ\aa\�b \�, the name a is matched and (νa)s = τ\ττ\�b \�; whereas
(νb)s is undefined since b is pending in s.

3 CNA with constraints

In this section we present the CNA calculus equipped with data passing and con-

strains on those data. Unlike the link-calculus [5] (and also the π-calculus in that

respect), we will consider values which are not channel names, thus they will have a

separate definition set. Our goal is to perform some checks on the data that partic-

ipants in a interaction can share. Values will be taken from an algebraic structure

that allows us to compare (�) and also to accumulate (⊗) those values. The fol-

lowing definitions are from [11] that simplifies at some extent the presentation of

c-semiring [3] (another algebraic structure used for accumulating and comparing

constraints).

Recall that a partial order is a pair 〈D,�〉 such that D is a set and� is a reflexive,

transitive and antisymmetric relation on D. We use ≺ to denote the strict version of

� (i.e., v ≺ v′ if v � v′ and v �= v′). We also use � and � with the expected meaning.

A complete lattice is a partial order where any subset X ⊆ D has a least upper bound

denoted as �X. By duality, the greatest lower bound, denoted as �X, also exists.

As usual, we use � and ⊥ to denote, respectively, �D and �∅. An abelian (or

commutative) monoid is a triple 〈D,⊗,�〉 where ⊗ : D ×D → D is a commutative

and associative operator and � is its identity (i.e., ∀v ∈ D.v ⊗� = �⊗ v = v).

Definition 3.1 (CLM [11]) A complete lattice monoid (for short CLM) is a tuple

K = 〈D,�,⊗〉 s.t. 〈D,�〉 is a complete lattice, ⊥ and � are, respectively, the least

and the greatest elements of D and 〈D,⊗,�〉 is a commutative monoid. We assume

that ⊗ distributes over glb’s, i.e.,

∀v ∈ D.∀X ⊆ D.v ⊗ �X = �{v ⊗ x | x ∈ X}

L. Brodo, C. Olarte / Electronic Notes in Theoretical Computer Science 351 (2020) 25–5030



Let us explain the above definition with a concrete instance that we shall use in

the following sections. Consider the structure KN = 〈N∞
+ ,≥,+〉 where N∞

+ is the set

of natural numbers completed with ∞ and ≥ is the usual “greater than” relation

on N
∞
+ (e.g., 5 ≥ 2). We can think of the elements in N

∞
+ as costs. Note that we

consider 0 as the “best” (�) cost (x � 0, i.e., x ≥ 0 for any x ∈ N
∞
+ ). Also, ∞ is

the worst (⊥) cost we can assume. We accumulate costs with + (addition on N).

When costs are added, we get “worse costs” (e.g., 3 + 2 ≥ 3). More generally, we

can show that ⊗ is an intensive operator : ∀v, v′ ∈ D, v⊗v′ � v. It is also possible to

prove that ⊥ is absorbing for ⊗ (i.e., ∀v ∈ D.v⊗⊥ = ⊥). In our concrete example,

v +∞ = ∞.

Definition 3.2 (Residuation) Let K = 〈D,�,⊗〉 be a CLM and v, v′ ∈ D. The

residuation of v with respect to v′ is defined as v ÷ v′ = �{x ∈ D | v � v′ ⊗ x}.
As expected, v � v′ ⊗ (v ÷ v′) (due to distributivity). Moreover, if v′ � v then

v ÷ v′ = �. In KN, ÷ is subtraction on N
∞
+ ( v ÷ v′ = v − v′) if v ≥ v′ (i.e.,

v � v′) and 0 otherwise. (See [2] for a discussion on residuation in constrain-based

formalisms).

It is possible to combine different CLMs in order to measure/compare different

entities in a single operation.

Lemma 3.3 (Combining CLMs) Let K1 = 〈D1,�1,⊗1〉 and K2 = 〈D2,�2,⊗2〉
be CLMs. Define K = K1 ×K2 = 〈D1 ×D2,≺,⊗〉 where (v, w) � (v′, w′) iff v �1 v

′

and w �2 w
′; and (v, w)⊗ (v′, w′) = (v ⊗1 v

′, w ⊗2 w
′). Then, K is a CLM.

Proof. The existence of arbitrary lubs is an easy consequence of the existence of

lubs in K1 and K2. Distributivity also follows easily. Note that we can also define

(point-wise) residuation on K. �

3.1 Constrained multiparty interactions

Now we are ready to introduce the syntax of constrained CNA, from now on denoted

as CCNA, which is parametric with respect to a CLM. In the following, we fix the

CLM K = 〈D,�,⊗〉 with residuation operator ÷. We shall use u, v to range over

elements of D. We shall call data-variables to variables (usually denoted as x, y, ...)

that take values from D.

Definition 3.4 (Syntax of CCNA) Given a set of channel names C (ranged over

by a, b) and a CLM K, processes in CCNA are built from the syntax

exp ::= a | v | x | exp⊗ exp | exp÷ exp expressions

atm ::= exp 	 exp′ where 	 ∈ {�,≺,=, �=,�,�} atomic constraints

c, c′ ::= atm | c ∧ c′ constraints

p, q ::= 0 | �〈!e〉(?c).P | p+ q sequential processes

P,Q ::= p | P | Q | (ν a)P | A〈a1, . . . , an; e1, . . . , em〉 processes
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where a is a distinguished data-variable representing the accumulated value of an

interaction; v ∈ D; x is a data-variable; e is an expression where a does not occur;

� = α\β is a solid link built from C∪{τ} (i.e. α, β �= �); A is a process identifier for

which we assume a (possibly recursive) definition of the form A(b;x) � P where b is

a list of pair-wise distinct names and x is a list of pair-wise distinct data-variables;

and ei is an expression where a does not occur. �

In the following paragraphs, we explain in detail each of the components of this

definitions. The symbol a denotes a special data-variable that accumulates (using

⊗) the values added by each of the participants in an interaction (Definition 3.10

below). In KN, examples of valid expressions are 3, 5− y, 5 + x+ a, etc.

Constraints will be used to check if the agents agree on the values of a given

interaction. In KN, examples of atomic constraints are 5 ≥ 3, x ≥ 4, x ≥ y + 3,

a ≥ 10, etc. A constraint is just a conjunction of such atoms. We use tt to denote

the (always true) atomic constraint ⊥ � �.

Before explaining the meaning of processes, we need an extra definition. The

only binder for (data-) variables is the process definition A(b;x) � P where the

variables in x occur bound in P . We shall use fv(P ) to denote the set of free (data-

) variables in the process P . We shall also use fv(c) to denote the set of free (data-)

variables in c (including a).

Definition 3.5 (Entailment) We say that a constraint c is ground if it does not

contain data-variables nor the symbol a (i.e., fv(c) = ∅). Given a ground atomic

constraint c = e 	 e′, we say that c holds, notation K |= c, if e and e′ reduce

(performing the operations ⊗ and ÷ in K), respectively, to v and v′ and the relation

v 	 v′ holds in K. Otherwise, we write K �|= c. We extend this notion to ground

constraints as follows: K |= c1∧· · ·∧cn whenever K |= ci for all i ∈ 1..n. Let c, c′ be
constraints s.t. fv(c), fv(c′) ⊆ {a}. We say that c, c′ are equivalent, notation c ≈ c′

if ∀v ∈ D.K |= c[v/a] iff K |= c′[v/a].

As an example, we have the following entailments: KN |= 3 + 2 � 1 + 2 ; and

KN |= 3 ÷ 2 � 1 + 2. Moreover, if c1 = tt ∧ 3 � a and c2 = a + 0 � 5 ÷ 2 then

c1 ≈ c2.

The process 0 does nothing. The process �〈!e〉(?c).P offers the solid link �

along with the value denoted by the expression e and checks whether the constraint

c holds. After this interaction, the process behaves as P . The non-deterministic

process p+q can either behave as p or q. Interleaved parallel composition is denoted

as P | Q. The process (ν a)P behaves as P but it cannot exhibit any action a.

Hence, we can say that a is local (or private) in P . As usual, (ν a)P binds the free

occurrences of a in P .

The call A〈a1, ..., an; e1, ..., em〉 behaves as the process

P [a1/b1, ..., an/bn][e1/x1, . . . , em/xm] if the constant A is defined as

A(b1, ..., bn;x1, ..., xm) � P . As expected, the actual parameters substitute

the formal parameters of the definition. Besides binding the variables xi, the

above definition binds the names bi. We shall use fn(P ) and bn(P ) to denote,

respectively, the free and bound names in P .
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We shall impose some restrictions on process that are commonplace in the lit-

erature (see e.g., [12]).

Definition 3.6 (Valid Processes) Processes are taken up to alpha-conversion

(renaming of bound names). We assume that in a process definition A(b;x) � P ,

fn(P ) ⊆ b and fv(P ) ⊆ x. Moreover, in order to guarantee the transition system

to be finitely branching, we assume that recursive calls in P must be guarded inside

a prefix �〈!e〉(?c).Q. Finally, we assume that in all processes, the occurrence of a

data-variable x (different from a) is always bound by a process definition.

For instance, the processes �〈!2〉(?x > 5).Q and �〈!2 + x〉(?a > 5).Q are not valid

since x occurs free (and not bound by a process definition). Moreover, the process

definition A()
def
= A〈〉|P is not valid since the call A〈〉 is not guarded (thus making

the transition system infinitely branching).

Notation 3.7 For the sake of readability, we shall use the following shortcuts. We

shall omit a trailing 0, e.g. by writing a\b instead of a\b.0. We shall also write �〈!e〉
instead of �〈!e〉(?tt). Recall that v⊗� = v for all v ∈ D. Hence, we shall write �(?c)

instead of �〈!�〉(?c). Finally, we shall simply write � instead of �〈!�〉(?tt). Note

that any CNA process is also a CCNA process whose shared value (�) is irrelevant

for the final interaction and whose constraint always holds (tt).

The following example shows how constraints can be used to limit the number

of participants in a multiparty interaction. For the moment, the discussion about

the behavior of process remains informal until we define the semantics in the next

section.

Example 3.8 The process P = a\b is able to interact with any other process,

say Q = c\d and synchronize producing the link chain a\�b \c�\d. Other outputs

can be also expected from that interaction, as e.g. c\�d \a�\b. In fact, a 3-party

synchronization is also possible with yet another process R = b\c, thus building the

chain a\bb\cc\d. More generally, P can interact with an unbounded number of other

processes by building suitable (valid) link chains. This means that interactions in

CNA are open since the number of participants is not fixed a priori. This is a quite

expressive feature of the calculus but it makes also difficult to reason about processes.

(See [7] and [8] for symbolic techniques to deal with this problem). Consider the

structure KN and the processes below

P ′ = a\b〈!1〉(?a ≤ 2) Q′ = c\d〈!1〉(?a ≤ 2) R′ = b\c〈!1〉(?a ≤ 2)

Hence, P ′ can interact with at most one of the other two processes (Q′ or R′)
since, in each interaction, the value 1 is accumulated and such value must be less

than 2. This is a very intuitive (and declarative) mechanism for counting and

restricting the participants in an interaction. �

Derived construct (tuples). Let us introduce an idiomatic construct that will

be useful. Due to Lemma 3.3, we can assume that agents offer links with tuples of
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�〈!e〉(?c).P �〈!e〉(?c)−−−−−→ P
Act p

μ−→ P ′

p+ q
μ−→ P ′ Lsum

q
μ−→ Q′

p+ q
μ−→ Q′ Rsum

P
μ−→ P ′

P | Q μ−→ P ′ | Q
Lpar

Q
μ−→ Q′

P | Q μ−→ P | Q′ Rpar
P

μ−→ P ′ Q
φ−→ Q′

P | Q μ•φ−→ P ′ | Q′
Com

P [a/b][v/x]
μ−→ P ′ A(b;x) � P

A〈a;v〉 μ−→ P ′ Ide
P

μ−→ P ′

(νa)P
(νa)μ−−−→ (νa)P ′

Res

Fig. 1. Semantics. All the rules have the proviso that the labels in the transitions are valid (Def. 3.10).

elements as, e.g., (e1, . . . , en). Such tuples are elements of the CLM K1 × · · · × Kn.

Hence, we shall use the more convenient notation

�〈!e1, . . . , en〉(?c1 ∧ · · · ∧ cn)

where each constraint ci may use the special symbol ai (denoting the accumulated

values in the i-th position of the tuple). Note that these tuples and constraints

can be easily rewritten in the syntax of Definition 3.4 by using the construction in

Lemma 3.3. Since each CLM Ki represents a different value/measure to be accumu-

lated, it is not legal to combine values of different CLMs in the same expressions.

For instance, expressions as, e.g., a1 ÷ a2 are not legal. Similarly for constraints.

Next notational convention allows us to give alias for the “accumulating” variables

ai to make specifications cleaner.

Notation 3.9 (Tuples and variables) For a given specification, we

can determine that tuples used in interactions are of the form

〈x1, ..., xn〉 where the aliases xi cannot be bound by a process defini-

tions. Hence, we write �〈!x1 = e1, . . . , xn = en〉(?c1 ∧ · · · ∧ cn) to mean

�〈!e1, . . . , en〉(? (c1 ∧ · · · ∧ cn) [a1/x1, ..., an/xn]). Moreover, if vi = �, we fur-

ther omit “xi = �”. For instance, if we determine that tuples are of the

form 〈cost, speed〉, the expression �〈!speed = 1〉(?cost ≤ 3 ∧ speed ≥ 10) means

�〈!�, 1〉(?a1 ≤ 3 ∧ a2 ≥ 10).

3.2 Semantics

In this section we introduce the operational semantics for CCNA. A novelty in this

semantics is the use of a late approach where the number of participants is inferred

only in the communication rule in contrast to the early approach adopted in [4]

(where the rule Act needs to “guess” the size of the interaction) . This distinction

will be clarified in brief.

Before defining the semantics, we shall lift the definition of merge on link

chains (Definition 2.3) to consider also valued-constrained-chains (VCC) of the form

s〈!e〉(?c) where s is a link chain, e is a ground expression (no free variables) and

c is a constraint where fv(c) ⊆ {a}. For that, we allow link-chains to be enlarged

(injecting virtual links) or contracted via the relation �� defined below.
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Definition 3.10 (Valued-constrained-chains and operations) We let �� be

the least equivalence relation over link chains closed under the axioms (whenever

both sides are valid link chains):

s �\� �� s s1
�\��\� s2 �� s1

�\� s2
�\� s �� s s1

α\aa\β s2 �� s1
α\�a \a�\β s2

We merge VCCs as follow: s〈!e〉(?c) • s′〈!e′〉(?c′) = (w • w′)〈!e⊗ e′〉(?c ∧ c′) with

s �� w and s′ �� w′. We define (νa)(s〈!e〉(?c)) as ((νa)s)〈!e〉(?c). We say that a

VCC s〈!e〉(?c) is valid iff s is a valid link chain and K |= c[e/a].

We shall use μ, φ to range over VCCs. Note that the values are merged using the ⊗
operator of the CLM. Note also that, in order to check the validity of a VCC, the

symbol a is replaced with the current accumulated value e. Since we are assuming

that there are no free data-variables in a process (see Definition 3.6), once the data-

variables of a definition have been replaced with concrete values, c[e/a] is indeed

a ground constraint. Finally, since there are no occurrences of names in values

and constraints, the restriction operation on VCCs acts only on the link chains

(Definition 2.4) and hence, e and c remain the same.

The structural operational semantics is given by the labeled transition system

(P,VCC, −→) where the set P of states is the set of CCNA processes, labels are valid

valued-constrained-chains (VCC) and the transition relation −→ is the minimal

transition relation generated by the rules in Figure 1.

The prefix process �〈!e〉(?c).P simply offers the link � with value/expression e

and checks whether c is valid, i.e., �〈!e〉(?c) must be a valid VCC (Rule Act). If p

is able to exhibit a transition to P ′ with label μ, then p + q
μ−→ P ′ (Rule Lsum).

Similarly for q (Rule Rsum). If P can exhibit a transition, it can also exhibit the

same transition when running in parallel with Q (Rules Lpar and Rpar). In Res,

if P offers the action μ then (νa)P offers (νa)μ (if it is valid). Rule Ide simply

replaces the formal parameter with the actual parameters.

The synchronization mechanism (Rule Com) works by merging two VCCs. When

doing that, note that the link chains can be enlarged (Definition 3.10) and hence,

the links of one chain can be placed in an admissible position of the other chain.

Note that the decision about the length of the resulting chain is postponed until

the use of the rule Com. This is a different approach from the one considered in

[4] (for CNA processes) where the size of the interaction must be inferred in the

Act rule (by enlarging in this rule � with ��). We also note that contrary to CCS,

the Rule Com in CCNA (and CNA) can appear several times in the proof tree of a

transition since the merging operator can always inject more virtual links to allow

other agents to participate as shown in the following example.

Example 3.11 Consider the CLM KN and the processes:

P = τ\a〈!2〉(?a ≤ 10).P ′ Q = a\b〈!3〉(?a ≤ 12).Q′ R = b\τ 〈!5〉(?a ≥ 4).R′
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P
τ\a〈!2〉(?a≤10)−−−−−−−−−−−→ P ′

Act
Q

a\b〈!3〉(?a≤12)−−−−−−−−−−−→ Q′
Act

R
b\τ 〈!5〉(?a≥4)−−−−−−−−−−→ R′

Act

Q|R
a\bb\τ 〈!8〉(?a≤12∧a≥4)−−−−−−−−−−−−−−−−→ Q′|R′

Com

P |Q|R
τ\aa\bb\τ 〈!10〉(?c)−−−−−−−−−−−−→ P ′|Q′|R′

Com

(νa, b)(P |Q|R)
τ\ττ\ττ\τ 〈!10〉(?a≤10∧a≤12∧a≥4)−−−−−−−−−−−−−−−−−−−−−−−→ (νa, b)(P ′|Q′|R′)

2× Res

Fig. 2. Derivation in Example 3.11.

representing three agents interested in building a house. Each of them has a cost

for her services (e.g., P charges $2). Moreover, P is not willing to participate in

a project that costs more than $10 and R does not participate in “small” projects

with a cost below $4. P requires someone providing a service matching its output

link a. Q offers a and expects in exchange b and R provides b. The three agents

can indeed engage in the project as the derivation in Figure 3.2 shows. Note that

(νa, b)τ\aa\bb\τ = τ\ττ\ττ\τ . Also, in all the steps of this derivation the labels of the

transitions are valid VCCs. Rule Com is used twice in the derivation, thus resulting

in a 3-party interaction.

If we define P2 as τ\a〈!2〉(?a < 10).P ′
2 the process (νa, b)(P2|Q|R) does not

have any transition since s〈!10〉(?a < 10 ∧ a ≤ 12 ∧ a ≥ 4) is not a valid VCC.

Moreover the names a, b are restricted and none of the processes in P2|Q|R can

evolve independently using the rules Lpar and Rpar (e.g., a is not matched in τ\a
and then, (νa)τ\a is not valid). In words, P2 refuses a 3-party interaction with Q

and R since the project will cost more than she expects. �

Example 3.12 (Conditionals) Given an atomic constraint c = e1 	 e2, let ĉ

denote the atomic constraint e1	̂e2 where 	̂ substitutes = with �=, � with �,

≺ with �, etc. It is straightforward to see that: (1) ̂̂c = c ; and (2) given

a ground atomic constraint c, K |= c iff K �|= ĉ. We can define a condi-

tional construct to select the continuation of a process depending on the entail-

ment of a constraint. More precisely, if c = c1 ∧ · · · ∧ cn where each ci is an

atomic constraint, we can write �〈!e〉(if ?c then P else Q) to denote the process

�〈!e〉(?c).P + �〈!e〉(?ĉ1).Q+ · · ·+ �〈!e〉(?ĉn).Q. Note that P is executed whenever all

ci hold (and hence c holds) and Q is executed if there is a ci that does not hold in

the underlying CLM. �

Definition 3.13 (Computations) Let W ∗ be the set of finite and infinite se-

quences of valid VCCs. Let P be a process and σ = s1.s2... ∈ W ∗ be an infinite

sequence. We say that σ is a computation of P if P = P0
s1−→ P1

s2−→ P2
s3−→ · · · .

If P cannot afford any transition, we shall write P �−→ and we call P a dead-lock.

If σ = s1.s2...sn ∈ W ∗ is a finite sequence, we say that σ is a (finite) computation

of P if P = P0
s1−→ P1 · · ·Pn−1

sn−→ Pn �−→. In both cases we shall write P
σ−→.

We shall use O(P ) ⊆ W ∗ to denote the set {σ | P σ−→}.

L. Brodo, C. Olarte / Electronic Notes in Theoretical Computer Science 351 (2020) 25–5036



3.3 Network bisimulation

Now we define a behavioral equivalence on CCNA processes that we show to be a

congruence. In the tradition of CNA, we do not distinguish between processes that

exhibit different internal transitions. This is reflected in the following extension of

the equivalence relation �� originally proposed in [4].

Definition 3.14 (Equivalence ��) We let �� be the least equivalence relation

over link chains closed under the following inference rules:

s �� s′

s �� s′
s1

α\ττ\β s2 �� s1
α\β s2

We lift such relation to VCC as follows: s〈!e〉(?c) �� s′〈!e〉(?c′) iff s �� s′ and
c ≈ c′.

Definition 3.15 (Network Bisimulation) A network bisimulation R is a binary

relation over CCNA processes such that, if P R Q then:

• if P
μ−→ P ′, then ∃ φ, Q′ such that μ��φ, Q

φ−→ Q′, and P ′ R Q′;

• if Q
μ−→ Q′, then ∃ φ, P ′ such that μ��φ, P

φ−→ P ′, and P ′ R Q′.
P and Q are network bisimilar, notation P ∼ Q, if there exists a network

bisimulation R s.t. P R Q.

Following standard techniques (see e.g., [12,23]), we can show that ∼ is an

equivalence relation and it is the largest network bisimulation relation.

Let us give some illustrative examples with the structure KN. For any P , 0 ∼
�〈!3〉(?a ≤ 2).P since KN �|= 3 ≤ 2. Moreover, merging constraints cannot make

a ≤ 2 valid (due to intensiveness of ⊗ w.r.t. �, i.e., a will be always greater than

3).

The processes P = �〈!3〉(?a ≤ 5) and Q = �〈!3〉(?a ≤ 7) cannot be considered

equivalent: Q can, for instance, synchronize with R = �′〈!4〉 while P cannot. Now

consider P = �〈!2〉(?a ≤ 2) and Q = �〈!4〉(?a ≤ 4). Note that both processes can

synchronize with a process of the form R = �′〈!0〉(?c). However, if c = a ≤ 2, P and

R can synchronize but Q and R cannot.

Next we show that ∼ is a congruence relation and then, we can replace “equals

by equals” in any context. For that, let C[·] denote a process expression with a

single occurrence of a hole [·]. Moreover, if P is a process, C[P ] denotes a process

expression resulting from the substitution of the hole [·] with P .

Theorem 3.16 (Congruence) If P ∼ Q then, for any context C[·], C[P ] ∼ C[Q].

The above theorem is proved by exhibiting appropriate network bisimulations

for any case/context. The complete proof is in the appendix.

4 Applications: fairness and constrained interactions

In this section we give three compelling examples showing how to declaratively

control multiparty interactions by means of constraints. The first example is the
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canonical problem of the dinning philosophers. In this case, by adding constraints,

we are able to specify a deadlock free and fair solution for the problem. The second

example models a network transportation system where constraints may represent

costs or temporal restrictions. In our last example, constraints are used to model

service level agreements in a negotiation protocol.

4.1 The dinning philosophers

The classical example of the dining philosophers (DP) has been introduced to study

interactions between concurrent entities that want to share some resources. The

problem relates n philosophers sitting around a table, where each one has its own

dish, and they can only eat or think. When they, independently, decide to eat, they

need two forks. On the table, there is only one fork between two dishes, i.e., exactly

n forks.

It is well known there is no symmetric and deadlock-free specification of this

system using only binary interactions [12] as in, e.g., CCS. Let us illustrate the

problem considering only two philosophers. The philosophers are specified as the

CCS process Pi = fi.f(i+1)mod 2.eati.P
′
i where P0 first grabs the fork 0, then he

grabs the fork 1 to later start eating (similarly for P1). If we run in parallel P0 and

P1 along with the processes specifying the two forks (Fi = fi.F
′
i ), the system can

reach a deadlock when P0 takes the fork 0 and P1 takes the fork 1.

By using a multiparty synchronization calculus, the DP problem has a simple

and very natural deadlock free specification (see [7,8] for a solution using CNA and

[12] for a solution using Multi-CCS). In that case, in an atomic (or multiparty)

interaction, a philosopher takes at the same time both forks, thus avoiding the

deadlock situation described above. However, the solutions in Multi-CCS and CNA
may exhibit unfair computations where, e.g., a given philosopher eats or thinks all

the time (and the others cannot progress).

Definition 4.1 (Fairness [24]) Let π be an infinite computation, π = P0
s1−→

P1
s2−→ P2

s3−→ · · · . A VCC μ is relentlessly enabled in π if ∀ π′′, π′ s.t. π = π′′π′,
π′ contains a process Pi that can afford a transition labeled with μ. Moreover, π is

strongly fair if each relentlessly enabled VCC μ on π′ occurs in π′.

In words, a computation π is strongly fair if an action (VCC) that is relentlessly

enabled in π, occurs infinitely often in π.

Here we focus on a fair solution for the DP problem: due to deadlock-freeness,

every computation is infinite and, by fairness, in every computation each philosopher

eats infinitely many times. For that, we use constraints to neatly implement a sort

of ticket service, thus guaranteeing that philosophers must alternate the use of the

forks. From now on, we fix the CLM to be the structure KN.

Below we describe our first attempt to solve the problem. Unfortunately, the

specification is deadlock-free but it is not fair. We shall use DP (n) to denote the

instance of the DP problem with n philosophers and i+n to denote (i+ 1)mod n.

Example 4.2 (Dinning Philosophers) Let n ≥ 2 be the number of philosophers

(and forks) in the problem and define Forki with i ∈ [0, n) as follows:
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Forki(l, r) � τ\τ (?l = 0 ∧ r = 0).Forki〈N,N〉
+ τ\upLi

(?l > 0).τ\dwi
.Forki〈l-1, r〉 + upRi\τ (?r > 0).dwi\τ .Forki〈l, r-1〉

In this specification, N is a global parameter/constant of the model indicating

how many times we allow a philosopher to consecutively use the forks. The param-

eter l of the definition is the maximum number of times the philosopher on the left

can use the i-th fork. Similarly, for the parameter r. Every time the i-th fork is used

by the philosopher on its left (resp. right), the parameter l (resp. r) is decremented

(using ÷) by 1. The process Forki(l, r) can reset its parameters to the initial val-

ues only when both l and r are equal to zero. The values of the parameters are

checked by the constraints associated to the prefix τ\upLi
(resp. upRi\τ ) that allow

the philosopher on the left (resp. right) to grab the fork.

The specification of the philosophers is as follows:

Phili() � τ\tki .Phili〈〉+ upLi\upR
i+n
.τ\eati .dwi\dw

i+n
.Phili〈〉

Hence, the process Phili〈〉 can either think or establish a 3-party synchronization

with the forks on his right and on his left. In that case, he can eat to later release

both forks in another 3-party synchronization. In fact, the release of the forks can

be done independently and there is no need for a multiparty synchronization.

The whole system restricts all the channel names but eati which is a visible

action:

DP = (ν ũpLi, ũpRi, d̃wi)(Phil0| . . . |Philn−1|Fork0(N,N)| . . . |Forkn−1(N,N))

Here ũpLi, ũpRi, d̃wi stand for the sets of channel names used in Phili and

Forki with i ∈ [0, n-1). �

The transition system generated by the process DP (that can be computed with

our tool, see Section 5) is indeed deadlock free. Moreover, once Pi has used the forks

N times, he has to wait until his neighbors eat also N times to be able to eat again.

This means that Pi cannot take control of the forks forever and, at some point, he

has to wait for the others. In other words, there are no computations where, e.g.,

Pi eats infinitely many times and Pj can never grab the forks.

S1 S2

tk0

gbi

tk0

· · ·

In this model, however, we cannot prove that Pi can

eat infinitely many times. The problem is the thinking

action: there is an infinite computation where, e.g., P0 is

always thinking and nobody is eating. Such computation

corresponds to the loop on state S1 in the abstract version

of the transition system in the figure on the left. In this

loop, the action gbi, representing Pi grabbing the forks,
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is always enabled. This situation can be interpreted as “Pi has the potential of

grabbing the forks but the scheduler never gives him the chance to do it”.

The fair system can be obtained by controlling also the thinking action. Similar

to the solution in [12], we can enforce that philosophers must eat after thinking,

thus alternating between thinking and eating states. This is the purpose of moving

to the state Phil′i after exhibiting the think action in the model below.

Example 4.3 (Fair alternating system) Consider the processes definitions

Fork and DP in Example 4.2 where the definition of Phili is modified as follows:

Phili() � τ\tki .Phil’i〈〉+ upLi\upR
i+n
.τ\eati .dwi\dw

i+n
.Phili〈〉

Phil′i() � upLi\upR
i+n
.τ\eati .dwi\dw

i+n
.Phili〈〉

For illustration, consider a possible transition where the philosopher n-1 takes

both forks to later eat and release the forks:

DP
(ν ñ)τ\upLn-1

upLn-1
\upR0
upR0

\τ (?1>0∧ ?1>0)
−−−−−−−−−−−−−−−−−−−−−−→ DP1

τ\eatn-1−−−−−→ DP2

(ν ñ) τ\dwn-1
dwn-1

\dw0
dw0

\τ−−−−−−−−−−−−→ DP3

where ñ = ũpLi, ũpRi, d̃wi; DP1 is as DP but Phil0 is replaced with
τ\eati . dwi\dw

i+n
.Phil0〈〉; DP2 is as DP but Phil0 is replaced with dwi\dw

i+n
.Phil0〈〉;

and, finally,

DP3 = (ν ˜upLi,
˜upRi,

˜dwi)(Phil0| . . . |Philn−1|Fork0(N-1, N)| . . . |Forki(N,N)| . . . |Forkn-1(N,N-1)) .

Note the new state of the forks 0 and n-1, namely, Fork0(N -1, N) and

Forkn-1(N,N -1). �

We can show that the process DP in the above example produces an alternating

execution between the philosophers. For concreteness, consider only two philoso-

phers and let DPW be as DP (2) where we ignore the think actions, i.e., we consider

only the process Phil′i() calling to itself, instead of calling the process Phili〈〉. We

can define the following specification:

Spec()
def
= τ\eat0 .τ\eat1 .Spec〈〉 + τ\eat1 .τ\eat0 .Spec〈〉

stating that philosophers must alternate when N = 1. We can then prove the

equivalence DW ∼ Spec〈〉.
Let us now show that fairness holds even considering the thinking action.

Without loss of generality, let N = 1. For readability, let us give a more ab-

stract representation of the state of the forks as a ring of tuples of the form

Sn = 〈a0, a1〉〈a1, a2〉〈a2, a3〉 . . . 〈an−1, a0〉 where ai ∈ {0, 1, ?}. Such ring is subject

to the following transition rules:

• Grab: . . . 〈x, 1〉〈1, y〉 · · · ⇒ . . . 〈x, ?〉〈?, y〉 . . .
Grab-0: 〈1, x〉 . . . 〈y, 1〉 ⇒ 〈?, x〉 . . . 〈y, ?〉

• Grab-0-end: 〈?, x〉 . . . 〈y, ?〉 ⇒ 〈0, x〉 . . . 〈y, 0〉
Grab-end: . . . 〈x, ?〉〈?, y〉 · · · ⇒ . . . 〈x, 0〉〈0, y〉 . . .

• Reset: . . . 〈0, 0〉 · · · ⇒ . . . 〈1, 1〉 . . . .
The state of the fork i is represented by the i-th tuple 〈l, r〉 where l=1 (resp. l=0)
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means that the left philosopher may (resp. cannot) take this fork and l =? is the

intermediate state where the philosopher is eating to later release the forks (thus

abstracting the steps DP1 and DP2 in Example 4.3). The transition Grab (and

Grab-0 for Phil0) abstracts the operational step from DP to DP1 and Grab-end

(and Grab-0-end for Phil0) the transition from DP1 to DP3. Moreover, due to the

definition of Fork in Example 4.2, from the state 〈0, 0〉 the only possible transition

for the fork is to reset its parameters leading to the state 〈1, 1〉.
Next lemma proves that, for all philosopher Pi, always is the case that Pi will

eventually eat. More precisely,

Lemma 4.1 (fairness) Let n ≥ 2, N ≥ 1 and DP(n) be the n-dining philosopher

system formalized in Example 4.3. Then, O(DP) �= ∅ and, for all σ ∈ O(DP):

(i) Deadlock-freeness: σ is an infinite sequence ;

(ii) Fairness: for all i ∈ [0, n), the label τ\eati appears infinitely often in σ.

Proof. Let us give a sketch of the proof (more details in the appendix and an

automatic proof for a specific instance of n in the next section). For deadlock-

freeness, consider the state Sn = 〈a0, a1〉〈a1, a2〉〈a2, a3〉 . . . 〈an−1, a0〉 where ai ∈
{0, 1, ?}. If there is an ai s.t. ai ∈ {1, ?}, then, it is always possible to apply the

rules Grab or Grab-end to make a transition. Otherwise (i.e., if ai = 0 for all

i ∈ 0..n−1) then, it is always possible to apply the Reset rule. The proof of fairness

follows by contradiction. Let σ be a computation of DP(n) such that 0 < m ≤ n

philosophers will never perform the eating action. This means that in σ, the state

includes tuples of the form · · · 〈i, 1〉〈1, j〉 · · · where the 1’s remain the same (i.e.,

these values never become 0 due to an application of Grab). We can show that σ

must be finite and, indeed, there will be a maximum number of transitions before

getting a deadlock (thus a contradiction since σ must be infinite). �

A direct consequence of Lemma 4.1 is given by the following corollary.

Corollary 4.1 (Starvation freedom) Let n ≥ 2, N ≥ 1 and DP(n) be a n-dining

philosopher system formalized as in Example 4.3. In every (infinite) computation,

the Grab-end transition (the action after eating) occurs infinitely often for each

adjacent tuple.

Note that in Example 4.3 we can specify different constantsNi for the parameters

of the process Forki〈li, ri〉, with the restriction that ri = li+n , i.e. the number of

times that two consecutive forks are used by their common adjacent philosopher

must be the same. This is useful when we are modeling systems in which there

are different priorities for the use of the resources. Also in situations where the

network of agents is not completely balanced (since some of them may work faster

than others).

In the next example, we show that values and constraints can be useful to

specify, declaratively, the internal state of processes. For that, we consider the case

where philosophers may decide to remain thinking for a while and then, they decide

to eat. In this scenario, it is important for the system that philosophers moving

to the thinking state do not block the activities of the others. We thus assume
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that philosophers take the decision (of thinking or eating again) and such decision

must be communicated to the two adjacent forks. In turn, the forks may perform

synchronizations with philosophers that have already consumed all their N usages

whenever the adjacent philosopher is in the thinking state.

Example 4.4 (Constraints as states) Consider the following specification for

the philosophers:

Phili()
def
= idlLi\idlR

i+n
.Phil-Idlei〈〉+ upLi\upR

i+n
.Phil-Eati〈〉

Phil-Eat()
def
= τ\eati .dwi\dw

i+n
.Phili〈〉

Phil-Idlei()
def
= tau\tki .Phil-Idlei〈〉+ wLi\wRi .

upLi\upR
i+n
.Phil-Eati〈〉

In Phili we see two new sets of names and links: idlLi and idlRi (resp. wLi

and wRi) are used to synchronize with both forks and communicate the fact that the

philosopher goes to the thinking state (resp. starts eating again). The model for the

forks is as follows:

Forki(l, r, idll, idlr)
def
= idlRi\τ .Forki〈l, r, idll, 1〉+ τ\idlLi

.Forki〈l, r, 1, idlr〉+
wRi\τ .Forki〈l, r, idll, 0〉+ τ\wLi .Forki〈l, r, 0, idlr〉+
τ\upLi

(?l = 0 ∧ idlr = 1).τ\dwi
.Forki〈l, r, idll, idlr〉+

upRi\τ (?r = 0 ∧ idll = 1).dwi\τ .Forki〈l, r, idll, idlr〉+
the 3 choices in Example 4.2

The process DP(n) is defined as usual, adding the new names in the set of

restricted names.

In Forki, besides l and r, we also have parameters to determine the current

state of the left and right philosophers. The first line in the definition allows for

communicating the decision of going to the thinking/idle state (for the right and

left philosopher). Similarly, the second line is used to communicate the intention

of start eating again. Most importantly, the third line allows for a synchronization

with the left philosopher even if l = 0. In that case, the right philosopher must be in

the idle state. Similarly for the forth line. In this system we cannot prove fairness

as in Lemma 4.1 (since there are unfair always-thinking computations). We can

assume (externally) a fairness condition ruling out such computations or specify a

more controlled version of Phil-Idlei that, for instance, “counts” and controls the

number of thinking actions.

Before closing this section, let us note that all the solutions presented here satisfy

the usual requirements for this problem: fully distribution (there is no central agent

coordinating the activities of the philosophers) and symmetry (all philosophers and

forks are identical). The control of the agents defined here rely completely on their

internal state and all of them are symmetrically defined as Phili and Forki. If we

dispense with symmetry, there is a simple solution for the problem in CCS where P0

grabs first the fork on his left (F0) and P1 grabs first the fork on his right (again, F0).

Hence, there is no a deadlock in this asymmetric specification as the one described
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in the beginning of this section. As pointed out in [12], the solution for the problem

in Multi-CCS (as well as ours in CCNA) is fully distributed in an abstract level:

there is no a central shared memory. However, it is not possible to have a truly

distributed deterministic implementation of this kind of multiparty synchronization

mechanisms [15].

4.2 The network transportation system

The following example is a simplified version of the network transportation system

presented in [7] where each transportation system has a specific cost. Passengers

may specify a threshold for the value they are willing to pay for a trip starting and

ending at the required stations. For simplicity, we are not considering the model of

the stations. Here we model a complete trip of the passenger as a single transition

that also records all the data concerning the trip (i.e. the sum of the costs of the

used means of transport).

Example 4.5 (Network Transportation System) Consider the following def-

initions:

P = τ\s1 | s3\τ (?a ≤ 5) MoT (s1, s2, c) � s1\s2〈!c〉.MoT

M1 = MoT (s1, s2, 3) M2 = MoT (s2, s3, 2)

T1 = MoT (s1, s3, 7)

System = (νs)(P | M1 | M2 | T )

Here, P is willing to go from s1 to s3. She offers its links for free but she

constraints synchronizations to have cost at most 5. On the other side, M1 does

not impose any constraint but it forces the final agreement to have cost at least 3.

In this system, there is only one possible transition, namely,

System
(νs) τ\s1s1\s2s2\s3s3\τ 〈!5〉(?5≤5)−−−−−−−−−−−−−−−−−→ (νs)(M1 | M2 | T )

where P has to synchronize with both M1 and M2 (and pay 5). Note that P cannot

take the train T since the chain τ\s1s1\s3s3\τ 〈!7〉(?7 ≤ 5) is not valid (Def. 3.10).

We can model the situation in which the passengers have two kinds of constraints:

cost and time. In this case, values are tuples (Notation 3.9) of the form 〈cost, time〉.
Each means of transport offers services at a given cost and speed and passengers

may pose constraints on those values. Furthermore, adding a third element to the

tuple, we can also restrict the number of connections a passenger is willing to accept

(see Example 3.8).
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4.3 Service Level Agreements (SLA)

We propose an extended model for the Service Level Agreements (SLA) protocol

specified in [9]. In this kind of protocols, before the effective provisioning of a

service, the involved parties should agree on a set of parameters, such as the cost

the client should pay or the service quality the provider is willing to offer.

Example 4.6 (SLA Protocol) Here we consider a client C asking a web hosting

provider P the use of a service. P , in turn, can offer the service once it receives the

availability of the bandwidth from a third party T . Hence we shall consider tuples

of the form 〈cost, bw〉 (see Notation 3.9). The client is modeled as

C � τ\s(?cost < MaxC ∧ bw > MinB).C

where MaxC (maximal cost) and MinB (minimal bandwidth) are constants for

the model. We may have several T ′s offering different options for the provider, for

instance:

T1 � th\τ 〈!25, 100〉.T1 T2 � th\τ 〈!17, 70〉.T2 +
th\τ 〈!32, 130〉.T2 .

Here, T1 has only one option of service (at cost 25) while T2 offers two possibil-

ities of bandwidth (70 and 130) at different costs. The provider P charges an extra

fee depending on the bandwidth availability that he has received from T :

P � s\th〈!2, 0〉(?cost < 60).P + s\th〈!3, 0〉(?60 ≤ cost < 100).P + s\th〈!5, 0〉(?cost ≥ 100).P

The system is SLA � (ν s, th)(P | C | T1 | T2) and a possible transition is

SLA
(ν s,th) τ\ss\thth\τ 〈!20〉(?c)−−−−−−−−−−−−−−−→ SLA

where c = 20 < MaxC ∧ 70 > MinB ∧ 60 ≤ 70 < 100. What we are observing is a

synchronization between P , C and the first option of T2 (and thus, the final cost is

20). �

5 Concluding Remarks

On top of the tool described in [8], we have implemented a rewriting logic [16]

specification of the semantics proposed here in the Maude System. The tool is

available at https://gitlab.com/carlos_olarte/SiLVer. We built a suitable

signature for the syntax of CCNA processes and specified the operational rules as

rewriting rules. We profit from the symbolic techniques proposed in [8] to efficiently

check when two or more links can be combined into a valid link chain. Using this

tool, we can check for instance that for a particular instance of n, all the systems

DP (n) discussed in Section 4.1 are deadlock free. For that, it is just a matter to ask

whether there is a reachable state without transition (i.e., a normal form, “⇒ !”):

search [1] DP(2) ⇒ ! S:State .. The answer is No solution. telling us that such state does

not exist, thus proving deadlock freeness for DP (2). More interestingly, we can
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verify the fairness condition in Lemma 4.1. For that, we use the model checker in

Maude and ask if the property ��{τ\eat0} is valid. Here � and � are the linear

time temporal logic (LTL) modalities “always” and “eventually”. The answer is

true for the system in Example 4.3 and false (with a suitable counterexample) for

the other models. We can also verify safety for all the systems. For that, we can ask

if there is a state reachable from DP (2) where both τ\eat0 and τ\eat1 are enabled.

The answer is No solution.. The tool also offers facilities to traverse the transition

system, generate traces and produce a DOT file (graph description language) with

the resulting transition system.

We are currently working on an extension of the Symbolic Link Modal Logic pro-

posed in [8] to offer mechanisms to specify properties involving constraints. This

should allow us to state properties such as “the process P cannot exhibit a n-party

synchronization with n > N” or “the server will never admit more connections that

its bandwidth-limit allows”. Coupling this logic with the already implemented in-

frastructure for model checking in Maude will provide more (automatic) verification

techniques to reason about CCNA specifications. It would be also interesting to ex-

plore a wider range of behavioral equivalences including weak-network-bisimulation

and also stronger versions of network-bisimulations (where, e.g, ��-related link

chains are not identified). Efficient decision procedures for those equivalences have

not been explored yet.

In the examples presented here, for the sake of uniformity, we have used only one

CLM (KN). There are many choices for it (see e.g., [11,3]). For instance, consider

the structures KP = 〈[0, 1],≤,×〉 and KF = 〈[0, 1],≤,min〉. In the first one, the

subscript “P” is for probability and agents accumulate values in the real interval

[0, 1] by multiplying them. Hence, the accumulated value gets closer to 0 when more

agents are involved in an interaction. In the second structure the “F” stands for

fuzzy, where values are accumulated by choosing the minimal value. In this case,

agents can define a threshold for interaction based on their preferences expressed as

values in the interval [0, 1]. As pointed out in Lemma 3.3, it is possible to combine

such structures to obtain richer ones. Some examples using those structures are in

the tool’s web page.

Multiparty calculi with different synchronization mechanisms have been pro-

posed, e.g., in CSP [13] and full Lotos [22]. These calculi offer parallel operators

that exhibit a set of action names (or channel names), and all the parallel processes

offering that action (or an action along that channel) can synchronize by executing

it. In [20], a binary form of input allows for a three-way communication. The reader

may also refer to [14] where it is shown that CCSn (or n-join CCS), an extension

of CCS that allows prefixes to synchronize with at most n outputs, is strictly more

expressive than CCSn−1. The multiparty calculus most related to CNA is in [19],

where links are named and are distinct from the usual input/output actions: there

is one sender and one receiver (the output includes the final receiver name). Finally,

we mention the cc-π calculus [9] that combines the name-passing discipline of the

π-calculus with constraints in the style of concurrent constraint programming (see

a survey in [21]). This calculus does not offer multiparty synchronization and its
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semantics is necessarily more involved due to the name-passing discipline of the

π-calculus. As showed here, constraints in CCNA allows for a declarative control of

processes in a very natural way.
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Appendix

A Congruence (Theorem 3.16)

In this section we prove that P ∼ Q implies that, for any context C[·], C[P ] ∼
C[Q]. Recall that the (co-inductive) technique for showing that two processes are

(network) bisimilar consists in exhibiting a network bisimulation R containing the

two processes (see, e.g., [23]). Since P ∼ Q, we know that there exists a network

bisimulation R containing the pair (P,Q). For each context C[·], we show a suitable

R′ s.t. (C[P ], C[Q]) ∈ R′.

• Case μ.[·]. The needed relation is R′ = {(μ.P, μ.Q) | μ ∈ V CC} ∪ R. Clearly,

μ.P can only perform μ and proceed as P . Similarly for μ.Q. Since (P,Q) ∈ R,

R′ is indeed a network bisimulation.

• Case [·] + R. Note that P and Q must be sequential processes. Let R′ = R ∪
{(P + R,Q + R) | R ∈ P} ∪ I where I is the identity relation on P (P is the

set of CCNA processes). There are two possible transitions for P + R. (1) If

P + R
μ−→ P ′ then, it must be the case that P

μ−→ P ′. Hence, there exists Q′

and μ′��μ s.t. Q
μ′
−→ Q′. We conclude by noticing that Q + R

μ′
−→ Q′ and

(P ′, Q′) ∈ R′. (2) If R moves, we observe P + R
μ−→ R′. Then, Q + R

μ−→ R′

and clearly (R′, R′) ∈ R′. The case R+ [·] follows similarly.

• Case [·]|R. The needed network bisimulation is R′ = {(P |R,Q|R) | (P,Q) ∈
R and R ∈ P}. The process P |R exhibits 3 kind of transitions. P |R moves to

P ′|R with label μ using the rule Lpar. Hence, P
μ−→ P ′ and there exists Q′

and μ′��μ s.t. Q
μ′
−→ Q′ and (P ′, Q′) ∈ R. By using Lpar, Q|R μ′

−→ Q′|R and

clearly (P ′|R,Q′|R) ∈ R′ as needed. The case when R moves (using Rpar) is

trivial. If P and R synchronizes (using Com), it must be the case that P
μ−→ P ′,
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R
ψ−→ R′ and the label of the transition is μ •ψ. We also know that there exists

Q′ and ξ��μ s.t. Q
ξ−→ Q′ and (P ′, Q′) ∈ R. We can suitable enlarge (via ��

and ��) the link chains in ψ and ξ to make ψ • ξ valid and Q|R ξ•ψ−→ Q′|R′ as
needed. The case R|[·] is similar.

• Case (νa)[·]. The needed relation is R′ = {((νa)P, (νa)Q) | (P,Q) ∈ R and a ∈
V CC}. If (νa)P

(νa)μ−→ (νa)P ′ it must be the case that P
μ−→ P ′. Hence there

exists Q′ and μ′��μ s.t. Q
μ′
−→ Q′ and (P ′, Q′) ∈ R. We conclude by noticing

that (νa)Q
(νa)μ′
−→ (νa)Q′ (for that, we can easily show that if (νa)μ is valid, then

(νa)μ′ is also valid for μ′��μ. ) and hence, ((νa)P ′, (νa)Q′) ∈ R′ as needed. �

B Proof of fairness (Lemma 4.1)

For the sake of readability, we shall change marginally the notation of the reachable

states (processes) from DP (n). Note that the set of labels (ignoring the constraint

tt) of the transition system generate from DP is L = {τ\eati , τ\tki | i ∈ [0, n)} ∪
{τ\ττ\ττ\τ} ∪ {τ\τ}. The first component corresponds to the (visible) eating and

thinking actions; the second component to the 3-party interaction for grabbing and

releasing the forks (see transitions in Example 4.3); and τ\τ to the reset action (first

line in the definition of Fork in Example 4.2). Let us use eati, tki, grabi, releasei
and reseti to denote such actions. For conciseness, we fix N = 1.

The process Forki(l, r) and its sucessor states will be represented as the tuple

〈l, r〉. For that, note that a fork can be in one of the following states (see Example

4.2):

• Forki(1, r) (resp. Forki(l, 1)) where it can synchronize with the philosopher on

the right (resp. on the left). We shall write these states, respectively, as 〈1, r〉
and 〈l, 1〉.

• τ\dwi
.Forki〈0, r〉 and dwi\τ .Forki〈l, 0〉. The first (resp. second) is the result after

a synchronization with the philosopher on the left (resp. right). Let us denote

those states as the tuples 〈?, r〉 and 〈l, ?〉.
• Forki(0, 0) (notation 〈0, 0〉) where the only possible transition is a reset action

leading to 〈1, 1〉.
We can also simplify the notation to represent the philosophers. For that, note

that they can be in one of the following states (see processes and transitions in

Example 4.3):

• Phili, where he can grab the forks or think. We shall use GTi to denote that

state.

• After thinking, the resulting process is Phil′i whose only possible action is to grab

the forks. We shall denote that state as Gi.

• After grabbing the forks, the new state is τ\eati .dwi\dw
i+n
.Phili〈〉 where the only

possible action is to eat. We shall use Ei to denote that state.
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• After exhibiting the eati action, the new state is dwi\dw
i+n
.Phil, from now on

denoted as Ri.

• After releasing the forks, we are back in the state GTi.

Hence, any resulting process from DP (n) can be succinctly represented as

P0 · · ·Pi · · ·Pn−1 〈l0, r1〉〈l1, r2〉〈l2, r3〉 · · · 〈ln−1, r0〉 where each Pi is either GTi,

Gi, Ei, or Ri.

Some valid transitions of this system are:

(i) P0 · · ·GTi · · ·Pn−1 〈l0, r1〉 · · · 〈li−1, ri〉〈li, ri+1〉 · · · 〈ln−1, r0〉 tki−→
P0 · · ·Gi · · ·Pn−1 · · · (Phil i thinks)

(ii) · · ·Gi · · · · · · 〈li−1, 1〉〈1, ri+1〉 · · · grabi−→ · · ·Ei · · · · · · 〈li−1, ?〉〈?, ri+1〉 · · · (grab-

bing the forks)

(iii) · · ·Ei · · · · · · 〈li−1, ?〉〈?, ri+1〉 · · · eati−→ · · ·Ri · · · · · · 〈li−1, ?〉〈?, ri+1〉 · · · (eat-

ing)

(iv) · · ·Ri · · · · · · 〈li−1, ?〉〈?, ri+1〉 · · · releasei−→ · · ·GTi · · · · · · 〈li−1, 0〉〈0, ri+1〉 · · · (re-
lease the forks).

(v) · · · · · · 〈0, 0〉 · · · reseti−→ · · · · · · 〈1, 1〉 · · · (reset the fork i)

After the transition (iv), the only available action for the i-th philosopher is to

think (only once). In this state, he can only grab the forks again once his neigh-

bors eat and the forks perform the reset action. More precisely, the configuration

. . . 〈1, 0〉〈0, 1〉 . . . means that the philosopher in the middle has eaten and, after

thinking, he remains blocked until his neighbors eat and release the forks.

Proof. Lemma 4.1. We prove the two points (deadlock-freeness and fairness)

separately.

(i) Consider the state Sn = P0 · · ·Pn−1 〈a0, a1〉〈a1, a2〉〈a2, a3〉 . . . 〈an-1, a0〉 where

ai ∈ {0, 1, ?}. If there is an ai s.t. ai ∈ {1, ?}, then, it is always possible to

exhibit a grab (ai = 1), eat or release (ai =?) transition. Otherwise (i.e., if

ai = 0 for all i ∈ 0..n-1) then, it is always possible to exhibit a reset transition.

(ii) The proof is by contradiction. Let DP (n) be a n-dining philosopher system

such that there exists i ∈ [0, n) and Phili that performs eati finitely often.

Without loss of generality (due to the circularity of the configuration) assume

that i = 0. Consider the suffix of the computation σ where Phil0 has already

performed all the eating actions, i.e., in the rest of the (infinite) computation,

we do not observe eat0. Hence, this philosopher is either in the state GT0 and,

after thinking, in state G0. We shall show that this computation cannot be

infinite (thus a contradiction).

Once the neighbor Phil1 eats and releases the forks, we are in the following

situation DP ′ = G0 GT1 · · · 〈a0, 0〉〈0, a2〉 . . . .
In this state, Phil1 cannot eat again (he can only think). If Phil2

eats, a2 becomes 0 and a reset on Fork1 is possible: DP ′ −→∗
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G0 GT1 · · · 〈a0, 0〉〈0, 0〉 . . . −→∗ reset1−→ G0 GT1 · · · 〈a0, 0〉〈1, 1〉 . . .
If a0 = 1, Fork0 cannot reset until Phil0 eats (which is not possible by

hypothesis). This reasoning goes on for all the n − 1 philosophers that are

willing to eat. Once all of them have eaten, and all the forks that could have

reset have already performed that action, the configuration is:

DP ′′ = G0 · · ·Gn−1〈1, 0〉〈1, 0〉 . . . 〈1, 0〉〈0, 1〉〈0, 1〉 . . . 〈0, 1〉〈0, 1〉
Hence, if Phil0 does not eat, at some point, all the philosophers will be

blocked. In fact, counting only the eating and reset actions, the system can

perform at most
n-1∑
i=1

i = n×(n−1)
2 transitions:

〈1, 1〉〈1, 1〉〈1, 1〉 . . . 〈1, 1〉〈1, 1〉〈1, 1〉 at most n-1 eat actions if

Phil0 does not eat

〈1, 0〉〈0, 0〉〈0, 0〉 . . . 〈0, 0〉〈0, 0〉〈0, 1〉 at most n-2 reset actions

〈1, 0〉〈1, 1〉〈1, 1〉 . . . 〈1, 1〉〈1, 1〉〈0, 1〉 at most n-3 eat actions

〈1, 0〉〈1, 0〉〈0, 0〉 . . . 〈0, 0〉〈0, 1〉〈0, 1〉 at most n-4 reset actions

. . .

〈1, 0〉〈1, 0〉 . . . 〈1, 0〉〈0, 1〉〈0, 1〉 . . . 〈0, 1〉〈0, 1〉 no transition if Phil0 does not eat

If Phil0 does not eat, Fork0 and Forkn-1 cannot reset. Hence, from row 2 on,

the state of these forks will be, respectively, 〈1, 0〉 and 〈0, 1〉. At this point, Fork1
and Forkn-2 are able to reset, and this justifies the configuration in row 3. At row

4, Phil1 and Philn-2 cannot eat since the needed forks are not available and they

cannot reset. Hence, assuming that Phil0 does not eat breaks the possibility of

restarting all the forks and a deadlock is reached.

�
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