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a b s t r a c t

Management strategies of complex energy systems composed by different technologies is mandatory
to exploit optimally the characteristics of each power generator, to reduce the cost of energy, the
impact of greenhouse gases emissions and to increase the penetration of mini- and micro-grids into
energy systems. To this purpose, optimization methods and algorithms have to be developed to assess
the unit commitment of generators and to suggest decision variables in the definition of the emission
costs. In this paper, a novel Mixed Integer Linear Programming (MILP) optimization algorithm has
been developed to compute the optimal management of a micro-energy grid composed either by four
Internal Combustion Generators (ICGs), or three ICGs and a Micro Gas Turbine (MGT). The algorithm
optimizes a multi objective function that takes in consideration the total cost, the NOx and the CO2
emissions of the system, while setting some technological constraints, like start-ups and transients that
are typically neglected. Moreover, different fuelling of the devices is evaluated. The model proved the
importance of including an accurate model of the greenhouse gases emissions as they can significantly
affect the optimization results. Furthermore, it proved to be very flexible and to be a proper basis to be
adopted in more complex systems embedding energy storage devices and renewable energy systems.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Small power grids like micro and mini grids can be defined
s electrical distributed systems composed by energy resources
nd loads of different nature. They can either operate in island
ode or they can be connected to a main electrical grid and their
evelopment constitutes the foundation of distributed generation
nergy systems (Gharehpetian and Mohammad-Mousavi-Agah,
017). Nowadays, the deployment of such a systems and their
echno-economic feasibility (Singh and Baredar, 2016) became
undamental in a scenario where the effects of climate change are
o longer negligible. In such a context, the development of man-
gement and control techniques of the various energy resources
s a key aspect for an efficient and sustainable deployment of
istributed power systems. Many examples are already available
n the literature. For instance, a detailed review of manage-
ent strategies applied to microgrids is presented by the authors
f Zia et al. (2018). In such a context, to increase the systems
erformance, optimization techniques and energy management
lgorithms have to be employed during both the design and
he operation phase. For example, the authors of Alberizzi et al.
2019) investigated the sizing of an off-grid hybrid renewable
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energy system using a MILP algorithm to define the optimal
number of solar panels and wind turbines required to meet a de-
fined load. In Malik others (2020), the optimization of distributed
network parameters has been analysed through a multi-objective
particle swarm optimization procedure to increase the penetra-
tion of intermittent power generators into the power system. In
Chakir others (2020), the authors proposed an energy manage-
ment algorithm for grid connected PV–battery systems. In Twaha
and Ramli (2018), a review of various optimization approaches to
design and operate both off-grid and grid connected distributed
energy systems has been realized. Regarding the energy systems
operation phase, one of the biggest issues that raises during this
step is the choice of the unit commitment (UC) strategy of the
generators composing the system (Abujarad et al., 2017); i.e. the
so-called UC problem. The UC problem is thus an optimization
problem to determine the optimal schedule of the generators
considering the constraints that define the problem boundary
conditions and the different targets over a delimited time period.
The UC problem has been addressed by many authors and belongs
to various aspects of energy systems. For example, in Sankar
et al. (2018) an islanded urban micro grid constituted by PV
systems, diesel generators (DG) and micro gas turbines has been
considered and the UC of MGTs and DGs has been investigated.
In Saleh (2019), the authors developed a Lagrangian relaxation
ptimization of amicro-gridwith aMILP algorithm: Role of the emissions, bio-fuels
r.2021.04.020.

unit commitment (LRUC) method to modulate the electric power
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Nomenclature

Abbreviations

GHG Greenhouse gas
GA Genetic algorithm
ICG Internal combustion generator
i: Time interval index [−]
j: Machine index [−]
M Machine (ICG, or MGT)
MGT Micro gas turbine
MILP Mixed integer linear programming
N: Total number of time discretization

steps [−]
PSO Particle swarm optimization algorithm
UC Unit commitment

Internal Combustion Generators and Micro Gas Turbine
parameters

Df : Bio-diesel fraction in the fuel mixture
[−]

DICG
tmin

: ICG minimum down-time [h]
DMGT
tmin

: MGT minimum down-time [h]
EM : Energy delivered by the machine (ICG or

MGT)
Eel: Load fraction [kW]
FM
c : ICGs and MGT fuel cost [e/kWh]
LHV : Lower Heating Value [MJ/kg]
NM

s.up: Number of start-ups of the machine [−]
OM
c : : ICGs and MGT operating cost [e/h]

P ICG
max: ICG rated power [kW]

PMGT
max : MGT rated power [kW]

P ICG
min: ICG minimum output power [kW]

PMGT
min : MGT minimum output power [kW]

PICG: Power delivered by the ICG [kW]
PMGT : Power delivered by the MGT [kW]
P ICG
rup : ICG ramp-up power limit [kW]

P ICG
down: ICG ramp-down power [kW]

PMGT
rup : MGT ramp-up power limit [kW]

PMGT
down: MGT ramp-down power [kW]

SupMc : ICGs and MGT start-up cost [e/s.up]
U ICG
tmin

: ICG minimum up-time [h]
UMGT
tmin

: MGT minimum up-time [h]
UM
t : Operating time of the machine [h]

wCO2 : CO2 emissions cost [e/ppm]
wNOx : NOx emissions cost [e/ppm]
ηel: Electrical efficiency [−]
ρf : Fuel density [kg/m3]

generated by the permanent magnet generator of a wind system
in response to changes in the wind speed and/or power demand.
The optimal UC of conventional generators is also fundamental
in a deregulated market with an increasing share of renewables
to enhance the grid capacity to absorb a higher share of re-
newable energy (Raja Nivedha et al., 2019). Various techniques
are described in literature and they are mainly based either on
mathematical programming methods or on meta-heuristic algo-
rithms (Sedghi et al., 2016). The former group of methods, like
Linear Programming (LP) or Mixed Integer Linear Programming
2

(MILP), guarantees the identification of a global optimal solu-
tion during the optimization process and they are supported by
high performance solvers (Brito et al., 2020). The latter group of
methods, like Genetic Algorithms (GA) or Particle Swarm Opti-
mization (PSO) Algorithms, optimizes a problem considering a set
of candidate solutions that moves into a search space towards
the problem solution; the drawback is that they do not always
guarantee that the solution found is the global optimal one, they
suffer from mathematical rigours and they lack of the formal
model theory; on the other hand, they require less computational
resources and can be applied to optimization problems with non-
linear relations between optimization variables (Azamathulla
et al., 2008). Considering some practical examples, in Kazemi
et al. (2016) the authors developed an algorithm to compute
the optimal scheduling of diesel, solar and wind generators to
minimize the total production cost of an autonomous grid. They
concluded that in presence of intermittent generators like the
renewable ones, the time resolution choice significantly affects
the results of the simulation. In Swarup and Yamashiro (2003),
the authors applied a GA to handle systems with a large number
of units and time discretization steps to develop a management
strategy on a cost based optimization. In Yu et al. (2007), differ-
ent PSO methods are used to solve the short-term hydro-thermal
scheduling problem, i.e. the optimal schedule of hydro and ther-
mal power plants that minimizes the operation costs. The authors
of Logenthiran and Srinivasan (2010) applied three versions of
PSO: (i) binary PSO, (ii) improved binary PSO and (iii) PSO with
Lagrangian Relaxation to solve the UC problem of different sized
power systems. They concluded that the best problem solution
is obtained with the improved binary PSO method. In Wu et al.
(2020), a multi-objective PSO algorithm has been developed to be
applied to hydropower schemes, in particular it has been used to
investigate the alternatives generating of hydropower planning
environmental impact assessment. Other research works used
MILP methods to solve the optimal scheduling problem of power
system generators. For example, in kai Feng et al. (2019) a MILP
algorithm has been developed to study the UC of thermal plants
in the East China Power Grid that have to perform peak shaving
regulation tasks. The authors demonstrated that the MILP model
is able to effectively smooth the residual load curve by gathering
power generation of thermal plants at peak periods. The authors
of Simonetti et al. (2020) used a MILP algorithm to assess the op-
timal operating plan of three different solar assisted heat pumps
on both an energetic and economic basis. They concluded that
the highest energetic performance is achieved with a dual source
heat pump system with the largest battery size, while from an
economic point of view, a conventional air-to-water heat pump
without electric storage guarantees the highest economic saving.
Other critical aspects of the optimization problems based on MILP
models are: (i) the definition of multi-objective functions that
take into account the several aspects of power generation sys-
tems, like the cost of the electricity produced and the emissions,
other than the sole energetic aspects; (ii) the non-linear nature
of the performance figures of power generators, which is, as
mentioned before, a critical drawback of LP models (Urbanucci,
2018; Hobbs et al., 2001). In multi-objective problems, a solution
to identify an optimal strategy is to define more multi-objective
functions and apply an algorithm that optimizes the both simul-
taneously (Elsoragaby others, 2020), or to embed into a single
cost function all the different possible performance parameters of
power generation systems. In order to do so, specific conversion
factors are required to define the impact of, for example, emis-
sions and energy costs on the final decision variable. Therefore,
a critical sensitivity analysis is required to identify and to drive
the final optimal management choices. As concerns the non-

linear behaviour of power generation systems, in some cases,
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he assumption of linear boundary conditions is not sufficient to
escribe the problem accurately and it can lead to results that are
ot representatives. To deal with this issue, a solution is to adopt
piece-wise approximation of non-linear functions (Simonetti
t al., 2020). In this research paper, a MILP algorithm has been
eveloped to study the optimal UC of an energy system and it
as been tested on two test cases. In the first test case, an energy
ystem composed by four Internal Combustion Generators (ICGs)
as been analysed with the goal of minimizing both the total cost
f the system (fuel, operation and start-up costs) and the green-
ouse gases emissions expressed as NOx and CO2, constituting
hus a multi-objective optimization problem. These two polluting
ompounds are chosen as they represent the most critical ones
or the environment when combustion systems are considered.
n the second test case, an ICG has been substituted with a MGT
n order to show the importance of the GHGs emission models
n the simulation. A MILP algorithm has been preferred over
thers optimization methods due to the complex search space
hat usually characterizes optimal scheduling problems. This fea-
ure implies the presence of a large number of local minima that
omplicates the adoption of other techniques based on heuris-
ic and meta-heuristic methods. For this reason, an algorithm
hat guarantees a global optimal solution has been chosen. The
ovelty of this investigation work is constituted by the accurate
epresentation of the GHGs emission curves of the generators,
hich is a parameter that is usually considered proportional to
he generated power through a constant or even neglected. The
aper demonstrates how their modelling can strongly influence
he optimal UC of the energy system units and therefore the
mportance of a correct representation of such parameters. In
his case, the emission functions that describe the NOx and the
O2 emissions of the machines has been piece-wise linearized
o allow using it in the algorithm still granting a highly realistic
odel; this should overcome the drawback of using non-linear
orrelations inside MILP algorithms. In addition, the optimization
lgorithm embeds special features that are often neglected in
iterature: the model is designed to be flexible and allows to
ntroduce whatever source of power generation and it embeds
eculiar operating conditions, like start-ups and shutdowns. The
aper is organized as follows: in the first section, the case study
long with the ICGs and the MGT models are presented; in the
econd section the MILP optimization algorithm is described; in
he third section results are discussed and in the last section
onclusions are drawn.

. Research and methods

.1. Case study

The case studies analysed in this paper represent a typical off-
rid energy system that is constituted by four ICGs, comprising
nternal Combustion Engines and a MGT fed with syngas, which
upply energy to an electrical load, whose curve is depicted in
ig. 1. The generators are also tested with alternative fuel feed.
he aim is to model a typical micro-grid that can be composed
f several power generators and a set of electric appliances, that
an be managed together to optimize the energy island. The load
rofile has a typical trend of a small rural mountain village, where
higher energy demand is concentrated during the central day
ours. The load profile has been depicted considering the data of
measurement campaign performed on mountain huts located

n the Penserjoch mountain pass of the Italian region of South
yrol. A detailed description of the data acquisition campaign is
eported in Alberizzi et al. (2019). The management optimization
lgorithm for the energy system has been realized using the
yCharm Integrated Development Environment provided by the
 t

3

Fig. 1. Power absorbed by the load per day.

Python programming language (PyCharm, 2020). The simulation
has been run on a time span of 24 hours with a discretization time
step of 15 minutes. This choice has been made considering other
research work present in the literature (Lamedica et al., 2018) and
taking into account the trade-off between results accuracy and
computational resources.

2.2. Internal Combustion Generators (ICGs) and Micro Gas Turbine
(MGT)

The machines described in the paper are based on ICGs and
a MGT, whose size fits the requirement of a typical mountain
hut located in South Tyrol. These specific power generation units
were selected as these devices are installed at the premises of
the laboratories of the Free University of Bozen – Bolzano and
a detailed measurement campaign was performed on these ma-
chines to assess their performance and emission figures. The MGT
is based on a regenerative Brayton cycle in cogeneration mode. A
detailed description of the machine is reported in Nicolosi and
Renzi (2020). When fuelled with Natural Gas it generates a rated
power of 3.2 kWel with an electrical efficiency ηel of 16%. When
fuelled with a low Lower Heating Value (LHV) fuel as Syngas,
the ηel drops down due to the higher power required by the fuel
ompressor unit. The characteristics of the Syngas used to run the
GT are reported in Caligiuri et al. (2017), Caligiuri and Renzi

2017) and represent a good example of a bio-fuel that can be
btained from an air gasification process of biomass. Due to the
ower LHV, the amount of fuel required to run the machine is
lmost ten times higher than with natural gas fuelling. However,
he use of Syngas reduces significantly the GHGs emissions of
he machine and the environmental impact of the carbon dioxide
s further reduced because it proceeds from renewable sources.
he ICGs and the MGT have been modelled considering features
hat characterize the main technological aspects of the machines
n design and off-design operating conditions; the algorithm has
o take them into account when running the simulation to find
he optimal problem solution. The parameters used to model the
CGs and the MGT are listed in Table 1. They are related to:
i) the maximum and minimum power that each machine can
eliver during each time discretization interval, (ii) the energy
roduction and operation costs; (iii) the up- and down-ramp of
he single asset as well as the minimum up- and down-time; (iv)
he CO2 and the NOx emissions costs.

The optimization algorithm computes the electrical power
hat the ICGs and the MGT should deliver each time step to supply

he electrical load while considering some constraints that will be
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arameters characterizing ICGs.
ICGs and MGT models parameters

Pmax [kW]: Rated power Fc [e/kWh]: Fuel cost
Pmin [kW]: Minimum output power Oc [e/h]: Operating cost
Prup [kW/h]: Ramp-up power limit Supc [e/s.up]: Start-up cost
Pdown [kW/h]: Ramp-down power limit wCO2 [e/ppm]: CO2 emissions cost
Ut [h]: Minimum up-time wNOx [e/ppm]: NOx emissions cost
Dt [h]: Minimum down-time ηel [–]: Electrical efficiency

Table 2
ICGs power limits and electrical efficiency at full load.
Generator Pmax [kW] Pmin [kW] ηel [–]

ICG1 4 1.5 0.19
ICG2 3.7 1.2 0.19
ICG3 2.9 0.7 0.20
ICG4 2.5 0.5 0.21
MGT 2.5 0.5 0.11

described in the following sections. The electrical power delivered
by the ICGs is related to the mechanical power through Eq. (1).
As a first approximation, the electrical efficiency is considered as
constant and reported in Table 2.

Pm =
Pel
ηel

(1)

In this case, this assumption is possible because the constraints
that have been defined for the analysed test cases tend to limit
the machines operations at partial load. To correlate the CO2
and the NOx emissions to the power generated by the ICGs
and the MGT, a diesel–biodiesel generator and a MGT with a
nominal power output coherent with the analysed load has been
selected (Nicolosi and Renzi, 2020; Caligiuri et al., 2019). In the
case of the ICGs, the amount of CO2 and NOx emissions vary
according to a semi-quadratic function described by Eq. (2) and
Eq. (3), where Eel indicates the load fraction and Df the biodiesel
fraction present in the fuel mixture (Caligiuri et al., 2019).

COICG
2 = 0.7 + 2.7 · Eel + 0.08 · Df + 0.005 · Eel · Df

+ 2.2 · 10−5
· D2

f (2)

NOx = −0.25 + 181 · Eel − 2.7 · Df − 2.9 · Eel · Df + 0.0561 · D2
f

(3)

While the CO2 emissions curve of the MGT is expressed by Eq. (4),
which describes the MGT CO2 emissions expressed in mass frac-
tion depending on the load fraction Eel. As far as this analysis is
concerned, the NOx emissions of the MGT can be considered as
negligible if compared with the NOx emissions of the ICG.

COMGT
2 = −0.0024 · E2

el + 0.0175 · Eel (4)

The GHGs emissions curves of the ICGs have been experimentally
derived by laboratory tests and realized with different biodiesel
fraction in the fuel mixture in the case of the ICG. As concerns the
MGT, the performance data have been obtained through a simu-
lation routine developed by some of the authors of this work; as
concerns the emissions, they have been evaluated through CFD
simulations on the MGT burner fed with syngas (Nicolosi and
Renzi, 2020). In order to fit the curves into the MILP algorithm,
they have been piecewise linearized as illustrated in Figs. 2 and 3
through the method described in Brunner (1980). In this investi-
gation work, ICG2 corresponds exactly to the generator described
in Caligiuri et al. (2019) with a null biodiesel fraction in the fuel
4

Table 3
ICGs type and biodiesel fraction in the fuel mixture.
Generator Biodiesel fraction LHV [MJ/kg] ρf [kg/m3]

ICG1 25% 41.3 832.5
ICG2 0% 42.6 827.7
ICG3 50% 40.1 847.2
ICG4 75% 38.8 859

MGT Syngas 4.90

Table 4
ICGs operational limits.
Generator Prup [kW/h] Pdown [kW/h] Ut [–] Dt [–]

ICG1 1.2 2.4 1 0.75
ICG2 2 1.6 0.75 0.25
ICG3 2.9 2.9 0.5 1
ICG4 2.5 2.5 0.25 0.25
MGT 2.5 2.5 0.25 0.25

mixture. In order to test the algorithm simulating an optimization
with different power generation systems, the size of ICG1, ICG3
nd ICG4 has been chosen to be similar to the one of ICG2. On
he other hand, due to the lack of experimental data on NOx and
O2 emissions of generators of similar size, the emission curves
f the other ICGs have been assumed equal to the ones of ICG2
ut with varying shares of biodiesel fraction in the fuel mixture.
able 3 presents the ICGs and the MGT types, the fuel used to
eed the MGT, the biodiesel fraction used in the fuel mixture that
etermines the emission curves of Figs. 2 and 3.
Table 4 lists the ICGs and the MGT characteristics. The values

f ramp-up and ramp-down and the values of minimum down
nd up time, i.e. the minimum time intervals that an ICG and
he MGT have to wait before turning on after a shut-down and
urning off after a start-up respectively, are coherent with the
elected technologies, being the size of these machines very small
nd, therefore, capable of granting a relatively quick response. In
eneral, the choice of the ramp-up and ramp-down have been
hosen in order to grant a smoother generation curve and to grant
he assumed condition of working close to the best efficiency
oint, justifying thus the assumption of a constant efficiency.
owever, we have adopted a faster response for ICG3, ICG4 and
he MGT, which is technically feasible for both ICGs and MGT
echnologies, to grant a sufficiently quick response to the sharp
ariations of the load.

.3. Optimization problem

An optimization problem is constituted by three main ele-
ents: (i) an objective function that represents the target of the
roblem, (ii) a set of decision variables that will determine the
inal value of the objective function and (iii) a set of constraints
hat limits the values that can be assigned by the algorithm to
he decision variables. The optimization algorithm is responsible
o find the optimal value of the objective function, depending
n the optimization target, assigning the values to the decision
ariables while respecting the constraints. In this case, a MILP
lgorithm has been realized to solve the optimization problem
ith the programming environment PyCharm of the Python pro-
ramming language (PyCharm, 2020). MILP algorithms belong to
he class of iterative optimization methods that, compared with
ther optimization algorithms like the ones based on heuristic
ethods, require more computational resources. However, these
ethods are based on solid solvers and mathematical foundations
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Fig. 2. Piecewise linearization of CO2 emission function.
hat guarantee the certainty of the solution with a well-known
ptimality level. In this case, the Gurobi solver has been used
o find the problem optimal solution (GUROBI, 2020). A flow
hart that shows the problem optimization steps is reported in
ig. 4. The problem is initially defined by the input performance
arameters of the ICGs and the MGT, which represent the tech-
ologies features, the load characteristics, the total costs and
HGs emissions curves. Then, the objective of the optimization is
pecified, i.e. the minimization of the total costs of the system and
he GHGs emissions. The optimization process starts afterwards
nd it consists in the assignment of the optimization variables to
valuate the objective function value iteratively until the optimal
olution is obtained.
5

2.4. Objective function

The objective function of the problem is constituted by the
sum the of total costs of the system and the total GHGs and
harmful emissions expressed in terms of CO2 and NOx and it is
defined by Eq. (5). It is thus a two-terms multi-objective function.
In order to be able to compare the two terms at a software level
during the optimal solution computation, a weight factor must
be assigned to the term related with the total greenhouse gases
emissions to convert it into a cost. The value of weight factors
has been chosen to convert the emissions of the ICGs and the
MGT into a cost that is relevant during the optimization process;
too small weight factors would cause the MILP algorithm not to
consider the emission terms in the optimization process.On the
other hand, a too high weight factor would make the other terms
negligible if compared with the emission terms. In the literature
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Fig. 3. Piecewise linearization of NOx emission function.

Fig. 4. Flow chart of the MILP optimization algorithm.
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here are no unique references to the costs to apply to the CO2
nd the NOx emissions. The carbon taxes across the world applied

to the electricity sector can vary significantly according to the
policy of a specific country, ranging from less than 1 to 127 e/ton
as reported in Stevens and Carrol (2020) while to consider the
effects of other GHGs emissions costs on the electrical energy
sector such as the NOx, different scenarios are usually evalu-
ated (Moradones and Cabello, 2019) and compared. In this case,
the GHGs emissions weight factors have been assessed through a
sensitivity analysis of their values. They have thus been chosen
such as the effects of the emissions terms are not considered
either negligible or too relevant when compared to the other
costs. A sensitivity analysis has been considered also regarding
the syngas cost used to feed the MGT due to the price variability
of this type of fuel. In this research work, two scenarios have been
evaluated.

min

⎧⎨⎩
N∑
i=1

⎡⎣∑
j

(
F
Mj
c · EMj + O

Mj
c · U

Mj
t + Sup

Mj
c · N

Mj
s.up

)

+

∑
j

(
CO

Mj
2 · wCO2 + NO

Mj
x · wNOx

)⎤⎦⎫⎬⎭ (5)

where:
i: ith time interval.
N: Total number of time discretization intervals.
j: ICG and MGT number.
F
Mj
c [e/kWh]: Fuel cost associated to the jth machine M that can
be an ICG or the MGT.
EMj [kWh]: Energy delivered by the jth machine during the ith
time step.
O
Mj
c [e/h]: Operating cost of the jth machine.

U
Mj
t [h]: Operating or up-time of the jth machine.

Sup
Mj
c [e/s.up]: Start-up cost of the jth machine.

N
Mj
s. up [-]:Number of start-ups of the jth machine.

CO
Mj
2 [ppm]: CO2 emissions of the jth machine.

wCO2 [e/ppm]: weight factor associated to the CO2 emissions or
CO2 emissions cost
NO

Mj
x [ppm]:NOx emissions of the jth machine.

wNOx [e/ppm]: weight factor associated to the NOx emissions or
NOx emissions cost

2.5. Optimization variables

The optimization variables determine the final value of the
objective function and their value is computed by the algorithm
to minimize the latter. In this case, the optimization variables are:
(i) the energy that each ICG and the MGT deliver per time step;
(ii) the ICGs and MGT operating time and (iii) the ICGs and MGT
start-ups number. Since the time period has been discretized in
96 time steps, represented in the equations by N, and the energy
system is composed by 4 ICGs or 3 ICGs and a MGT, the total
number of optimization variables will thus depend on all those
three elements.

2.6. Problem constraints

In optimization problems, optimization variables have usually
to be subjected to constraints that set the so-called boundary
conditions. Constraints objective is to limit the values assigned by
the algorithm to the optimization variables in order to simulate
the real system operations. In MILP problems, constraints that
bound decision variables have to be expressed by linear equalities

and inequalities. In this case, the major limitation raises when

7

Table 5
ICGs and MGT costs.
Generator Fc

[e/kWh]
Oc
[e/h]

Supc
[e/s.up]

wCO2
[ce/ppm]

wNOx
[ce/ppm]

ICG1 0,2 0,12 0,88

0.02, 0.04,
0.08, 0.12

4, 8,
12, 16

ICG2 0,16 0,08 0,76
ICG3 0,24 0,16 0,84
ICG4 0,28 0,2 0,8
MGT 0.16, 0.12 0,2 0,8

functions that represent a variable trend do not have a linear
shape, as the relations that describe the polluting gases emissions.
To solve this issue, the functions have been piece-wise linearized.
The constraints for this optimization problem are defined during
each time discretization interval i and they are related with:

• The power that during each time step can be delivered to
the load expressed by Eq. (6), where PICGj (i) and PMGT (i)
represent the power delivered by the jth ICG and by the
MGT during the ith time interval, while Pl (i) is the power
required by the load during the ith time interval. N is the
total number of time discretization intervals.

• The maximum and minimum power delivered to the load by
the ICGs and the MGT in each time step: Eq. (7) where P

ICGj
min ,

P
ICGj
max , PMGT

min and PMGT
max are the upper and lower power limits

of the ICGs and the MGT.
• The ramp-up and the ramp-down power limits of the ICGs

and the MGT: Eqs. (8) and (9), where P
ICGj
rup , PMGT

rup , P
ICGj
down and

PMGT
down are the rump-up and the ramp-down power limits of

the ICGs and the MGT. ∆PICGj (i) and ∆PMGT (i) represent
the power increase and the power decrease during two
consecutive time steps.

• The minimum ICGs and MGT up- and down-time, that is the
minimum time interval where the ICGs and the MGT have to
operate or have to remain turned off when they are turned
on or shut down respectively: Eqs. (10) and (11).

• The GHGs emissions that are a function of the delivered
power of each ICG and the MGT during each time interval i
represented by PICGj (i) and PMGT (i): Eqs. (12) and (13).

N∑
i=1

⎛⎝∑
j

PICGj (i) + PMGT (i)

⎞⎠ =

N∑
i=1

Pl(i) (6)

P
ICGj
min ≤

∑N
i:1 PICGj (i) ≤ P

ICGj
max

PMGT
min ≤

∑N
i:1 PMGT (i) ≤ PMGT

max

(7)

∆PICGj (i) ≤ P
ICGj
rup

∆PMGT (i) ≤ PMGT
rup

(8)

−∆PICGj (i) ≤ P
ICGj
down

−∆PMGT (i) ≤ PMGT
down

(9)

U
ICGj
tmin

≤ U
ICGj
t

UMGT
tmin

≤ UMGT
t

(10)

D
ICGj
tmin

≤ D
ICGj
t

DMGT
tmin

≤ DMGT
t

(11)

O
ICGj
x (i) = f (PICGj (i)) (12)

O
ICGj
2 (i) = f

(
PICGj (i)

)
COMGT (i) = f (PMGT (i))

(13)

2
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Fig. 5. ICGs UC with different weight factors for the GHGs. T. left (wCO2 : 0.02, wNOx : 4). T. right (wCO2 : 0.04, wNOx : 8). B. left (wCO2 : 0.08, wNOx : 12). B. right (wCO2 :
.12, wNOx : 16).
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. Results and comments

The algorithm has been tested on two case studies, which
imulate: (i) an energy system constituted by four ICGs and (ii)
n energy system constituted by three ICGs and an MGT. The
imulation has been run on a daily time interval discretized per
uarter hours, i.e., the optimization problem is constituted by 96
ime discretization intervals, and with four different values of CO2
nd NOx weight factors. The values of the biodiesel fraction used
n the fuel mixture are reported in Table 2, while the ICGs and
he MGT characteristics are indicated in Tables 3 and 4. Table 5
hows the costs associated to the ICGs and the MGT, namely the
uel (IRENA, 2013), the operation and the start-up costs, along
ith the NOx and CO2 weight factors used to run the different
imulations and to perform the sensitivity analysis. The results
f the simulation are shown in Figs. 5, 6 and 7. The curves
epicted in the three figures represent the optimal scheduling of
he ICGs and the MGT during the daily operation. In particular,
he graphs depict the scheduling solutions that minimize the total
ost of the energy system while considering the GHGs emissions
n four different scenarios considering the test cases. It can be
oticed how the introduction of an increasing weight factor for
he NOx and the CO2 emission costs significantly affects the
roblem solution. ICG1 and ICG2 are the machine with the highest
ated powers, therefore the algorithm relies mainly on them to
upply the base load and limiting the number of starts-up and
huts-down. Their activities increase or decrease with the growth
f the GHGs emissions weight factors. ICG1 is characterized by
reduction of the CO2 and NOx concentration when it works
t full power. On the other hand, ICG , if compared with ICG ,
2 1

8

s characterized by CO2 emission levels that do not decrease
ignificantly at full load. Therefore, increasing the GHGs emission
osts, ICG1 gains progressively ICG2 energy shares becoming the
redominant machine in the UC problem. The algorithm exploits
t when the load needs are higher and reduces its use during low
oad periods decreasing its activity levels at higher weight factors.
CG3, ICG4 and the MGT are used as complements during high
eaks load periods being characterized by a lower rated power.
heir roles change significantly depending on the weight factors
sed to consider the GHGs emissions. Considering the test case
hown in Fig. 5, at low values of CO2 and NOx weight factor, ICG3
s preferred to ICG4 due to slightly lower values of fuel and opera-
ion costs. On the contrary, at high values of GHGs weight factors,
CG4 substitutes ICG3 presenting a CO2 and a NOx emission curves
hat guarantee a lower emission level. The test case depicted in
ig. 6, shows how the UC of the energy system changes when the
GT substitutes ICG4. At lowest weight factor level, the UC of the
ystem matches exactly with the one described in the previous
ase. The MGT is do characterized by lower GHGs emissions but
lso by a lower efficiency. On the other hand, increasing the GHGs
missions costs, the MGT activity increases. The trends of ICG1
nd ICG2 reflects the ones described for the previous test case,
ith an ICG1 activity directly proportional to the GHGs emissions
eight factors and an ICG2 inversely proportional to the GHGs
missions weight factors. On the other hand, if compared with
he test case of Fig. 5, the energy share delivered by the MGT is
igher than the energy share delivered by ICG4 as Table 6 and
able 7 show. Considering the test case of Fig. 7, the MGT is
uch more exploited than the ICG4 reported in the previous test
ases. This is due to the significantly lower GHGs emissions and
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Fig. 6. ICGs and MGT UC with different weight factors for the GHGs emissions and a MGT fuel cost of 0.16 e/kWh. T. left wCO2 : 0.02wNOx : 4). T. right (wCO2 : 0.04,
wNOx : 8). B. left (wCO2 : 0.08, wNOx : 12). B. right (wCO2 : 0.12, wNOx : 16).

Fig. 7. ICGs and MGT UC with different weight factors for the GHGs emissions and a MGT fuel cost of 0.12 e/kWh. T. left wCO2 : 0.02wNOx : 4). T. right (wCO2 : 0.04,
wNOx : 8). B. left (wCO2 : 0.08, wNOx : 12). B. right (wCO2 : 0.12, wNOx : 16).
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Fig. 8. ICGs costs with different weight factors for the GHGs emissions. T. left wCO2 : 0.02wNOx : 4). T. right (wCO2 : 0.04, wNOx : 8). B. left (wCO2 : 0.08, wNOx : 12), B.
right (wCO2 : 0.12, wNOx : 16).
fuel cost characterizing the machine, the algorithm operates the
MGT instead of ICG3 also at low GHGs weight factors. Increasing
the GHGs emissions weight factors, the MGT increases its activity
replacing progressively a portion of the energy delivered by ICG2.
In this test case, the algorithm starts to operate ICG3 only with the
highest GHGs weight factors values at the expense of ICG2. The
figures and tables in the Appendix section show the distribution
of the total cost for each machine and quantify them furtherly
demonstrating the outcomes. In particular, the bars in Figs. 8–10
show the total cost of each machine divided in fuel, operating
and GHGs costs, while in Tables 9–11 these costs are quantified.
It can be noticed that the start-up cost is barely present because,
in the cases analysed, it resulted negligible with respect to the
others as well as the operating cost that present a reduced share if
compared with fuel and GHGs emissions cost. The share of GHGs
cost increases with the increasing trend of the weight factors used
in the simulation thus affecting the machines operating strategy
and favouring the ones characterized by lower emissions curves.
It can be seen in Tables 9 and 10 the growth of the fuel and GHGs
costs of ICG1, ICG4 and the MGT with the weight factor rise and
the reduction of ICG2 and ICG3 activities demonstrated by the fuel
and GHGs costs downturn. Tables 6, 7, 8 show the energy fraction
that each ICG and the MGT deliver to the load in the two test cases
analysed varying the GHGs emissions weight factors. It is evident
the increase of the use of ICG4 and the MGT activity in the three
cases with the growth of the GHGs weight factors and the switch
between ICG1 and ICG2 with the first weight factors increase.
In all cases, the CO2 and the NOx emissions of the system start
to be significant in the optimization process and the algorithm
operates the energy system assets to limit them. In particular, the
ICG4 and the MGT are more exploited due to their lower GHGs
emissions characteristics, while ICG1 increases its activity since its
CO2 and NOx emission curves are characterized by a decreasing
trend when it operates at full load. It can be noticed that the
10
graphs and the tables reflect the trends described by Figs. 5–7. In
particular, the significant role that the CO2 and the NOx emissions
and their accurate modelling can play when assessing the energy
system optimal management.

4. Conclusion

In this research paper, a MILP algorithm has been developed
to study the optimal scheduling of an energy system composed
by four ICGs and an energy system composed by three ICGs and
a MGT. The optimization problem has been set up in the form
of a multi-objective optimization where both the total costs of
the energy systems and the GHGs emissions of the generators
constitute the problem optimization targets expressed in terms of
CO2 and NOx. The total costs have been considered as the sum of
fuel costs, operating costs and start-up costs. In order to include
the GHGs into the objective function, a weight factor has been
assigned to the CO2 and the NOx emissions to convert them into
a cost. The optimization variables have been constrained consid-
ering some typical features of ICGs and MGTs like maximum and
minimum power limits, power rump-up and down constraints
during the considered time discretization steps and maximum
up and down time constraints. Moreover, in order to overcome
the drawback of MILP algorithms related with the presence of
non-linear relations between optimization variables, the semi-
quadratic GHGs emission curves of the ICGs and the MGT have
been piece wise linearized. Furthermore, simulations have been
run considering four different NOx and CO2 emissions weight
factors and two different syngas costs to show the sensibility of
these parameters on the outcomes of the simulations. Considering
the first test case, i.e. an energy system constituted by four ICGs,
results show that the optimal management tends to favour the
adoption of traditional diesel fuelled generators over the ones run
with some shares of biodiesel due to the lower cost of operation.
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owever, the energy share assigned to the diesel–biodiesel fu-
lled ICGs increases with higher weight factors. Considering the
econd test case, i.e. an energy system constituted by three ICGs
nd a MGT, the low CO2 emissions that characterize the MGT
trongly influence the simulation results, also when lower GHGs
missions weight factors are considered especially in the case of
lower syngas cost. This paper demonstrates that the modelling
hase of GHGs emissions and their impact on the energy systems
ptimization process have to be accurately evaluated in order
o supply correct management data of off-grid system based on
ultiple power generation devices. Also, the definition of the
mission costs plays a crucial role that have to be accurately eval-
ated by the policy makers to push the introduction of renewable
uels and more clean power production devices, like MGTs. The
esults of this investigation work demonstrate the importance
o develop optimization tools to manage energy systems when
ore technologies are involved in order to increase the global
fficiency of the micro-grid. The optimization algorithm that has
een described in this paper represents a first step towards a
ore detailed and integrated tool, which can help engineers and
esigners during the management phase of more complex power
ystems. Moreover, the results obtained can delineate guidelines
or policy makers to help them to define emission costs to apply
o energy systems. A further development of this investigation
ork will take in consideration how the efficiency variability of
he considered machines at partial load can affect the simulation
esults and the integration of renewable energy technologies and
torage systems.
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ppendix

See Figs. 8–10 and Tables 6–11.

able 6
CGs energy fractions delivered to the load with varying GHGs emissions weight
actors.
wCO2 , wNOx ICG1 ICG2 ICG3 ICG4

0.02–4 37.72% 51.26% 10.50% 0.53%
0.04–8 54.02% 35.49% 0.00% 10.49%
0.08–12 52.15% 27.78% 0.00% 20.08%
0.12–16 52.68% 24.87% 0.00% 22.45%
11
Table 7
ICGs and MGT energy fractions delivered to the load with varying GHGs
emissions weight factors with a MGT fuel cost of 0.16 e/kWh.
wCO2 , wNOx ICG1 ICG2 ICG3 MGT

0.02–4 37.72% 51.26% 10.50% 0.53%
0.04–8 52.09% 27.75% 0.00% 20.16%
0.08–12 51.74% 24.57% 0.00% 23.69%
0.12–16 49.35% 19.14% 1.71% 29.80%

Table 8
ICGs and MGT energy fractions delivered to the load with varying GHGs
emissions weight factors with a MGT fuel cost of 0.12 e/kWh.
wCO2 , wNOx ICG1 ICG2 ICG3 MGT

0.02–4 27.97% 44.60% 0.00% 27.43%
0.04–8 49.04% 20.98% 0.00% 29.98%
0.08–12 49.10% 18.46% 1.71% 30.73%
0.12–16 49.35% 17.67% 1.71% 31.27%

Table 9
Total ICGs costs.
Generator wCO2 , wNOx Fc

[e]
Oc
[e]

Supc
[e]

CO2
[e]

NOx
[e]

Total
[e]

ICG1

0.02, 4 50.28 1.53 0.44 4.12 4.87 61.24
0.04, 8 72.11 2.25 0.44 12.17 14.55 101.52
0.08, 12 69.38 21 0.44 22.48 19.76 114.16
0.12, 16 70.44 2.1 0.66 33.43 25.7 132.33

ICG2

0.02, 4 54.67 1.92 0.19 10.98 14.25 82
0.04, 8 37.9 1.38 0.95 15.41 19.74 75.37
0.08, 12 29.56 0.88 0.57 22.4 20.69 74.1
0.12, 16 26.6 0.76 0.57 29.82 24.35 82.1

ICG3

0.02, 4 15.96 1.68 0.21 2.36 3.13 23.34
0.04, 8 0 0 0 0 0 0
0.08, 12 0 0 0 0 0 0
0.12, 16 0 0 0 0 0 0

ICG4

0.02, 4 0.89 0.2 0.3 0.14 0.13 1.65
0.04, 8 17.74 2.4 1.2 4.21 4.94 30.49
0.08, 12 33.83 4 1.5 14.81 15.05 68.19
0.12, 16 38.02 4.3 1.5 24.38 20.99 89.19

Table 10
Total ICGs and MGT costs with a MGT fuel cost of 0.16 e/kWh.
Generator wCO2 , wNOx Fc

[e]
Oc
[e]

Supc
[e]

CO2
[e]

NOx
[e]

Total
[e]

ICG1

0.02, 4 50.28 1.53 0.44 4.12 4.87 61.24
0.04, 8 67.36 2.1 0.44 11.24 13.18 96.32
0.08, 12 69.94 2.07 0.44 22.12 19.38 113.95
0.12, 16 65.79 1.95 0.66 31.01 23.79 123.2

ICG2

0.02, 4 54.67 1.92 0.19 10.97 14.25 81.99
0.04, 8 29.56 0.88 0.57 9.89 13.79 56.01
0.08, 12 26.15 0.76 0.57 19.55 18.02 65.15
0.12, 16 20.41 0.62 0.57 22.89 19.24 64.17

ICG3

0.02, 4 15.86 1.68 1.21 2.36 3.13 23.33
0.04, 8 0 0 0 0 0 0
0.08, 12 0 0 0 0 0 0
0.12, 16 2.6 0.28 0.21 2.34 2.05 7.47

MGT

0.02, 4 0.97 0.2 0.3 0.16 0 1.63
0.04, 8 37.09 4.05 1.2 9.29 0 51.63
0.08, 12 43.55 4.35 1.2 21.03 0 70.13
0.12, 16 54.91 4.75 0.6 36.42 0 96.67
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Fig. 9. ICGs costs with different weight factors for the GHGs emissions. And a MGT fuel cost of 0.16 e/kWh. T. left wCO2 : 0.02wNOx : 4). T. right (wCO2 : 0.04, wNOx :
8). B. left (wCO2 : 0.08, wNOx : 12), B. right (wCO2 : 0.12, wNOx : 16).

Fig. 10. ICGs costs with different weight factors for the GHGs emissions. And a MGT fuel cost of 0.12 e/kWh. T. left wCO2 : 0.02wNOx : 4). T. right (wCO2 : 0.04, wNOx :
8). B. left (wCO2 : 0.08, wNOx : 12), B. right (wCO2 : 0.12, wNOx : 16).
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able 11
otal ICGs and MGT costs with a MGT fuel cost of 0.12 e/kWh.
Generator wCO2 , wNOx Fc

[e]
Oc
[e]

Supc
[e]

CO2
[e]

NOx
[e]

Total
[e]

ICG1

0.02, 4 37.16 1.14 0.44 3.06 3.02 45.42
0.04, 8 65.2 1.95 0.48 10.41 12.12 90.16
0.08, 12 65.22 1.95 0.44 20.81 18.17 10.659
0.12, 16 65.79 1.95 0.66 31.01 23.79 123.2

ICG2

0.02, 4 47.4 1.42 0.19 8.78 10.67 68.37
0.04, 8 22.32 0.76 0.38 8.86 11.21 43.52
0.08, 12 19.62 0.62 0.38 15.17 14.42 50.21
0.12, 16 18.85 0.62 0.38 22.18 19.22 61.24

ICG3

0.02, 4 0 0 0 0 0 0
0.04, 8 0 0 0 0 0 0
0.08, 12 2.6 0.28 0.21 1.56 1.54 6.18
0.12, 16 2.6 0.28 0.21 2.34 2.05 7.47

MGT

0.02, 4 37.76 4.65 0.6 5.82 0 48.83
0.04, 8 41.31 4.8 0.3 12.24 0 58.65
0.08, 12 42.3 4.75 0.6 24.55 0 72.21
0.12, 16 43.21 4.75 0.6 36.97 0 85.52
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