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Abstract 

Two different machine-learning techniques have been assessed and applied to define rule-based control strategies for a parallel 
hybrid midsize sport utility vehicle equipped with a diesel engine. Both methods include two phases: a clustering algorithm and a 
rule definition. In the first method, a homemade clustering algorithm is preliminarily run to generate the set of clusters, while the 
rules are identified by minimizing an objective function. In the second method, a genetic algorithm provides the optimal size of 
the clusters, while the associated rules are extracted from the results obtained with a benchmark optimizer. The controllers were 
tested over NEDC, 1015, AMDC and WLTP. 
© 2016 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the Scientific Committee of ATI 2016. 
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1. Introduction 

The present paper is focused on the development of machine-learning methods aimed at the identification of an 
optimal rule-based control strategy for Hybrid Electric Vehicles (HEV). A rule-based control strategy has in fact the 
advantage of being easily implementable in the vehicle control unit for the on-board application; however, 
traditional rule-based controllers are generally developed and tuned on the basis of engineering experience or 
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heuristic approaches, which might be lacking in performance over a broad range of applications and could require 
additional human effort if they are applied to different vehicles, hybrid architectures or driving conditions [1-4]. 
Machine-learning techniques have been adopted in order to extract the rules that need to be implemented in the 
controller. The reduction in human effort to tuning the controller for different applications represents one of the main 
strengths of this technique, with respect to rule-based and fuzzy control approaches presented in the literature. The 
online computational time of the rule-based controller algorithm developed in this study has resulted to be much 
lower than that required by a conventional Equivalent Consumption Minimization Strategy (ECMS). It is also simple 
to overwrite some rules if other constraints may apply (for instance, safety issues). One of the main weaknesses of 
the method concerns the training computational time, since more parameters are in general required to be tuned. 
Dynamic programming [5, 6] has been used to identify the optimal policy and to assess the outcomes of the 
proposed rule-based controllers. In principle, since the performances of the new proposed technique are very close to 
that of the DP-based benchmark, no further comparisons have been carried out. 

A rule-based controller is here intended to employ an optimal rule that associates the values of the control 
variables to the clusters obtained from some input variables. The clustering procedure and the rule definition are the 
two key stages of this approach. The method developed and presented in [7], i.e., Cluster Optimization and Rule 
Extraction (CORE), has been improved in terms of training computational time and performance. It has also been 
compared to a second method, i.e. Cluster Extraction and Rule Optimization (CERO), which employs a different 
approach for generating the clusters and the rule set. 

 
Nomenclature 

1015 Japanese Cycle 10-15 mode 
AMDC  Artemis Motorway Driving Cycle 
CERO Cluster Extraction and Rule Optimization 
CORE Cluster Optimization and Rule Extraction 
CO2 Carbon dioxide 
DP Dynamic Programming 
EM Electric Machine 
FC Fuel Consumption 
GA Genetic Algorithm 
HEV Hybrid Electric Vehicle 
NEDC New European Driving Cycle 
SOC State of Charge 
WLTP Worldwide harmonized Light Vehicles Test Procedures 

2. Description of the vehicle model 

This study focuses on the comparison of a hybrid sport utility vehicle to a reference conventional vehicle, using a 
kinematic vehicle model developed in the Matlab environment [8]. The hybrid vehicle is equipped with a 1.7L 
diesel engine (rated power of 98 kW), while the conventional vehicle with a 2.9L diesel engine (rated power of 
130kW). The hybrid layout also presents of an electric machine (EM), which is connected to the engine via a single-
speed gearbox. The driveline consists of a 6-speed transmission and a final drive. Finally, the battery provides power 
to the electric machine through the inverter. The vehicle chassis mass is 1000 kg, the frontal area 2.57 m2, the drag 
resistance coefficient 0.36 and the tire radius is 0.359 m. 

The performance of the engine was modelled using experimentally-derived look-up tables. The mass flow rate of 
both fuel and NOx emissions were evaluated by interpolating a 2D map. The corresponding CO2 emissions have 
instead been linearly determined from the fuel consumption [7, 9]. The mass of each engine and the related after-
treatment system has been estimated as a function of the maximum power. The model of the electric machine (a 
brushless permanent magnet machine that provides a peak power of 20 kW) simulates the power conversion from 
the mechanical to the electric form, using an efficiency map [10]. The mass of each electric machine has been 
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estimated to be 25 kg. The model of the battery (lithium-ion) is represented by an equivalent resistance circuit, in 
which the resistance and the open-circuit voltage of the battery are SOC-dependent. The mass of the battery is 
determined as a function of the power-to-energy ratio (30 W/Wh) and the maximum battery power (20 kW), and is 
equal to 20 kg. The total energy content is 650 Wh. 

The transmission power losses have been estimated by means of an efficiency map, which is a function of the 
output shaft speed and torque, as well as of the selected gear number. The final drive and the single-speed gearbox 
have instead been modelled as a torque multiplier, with no power loss. The speed ratio values of the final drive and 
the gearbox have been set to 1 and 2.75, respectively. Further details of the model can be found in [9-10] and data 
have been extracted from several works in literature, such as [11-13]. 

3. Optimal policy 

The optimal policy or control strategy is determined by minimizing an objective function, J, while the constraint 
on the final SOC has to be guaranteed, since the architecture is not of the plug-in type. The mathematical 
formulation of the problem is: 

* *

*

( ) ( ) , ,

( ) min ( ( )) min (1 )fc nox

u S t u S t fc rv nox rv

M M
u t J u t

M M
                | (0) ( ) |endSOC SOC t  (1) 

where u(t) is the generic policy and *( )S t  is the set of feasible combinations of control variables for each time 
interval t. The policy u(t) defines both the transmission speed ratio, , and the power flow, . The variable 
defines the power share that has to be managed by the battery, with respect to the total required power demand. Its 
domain has been discretized in order to implement the DP technique ( 7N ). One pure-electric ( 1) and one 
pure-thermal ( 0 ) modes are possible for this hybrid architecture. The electric machine can work either to assist 
the engine (power-split, i.e. 1 3,2 3) or to charge the battery ( 1 3, 2 3, 1). In the J function, fcM  and 

,fc rvM  are the cumulated mass of fuel consumed over the mission by the hybrid and reference vehicle, respectively 
(kg); noxM  and ,nox rvM  are the cumulated NOx emission mass of the hybrid and the reference vehicle equipped with 
the same downsized engine, respectively (kg). The weighting factor, , has been introduced in order to adjust the 
relative importance of the related terms and set to 0.95. 

Dynamic programming (DP) [5-6] has been used to solve the problem stated in Eq. (1). Previously developed 
techniques have been used to speed up the computational time required by the optimization process. In particular, 
the “configuration matrix” approach has been adopted [9]. In this way, DP can rely on pre-calculated data to extract 
the optimal policy, instead of continuously executing the vehicle model, which is the main cause of high 
computational time. The DP technique is not suitable for on-board implementation, since the vehicle velocity is in 
general not a-priori known and since the computational effort is very demanding for the vehicle control unit 
hardware. However, it is adopted to determine the optimal policy, which represents the benchmark for the 
assessment of each rule-based controller. 

4. Rule-based controllers 

4.1. Deterministic automaton and genetic algorithm 

Each rule-based controller employs an optimal rule, R, that associates the values of three input variables (the 
vehicle velocity and acceleration and the battery SOC) to the values of the control variables (  and ). Genetic 
algorithms (GA) [14-15] define the optimal set of rules for a given vehicle mission. 

The vehicle velocity, vehicle acceleration and the battery SOC generated a 3D input domain, which is discretized 
in order to obtain a mesh of input clusters. The rule defines the action to take, in terms of  and , for each cluster 
of the 3D space. The clustering procedure and the rule definition are the two key stages of this method. 

Machine learning techniques have been employed to offline train specific parameters of each tool, in order to be 
consistent over different driving missions. The training stage may require some offline computational time; 
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however, the real-time trained controller algorithm is fast and computationally light. It is also simple to overwrite 
some rules if other constraints may apply. 

4.2. Cluster Extraction and Rule Optimization (CERO) 

The outcomes of the CERO tool are the domain clustering and the set of rules. The offline training stage for the 
CERO tool is here presented. The tool receives the vehicle velocity, acceleration from the input mission data. The 
two values at a given time instant can be visualized as a point in the 2D space. A set of clusters is determined using 
a home-made clustering algorithm. This method partitions M points (dots in Fig. 1b) that represent the acceleration 
and speed of the vehicle, into k clusters (the figure shows 6 regions with different grey shades). The clustered 2D 
space represents a layer that has to be repeated as many times as the discrete values of the battery SOC (3 layers are 
shown in Fig. 1b). The number of k clusters times the number of battery SOC layers represents the dimension of the 
GA individual (Fig. 1a). The GA individual is the rule that univocally associates the clusters of the input domain to 
the action to take by the controller. In other words, the action specifies the values of the two control variables,  
and . 

The training process aims at identifying the individual, i.e., the list of actions per each cluster, that minimizes the 
J function (see Eq. (1)), where the energy variation in the battery is converted into an equivalent variation of FC and 
NOx emissions. The battery SOC variation is not constrained to be nearly zero over the mission, but equivalent FC 
and NOx-emission terms must be introduced in the J definition to account for the final energy content of the battery 
(see J’ in in Fig. 1d). The training process has to be carried out over several driving cycles in order to test the cycle-
independence of the results. 

After the training process is ended, i.e., the tool has determined the optimal rule associated to the mesh of 
clusters, for any given driving mission, the mesh of clusters and the set of rules are embedded into the real-time 
software of the CERO. It then receives the current vehicle velocity and acceleration, as well as the battery SOC. It 
determines the cluster using a simple Euclid distance algorithm and extracts the associated action from the rule, so 
that the powertrain can be actuated. 
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Fig. 1. CERO: illustration of the GA individual (a), the CE (b) and RO (c) algorithms and the performance estimation (d). 

4.3. Cluster Optimization and Rule Extraction (CORE) 

The CORE tool has to be trained using mission data and the DP results. The outcomes are the clustering of the 
domain and the set of rules. The offline training stage for the CORE tool is here presented. The tool receives the 
vehicle velocity, acceleration and the battery SOC. The two first signals come from the input mission data while the 
battery SOC from the optimal policy obtained with DP in a previous stage. The three values at a given time instant 
can be visualized as a point in the 3D space. The procedure is repeated for all of the time instants of several driving 
cycles. The idea is to group close points into a cluster and to select a unique action for that cluster, in the set of 
admissible actions of the control variables. 

The CORE tool consists of two algorithms: one for the smart-clustering of optimal driving conditions (CO), the 
other for the rule extraction (RE). Let’s present the RE algorithm first. Given the 3D space of the operating points 
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and the cluster, the DP actions selected in the points that belong to that cluster are analyzed and the most frequent 
action becomes the unique action for that cluster, from a frequency distribution. If no points occur in a cluster, a 
backup rule is used: for instance, pure electric for high levels of SOC, battery charging for low SOC, pure thermal 
otherwise. 

Now let’s define the smart clustering of the 3D space, i.e., the CO algorithm. The space is generated by three 
segments. Each segment is divided into non-equispaced intervals and a mesh of clusters is obtained. The number of 
intervals per segment is given to the CORE tool as input. The RE algorithm is applied to obtain a rule for each 
cluster. The rule-based controller is then run over the given mission and the J function represents its performance. 

The performance of the rule-based method is expected to be correlated to a great extent to the discretization of 
the 3D input variable domain. For example, if a different discretization is introduced, some points of the vehicle 
missions might no longer belong to the same cluster as that of the original discretization. For this reason, GA has 
been used to define the best size of the grid for each input variable (i.e., the optimal mesh size of the parallelepiped 
in Fig. 2), in order to minimize the J function value. GA aims at finding the best individual by controlling the 
evolution of a population of individuals over several generations. In this study the individual stores the grid size 
information to generate the mesh. As an example, the segments of the vehicle velocity and acceleration are divided 
into 4 intervals, while the SOC segment into 3. Each individual element represents the interval length. The 
performance of the rule-based controller is evaluated in terms of the J function. Since it very likely not to obtain a 
zero net balance of the battery SOC (see Eq. (1)), the battery energy variation over the mission is converted into an 
equivalent J’ value that has to be added for a correct performance analysis. 

After the training process is ended, i.e., the tool determines the optimal mesh for the given driving mission, the 
mesh of clusters and the set of rules are embedded into the real-time software of the CORE. It then receives the 
current vehicle velocity and acceleration, as well as the battery SOC. It determines the cluster by means of simple 
table lookups and extracts the associated action from the rule, so that the powertrain can be actuated. 
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Fig. 2. CORE: illustration of the RE and CO algorithms. 

5. Results and Discussion 

5.1. Vehicle model validation 

The models of the different components, i.e., the engine, the electric machine and the battery, were assessed by 
means of experimental tests carried out on a diesel mild hybrid powertrain equipped with a belt-alternator starter 
installed at the dynamic test bed of the ICEAL-PT (Internal Combustion Engine Advanced Laboratory, 
Dipartimento Energia, Politecnico di Torino). In particular, the validation of the model was carried out by 
comparing the predicted and experimental values of fuel consumption and NOx emissions over NEDC under warm 
and cold start operations. It was found that the inaccuracy resulted to be within ±1 % for the fuel consumption and 
±6 % for the cumulated NOx emissions. For further details on the test rig specifications, the reader can refer to [16], 
and for further details on the assessment of the model, the reader can refer to [17]. All the data concerning the 
efficiency of the components have been normalized, for intellectual property reasons. 
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5.2. Rule-based controller training assessment 

Figure 3 compares the performances of the two developed rule-based tools, namely CERO and CORE, in terms 
of CO2 reduction (left), and the cost premium (right) over the set of driving cycles. The set consists of the Japanese 
10-15 mode driving cycle (referred to as 1015), the Artemis Motorway Driving Cycle (AMDC), the New European 
Driving Cycle (NEDC) and the Worldwide Harmonized Light vehicles Test Procedures (WLTP). The numbers in 
the figures indicate the average CO2 reduction (%) and cumulated CO2 emissions (g/km) over the different missions 
(left), and the average cost premium (k$) (right). 

The rule-based tools have been specifically trained over each mission. Each optimizer has been given a score 
according to the achieved J function value: the lower the J value, the higher the score. The average score over the set 
of driving missions is reported in the rightmost region in Fig. 3 (i.e., 61.6 for CERO, 61.9 for CORE, 62.1 for DP). 
Both of the developed rule-based tools perform as well as DP, in terms of fuel consumption saving and cost 
premium. 
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Fig. 3. CO2 reduction (left) and cost premium (right) over different driving missions. 
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Fig. 4. Power flow distribution on the engine map over the 1015 (a) and WLTP (b) missions, obtained with DP (left), CORE (middle) and CERO 
(right). The optimal operating line of FC (dashed cyan) and of NOx (dashed yellow) are also reported. 

Figure 4 reports the distribution of the power flow of the hybrid vehicle on the engine map, for two different 
driving missions. The results obtained with DP are shown in the left column of each chart, while those obtained with 
CORE and CERO are reported in the middle and right columns, respectively. The rule-based tools have been trained 
independently over each mission. In general, the power split mode is used to move the engine operating points 
downward, in order to approach the optimal operating line, in terms of brake specific NOx emissions. Since each 
case has also been optimized in terms of NOx emissions, the operating points that result from the control policy 
optimization are predominantly distributed in the area that is not critical for NOx emissions, and which is still 
efficient in terms of fuel economy. The point distributions reported in Fig. 4 indicate that the results of the proposed 
rule-based tools are very similar to those of the DP tool. 
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5.3. Rule-based controller testing 

It is very likely that a rule-based controller trained over a given mission, i.e. m2, and used over a different mission 
m1, would lead to partially charge/discharge the battery with respect to the initial content. However, the battery SOC 
should be balanced over the mission to compare the controller performance to a benchmark control policy. The 
vehicle has to be run over a fraction of the 1015 mission at the end of each simulated mission, so that the controller 
charges or discharges the battery to obtain the initial battery SOC value (60%). Several simulations have been 
carried out over the 1015 mission with the DP tool, for different initial SOC values and 60% as final value. 

The fuel consumption and NOx emission trends have been obtained as a function of the initial SOC. The final 
SOC obtained by the rule-based controller over mission m1 is used to interpolate these trends and the values of fuel 
consumption and NOx emissions have to be added to the J function value. 
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Fig. 5. CO2 reduction (left) and cost premium (right) over different driving missions. 

Figure 5 reports the results of this analysis. The performance of the two tools has been assessed with respect to 
that of DP for each mission, and a score discrepancy has been calculated. 

Each tool was tested over a test mission m1 (i.e., the driving cycles reported on the x-axis in Fig. 5) adopting the 
rule that was extracted from the optimization process that had been carried out over a training mission m2 (i.e., the 
cycles reported on the y-axis). A square represents each combination of training-testing missions, and the 
discrepancy of the tool, with respect to DP, is reported with different shades of grey: the darker the shades, the 
higher the discrepancy. This graphical representation is useful to analyze whether the tool training might lead to bad 
performance over a specific test mission, analyzing the grey squares horizontally. 

As an example, if the training of the CERO tool is carried out over 1015 (fourth row in Fig. 5), and the controller 
is employed over NEDC (second column), the discrepancy with respect to DP reaches the highest value (13.3%). 

The training of the CERO tool over WLTP leads to the least average discrepancy (4.85%), while the CORE 
training over NEDC leads to the best average performance (1.84%). 

The CORE tool can be selected as the best method, as it leads to the lowest discrepancy and the on-board 
controller has a low-computational demand. However, it comes with a cost, since its training is in general a bit 
longer than the CERO tool. 

6. Conclusions 

This present study has been focused on the development of a new machine-learning technique in order to develop 
rule-based controllers for the energy management of non-plug-in parallel hybrid electric vehicles. Two different 
methods have been developed (CORE and CERO). The performance of the proposed tools has been assessed over a 
set of different driving missions and compared with that of dynamic programming (DP). Moreover, the capability of 
the considered hybrid architectures to reduce fuel consumption and total costs, in comparison with a conventional 
vehicle, has also been investigated. It has been found that the performance of the CERO and CORE tools is 
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extremely promising, especially for CORE. The average discrepancy of the two methods with respect to DP is in 
fact 4.85% and 1.84% if the training procedure is carried out over the WLTP and NEDC missions, respectively. 

The main reason for the good performance of the proposed tools is that the rule extraction is carried out using 
machine-learning techniques, and is not based on empirical approaches driven by experience. The tool can easily be 
implemented in a vehicle control unit for a powerful fast real-time control strategy, as its application requires a very 
low computational effort. 
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