Very slightly anomalous leakage of CO₂, CH₄ and radon along the main activated faults of the strong L'Aquila earthquake (Magnitude 6.3, Italy). Implications for risk assessment monitoring tools & public acceptance of CO_2 and CH_4 underground storage.

Quattrocchi F., Galli G., Gasparini A., Magno L., Pizzino L., Sciarra A., Voltattorni N. Istituto Nazionale di Geofisica e Vulcanologia (INGV), UF "Fluid Geochemistry, Geological Storage, Geothermics", Section Seismology and Tectonophysics, Via Vigna Murata 605, 00143, Rome, Italy

Abstract

Abstract The 2009-2010 L'Aquila seismic sequence is still slightly occurring along the central Apenninic Belt (August 2010), spanning more than one year period. After the main- shock (Mw 6.3), occurred on April 6th at 1:32 (UTC), INGV geochemical group started to survey the seismically activated area. We sampled around 1000 soil gas points and flux measurements and around 80 groundwater points (springs and wells), to understand geometry and behaviour of the activated fault segments. In addition, we sampled groundwaters in Cotilia-Canetra area (20 km NW from the seismically activated area) where a deep natural CO₂ reservoir is present (termomethamorphic CO₂ from carbonate diagenesis), to study leakage patterns at surface (CO₂, CH₄, Radon and other geogas as He, H₂, N₂, H₃S, O₂, etc...). Results of this work highlighted that geochemical measurements on soils are very powerful to discriminate the activated seismogenic segments at surface, their jointing belt, as well as co-seismic depocenter of deformation. Our geochemical anomalies have not caused hazard for the human health, suggesting that these gases can be safely stored naturally/industrially (1-2 km deep) without dangerous leakage. Therefore, these results can be very useful also for the CO₂-CH₄ geological storage public acceptance not necessarily (rarely or never) deep geogas uplif abruptly from underground along activated faults.

uto Nazionale di Geofisica e Vulcano

well highlighted by the cosisr 7 and the subsequent N-S m

s of fluxes and concentrations of ge um and m

xes measurements (around 1000 sites) and radon, CO2, CH4, He, H2

180434	Paganica Fault	4CO2	ψCH ₄	Rn	He	H ₂	CH4	CO2
21-1 Cal		(g'm'day)	(g im day)	(Bq'm ³)	(ppm)	(ppm)	(ppm)	(%w/v)
6683	I* Maximum value	591	19.38	38900	10.31	5.68	642	8.23
1990	II° valore massimo	127	5.66	28500	7.70	5.55	215	7.56
34433								
1194	S. Pio delle Camere Fault October 2009	4CO2	¢CH₄	Rn	He	H ₂	CH4	CO2
100 Bar		(g m day)	(g im day)	(Bq'm')	(ppm)	(ppm)	(ppm)	(%w/v)
	I' Maximum value	321	4.25	13600	4.98	0.76	1.95	2.02
PARTI	II* Maximum value	192	1.57	13400	4.83	0.34	1.46	1.48
12.11	e ma datta	460	101	1				
	Camere Fault August 2010	40.02	40.01	Table 1: overall maximum and minimum values				
144223	-	(gim'day)	(g in day)	of fluxes a	and concer	itrations of	geogas sp	ecies
10.00	I* Maximum value	156	3.27	measured grids	in soil alo	ng the two	fault seg	ments
10000	111 Maximum	116	1.1.2	9				

mic slip data from GPS network; iii) joint sectors among activated seg nts: iv) surface fracture field along and close to many p ic depocenter of deformation. Geochemical methods are here demonstrated to be strategic, and we wish to use them in CO2

days 2000 g/m²day of CO₂, 300 g/m²day of CH₄ and 30,000 Bq/m³ of Rn have been every 25 m). Geodas anomalies, in particular of CH₄ and Radon are also concentrated by the second se