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Edge effects in hyperbolic paraboloidal nets are analyzed using a model that features the 
elastic resistance of the fibers of the net to flexure and twist in addition to the extensional 
elasticity of the conventional membrane theory of networks.
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r é s u m é

Les effets de bord dans les réseaux paraboloïdaux hyperboliques sont analysés à l’aide d’un 
modèle présentant la résistance élastique des fibres du réseau à la flexion et à la torsion 
en plus de l’élasticité en extension de la théorie conventionnelle des membranes pour les 
réseaux.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Hyperbolic paraboloidal (Hypar) shells are ubiquitous in the design of roofs and tension structures [1–3]. Presumably, 
this is due to the fact that the hyperbolic paraboloid is an equilibrium shape for surfaces formed by elastic nets consisting 
of initially orthogonal flexible fibers. Thus, the Hypar net affords a lightweight scaffold that can be used to support the 
cladding materials used in the construction of shell structures.

The analysis of Hypar nets may be based on the membrane theory of networks, in which the fibers of the net are 
idealized as being continuously distributed to form a surface [2,4,5]. In this theory, the intrinsic flexural and torsional 
elasticities of the fibers are neglected. However, these typically give rise to localized edge effects adjacent to boundaries if 
the boundary constraints are not compatible with the data on position or traction that can be assigned in the membrane 
theory of networks. In the present work, we model these effects using a second-gradient model [6–11] of networks.

In Section 2, we outline the elementary theory of membrane networks and use it to show that the Hypar net furnishes 
an equilibrium surface. The Hypar net is also shown, in Section 3, to be an equilibrium surface in a refined second-gradient 
theory [12,13] that accounts for elastic resistance of the net to fiber flexure, twist, and additional strain-gradient effects, 
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provided that suitable corner forces are present in the case of a net with piecewise smooth boundary. This coincidence 
motivates a numerical study, in Section 4, of edge effects induced by perturbations of the boundary data relative to those 
associated with pure Hypar nets. These localized effects are simulated using a particular example of the refined model 
discussed in [12].

Reference may be made to [14–23] for recent efforts to establish models for higher-gradient continua based on ho-
mogenization and their experimental validation (see, e.g., [24,25]). The continuum framework facilitates a coarse-grained 
description that effectively avoids local effects associated with the connectivity of a discrete network (see, e.g., [26,27]).

2. Elementary network theory

In practice, it is often useful to base the analysis of elastic network structures on continuum theory, according to which 
the network is identified with a surface composed of two families of continuously distributed fibers [2,4,5,28–31]. The ob-
jective is then to determine the position field r(u1, u2) of the surface in equilibrium, where uα are the Cartesian coordinates 
of a material point on an initial plane.

In the elementary theory, each fiber family is regarded as being extensible and perfectly flexible. If the fibers are orthog-
onal prior to deformation, then the network may be regarded as an orthotropic membrane with a strain-energy function, 
per unit initial area, of the form w(εL, εM , J ), where

J = ∣
∣Lα Mβr,α × r,β

∣
∣ , εL = Eαβ Lα Lβ, εM = Eαβ Mα Mβ (1)

are the areal dilation and the extensional fiber strains, and where

Eαβ = 1
2 (r,α · r,β − δαβ) (2)

in which δαβ is the Kronecker delta, is the Lagrange strain. Here, r,α = ∂r/∂uα and Lα and Mα (α = 1, 2) are the Cartesian 
components of the unit tangent vectors to the orthogonal fibers on the initial plane.

The fiber lines on the initial plane are mapped by the deformation to

λl = r,α Lα and μm = r,α Mα (3)

where λ and μ are the fiber stretches, and l and m are the unit tangents to the deformed fiber trajectories.
In standard network theory, it is assumed that the fiber families offer no resistance to shearing. The shearing angle γ is 

defined by sinγ = l · m. The areal dilation of the surface may be expressed in terms of it as J = λμ 
∣
∣cosγ

∣
∣. Accordingly, if 

the strain energy is insensitive to variations of the shear angle, then it is insensitive to variations of J at fixed values of the 
fiber stretches, and hence a function of the form w(εL, εM). In this case, the energy is unaffected by a local collapse of the 
fibers onto a single trajectory on which l × m = 0. The network may be folded along such curves. Indeed, explicit solutions 
exhibiting this feature have been derived elsewhere [32]. The fiber strains and stretches are related simply by

εL = 1
2 (λ2 − 1) and εM = 1

2 (μ2 − 1) (4)

and so the strain energy is a function of λ and μ; we write w = ŵ(λ, μ).
Networks are further distinguished by the absence of a Poisson effect. To see how this is manifested in the theory, we 

note that the energy required to stretch a unit square to dimensions λ, μ is ŵ(λ, μ). The energy required to stretch it to 
dimensions λ + dλ, μ + du is ŵ + dŵ , where dŵ = ŵλ dλ + ŵμ dμ; here ŵλ and ŵμ are the forces required to produce 
the extension. The Poisson effect is associated with the dependence of each force on the stretch of the orthogonal family. 
For example, if the network exhibits a Poisson effect, then the force ŵλ is sensitive to variations of the stretch μ of the 
orthogonal family, so that the cross-derivative ŵλμ is non-zero. In networks, the force ŵλ is insensitive to variation of μ
and ŵλμ vanishes identically. The strain-energy function is then separable; i.e. it is of the form

ŵ(λ,μ) = f (λ) + g(μ) (5)

The equilibrium of the network, in the absence of distributed forces, is expressed by the partial differential equation [5]

Tα,α = 0 (6)

holding everywhere in the interior of the initial plane, where the comma is again used to refer to partial derivatives with 
respect to the uα , and [5]

Tα = f ′(λ) l Lα + g′(μ)mMα (7)

are the stress vectors (forces per unit initial length). The edge condition

t = Tανα (8)
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applies on the boundary, where t is the traction. Here να are the components of the exterior unit normal to the edge. 
Typical boundary-value problems entail the specification of t and r on complementary parts of the boundary.

Suppose that the fibers form a uniform rectangular grid aligned with the Cartesian coordinates on the initial plane. Then, 
Lα = δα1, Mα = δα2 and (6) reduces to

[ f ′(λ)l],1 + [g′(μ)m],2 = 0 (9)

where

λ = ∣
∣r,1

∣
∣ , l = λ−1r,1; μ = ∣

∣r,2
∣
∣ , m = μ−1r,2 (10)

Evidently, any deformation for which r,1 is independent of u1 and r,2 is independent of u2 furnishes a solution. Moreover, 
these are universal in the sense that they are equilibrated in every network; i.e. for all constitutive functions f and g . It is 
easily verified that such deformations are necessarily of the form

r(u1, u2) = au1u2 + bu1 + cu2 + d (11)

where a − d are constant vectors.
The special case a = a e3, b = b e1, c = c e2, d = 0, where {ei} is an orthonormal set, yields the classical hyperbolic 

paraboloid described by r3 = (a/b c) r1r2. Accordingly, we refer to surfaces of the form (11) as generalized hyperbolic 
paraboloids, or, more succinctly, as Hypar nets.

3. A second-gradient model

The foregoing model suppresses the flexural and torsional resistance of the constituent fibers. The latter have recently 
been incorporated in [12,13], using strain-energy functions of the form

W = w(εL, εM) + 1
2 AL

∣
∣Lα Lβr,αβ

∣
∣2 + 1

2 AM
∣
∣Mα Mβr,αβ

∣
∣2 + 1

2 A


∣
∣Lα Mβr,αβ

∣
∣2 (12)

where r,αβ = ∂2r/∂uα∂uβ and AL , AM , A
 are positive material coefficients. Here w(εL, εM) is the strain-energy function 
of conventional network theory. This form may be justified on the grounds that the second-order gradients r,αβ , when 
non-dimensionalized by a local length scale such as the spacing between adjacent fibers, the fiber diameters or the thickness 
of the sheet, are invariably small in typical applications. The leading-order contribution to the energy is then quadratic, 
provided that the network is relaxed in its undeformed state. The coefficients AL , etc., may conceivably depend on the strains 
Eαβ . However, in the present work, we confine attention to small strains. In this case, the leading-order approximations to 
the coefficients AL , AM , A
 are (positive) constants. In these circumstances, the strain-energy function (12) admits the 
Hypar network (11) as an equilibrium deformation field in the second-gradient theory. This is demonstrated below.

The modified energy involves three additional contributions, the physical significance of which is discussed in detail 
in [13]. In particular, the first and second contributions account for the normal and geodesic curvatures of the fibers and 
for the gradients of stretch along the fiber directions. Here we assume, for the sake of illustration, that these effects are 
controlled by two moduli, one for each fiber family. In general, for a given fiber family, it is possible to attach separate 
moduli to each effect without affecting the basic structure of the theory. The third term of the modification accounts for 
a twist of the fibers as the surface deforms, and for the cross derivatives of the fiber stretches in directions orthogonal 
to the fibers. The physical role of a cross derivative may be understood [33] in terms of the stretch that it induces in an 
adjacent fiber that is parallel to the given fiber; Eq. (12) attributes elastic energy to this effect. Moreover, inclusion of all 
three additional terms in the modified energy is sufficient to guarantee the convexity of the energy as a function of r,αβ . 
This, in turn, is important for the well-posedness of the associated equilibrium problem.

In the absence of distributed loads, the relevant equilibrium equation is again given by (6), but with Tα replaced by [12]

Tα = Nα − Mαβ,β (13)

where

Nα = ∂W /∂r,α and Mαβ = ∂W /∂r,αβ (14)

in which we note the symmetry Mαβ = Mβα , inherited from that of r,αβ .
Edge conditions are naturally somewhat more complicated than their counterparts in the conventional theory. Specifi-

cally [12],

t = Tανα − (Mαβνατβ)′, μ = Mαβνανβ and fi = −[Mαβνατβ ]i (15)

are the edge traction, edge double force and point force at the ith corner, respectively, the latter being operative at the 
corners of a piecewise smooth boundary. Here (·)′ = d(·)/ds, where s measures the counterclockwise arclength on the 
boundary, τ1 = −ν2 and τ2 = ν1 are the components of the unit tangent to the edge, and the notation [·] stands for the 
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Fig. 1. Square domain deformed by (11).

jump as a corner is traversed; that is, [·] = (·)+ − (·)− , where the subscripts “±” are used to denote limits as a corner located 
at arclength station s is approached through larger and smaller values of arclength, respectively.

The double force, which of course is absent from the elementary theory, generates the edge couple c = rν × μ, where 
rν = r,ανα is the normal derivative of the deformation at the edge. The double force should be understood as a distinct 
entity, however. In particular, it is not equivalent to the edge couple because the latter is sensitive only to the part of the 
double force that is orthogonal to rν .

Because r,α and r,αβ are decoupled in the expression (12) for W , it follows that the Nα coincide with the stress vectors 
(7) of the conventional theory. Accordingly, as shown in Section 2, the divergence Nα,α vanishes identically if the deformed 
surface is a Hypar net. Further, (12) and (14) imply that

Mαβ = AL Lα Lβ(LλLμr,λμ) + AM Mα Mβ(MλMμr,λμ) + 1
2 A
(Lα Mβ + Mα Lβ)(LλMμr,λμ) (16)

With Lα = δα1 and Mα = δα2, we may evaluate this for the deformation (11) to obtain

Mαβ = 1
2 A
(δα1δβ2 + δα2δβ1)a (17)

Because these are constants, Mαβ,β vanishes and the equilibrium equation (6), with (13), is again satisfied. Thus Hypar nets 
also furnish equilibria in the present model.

Suppose, for example, that the initial plane is a rectangle with edges lying parallel to the fibers. On the right edge, we 
have να = δα1 and hence the double force μ = 0; the edge couple therefore vanishes. The same is true on the top edge, 
where να = δα2, and also on the remaining two edges. The combination Mαβνατβ is easily seen to be constant on all four 
edges. Because Mαβ,β vanishes, the edge traction is then precisely the same as that required to support the Hypar net in 
the conventional theory. At the upper right and lower left corners, we compute the point force f = A
 a using (15) and (17); 
the point force at the upper left and lower right corners is f = −A
 a. It follows that the Hypar net furnishes an equilibrium 
deformation in both the conventional and refined theories, and under the same boundary data, apart from the point forces 
required by the refined theory. These may be regarded as applied forces or as reactions provided by poles used to support 
the Hypar net.

In view of this finding, we devote the remainder of this work to a numerical study of the effects predicted by the refined 
theory when the boundary conditions are perturbed. For this purpose, we assume the first term in (12) to be

w(εL, εM) = 1
2 (E L ε2

L + E M ε2
M) (18)

in accordance with the small-strain hypothesis, where E L,M are positive constants.
Because the refined theory represents a singular perturbation of the standard theory, we expect the effects of a pertur-

bation of the boundary data to be localized near the edges of the network. This expectation is borne out in the examples.

4. Numerical simulations

In this section, we discuss examples that are intended to highlight the differences between predictions based on the 
elementary and refined network theories. For this purpose, we map the boundary of the undeformed network to a curve in 
the three-dimensional space in accordance with (11). As we have shown, the deformation in the interior is also given by 
(11) in both theories, provided, in the case of a rectangular initial domain, that no double forces are applied in the refined 
theory and that suitable corner forces are present (see Fig. (1)).

Using (18), the elementary theory predicts that the fibers of the network are in tension provided that the fiber stretches 
are both greater than unity. This is assured here, for a given reference configuration, by adjusting the vectors a,b, c in (11)
accordingly. If a fiber stretch is less than unity at a given material point, then the fiber is under compression there, and 
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Fig. 2. Plot deformed surfaces for various examples: a) square sample cut along fiber directions; b) square sample cut along the bias direction; c) rectangular 
sample cut along the bias direction; d) circular sample. The black solid lines represent the current configurations of the material lines.

the entire deformation is unstable according to the energy criterion of elastic stability. This is proved in [5]. In this case the 
strain-energy function of the standard theory may be replaced by a suitable convexified function, constructed to ensure that 
the fibers are never in compression regardless of the values of the fiber stretches. This adjustment may be understood in 
terms of fine-scale wrinkling of the network [5,34–36]. However, in the refined theory, fiber compression would signal the 
onset of buckling. Fine-scale wrinkling is precluded in the refined theory due to the presence of an intrinsic length scale 
in the second-gradient moduli AL , etc., which sets a length scale for the wavelength of a buckling pattern. The absence of 
an intrinsic length scale in the elementary theory implies the absence of a lower bound to the wavelength of a buckling 
pattern. This yields the prediction of a continuous distribution of wrinkles of infinitesimal amplitude in the (convexified) 
elementary theory [5,34]. The present second-gradient model has been used in [37] to simulate buckling for various network 
geometries and to resolve the wavelengths of the associated buckling patterns.

The predicted deformations are obtained using the commercial software COMSOL MultiphysicsTM. This code furnishes a 
particularly convenient platform for our purpose, as it requires as input only the explicit expression for the strain-energy 
function. The program then constructs an associated weak form of the relevant equilibrium equations together with its 
finite-element implementation.

To simplify the analysis, a non-dimensional form of the problem is obtained by normalizing the strain energy with 
respect to a reference stiffness E0. All lengths are normalized with respect to a characteristic sample size L0. Using tildes to 
denote dimensionless quantities, the normalized constitutive parameters are:

Ẽ L = E L/E0, Ẽ M = E M/E0

ÃL = AL/(E0 L2
0), ÃM = AM/(E0 L2

0), Ã
 = A
/(E0 L2
0)

In what follows, the dimensionless stiffness values Ẽ L and Ẽ M are set to 100, and the values of the other stiffness values 
are assumed to be equal. The latter values are specified in the captions to the figures.
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Fig. 3. Plot of difference between strain energies with and without higher gradient terms: a) ÃL = ÃM = Ã
 = 10; b) ÃL = ÃM = Ã
 = 5; c) ÃL = ÃM =
Ã
 = 1; d) ÃL = ÃM = Ã
 = 0.1.

Fig. 4. Plot of difference between strain energies with and without higher gradient terms: a) ÃL = ÃM = Ã
 = 10; b) ÃL = ÃM = Ã
 = 5; c) ÃL = ÃM =
Ã
 = 1; d) ÃL = ÃM = Ã
 = 0.1.
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Fig. 5. Plot of difference between strain energies with and without higher gradient terms: a) ÃL = ÃM = Ã
 = 10; b) ÃL = ÃM = Ã
 = 5; c) ÃL = ÃM =
Ã
 = 1; d) ÃL = ÃM = Ã
 = 0.1.

Fig. 6. Plot of difference between strain energies with and without higher gradient terms, in the case of various normal derivative conditions at the 
boundary: a) zero normal derivatives; b) Hypar normal derivatives scaled by 0.5. Colors are in logarithmic scale.

We use a triangular mesh with interpolation functions of Argyris type. This kind of finite element is particularly well 
suited to energies that involve second-gradient terms (see [13] for more details).

To illustrate the behavior of the network, we consider four shapes of the initial domain. Specifically, we study two square 
samples of unitary side, one cut along fiber directions and the other cut along the bias direction. We also study circular disc 
and a rectangular sample cut along the bias direction. In all the examples the fiber directions are assumed to coincide with 
the coordinate axes. Fig. 2 displays the deformed equilibrium surfaces when boundary position is imposed in accordance 
with the restriction of (11) to the boundary and no double forces are applied.

Figs. 3, 4, and 5, respectively, depict the deformations of the square and the rectangular samples cut along the bias 
direction as well as that of the circular disc. The plots exhibit the difference between the strain energies with and without 
the higher gradient terms for various values of the second-gradient moduli and for the case of vanishing double force on the 
boundary. In each case, the boundary is mapped, as before, in accordance with (11). In these examples, the deformation (11)
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Fig. 7. Plot of difference between strain energies with and without higher gradient terms, in the case of various normal derivative conditions at the 
boundary: a) zero normal derivatives; b) Hypar normal derivatives scaled by 0.5. Colors are in logarithmic scale.

Fig. 8. Plot of difference between strain energies with and without higher gradient terms, in the case of various normal derivative conditions at the 
boundary: a) zero normal derivatives; b) Hypar normal derivatives scaled by 0.5. Colors are in logarithmic scale.

Fig. 9. Plot of difference between strain energies with and without higher gradient terms, in the case of various normal derivative conditions at the 
boundary: a) zero normal derivatives; b) Hypar normal derivatives scaled by 0.5. Colors are in logarithmic scale.

furnishes double forces on the boundary. For example, the double force is easily computed to be 1
2 A
 a on the upper right 

inclined edges of the square and the rectangular samples. Relaxation of the double force on the boundary thus produces a 
deviation of the deformation relative to (11) in the interior of the network.

In the further examples, we assign the normal derivatives of the deformation at the boundaries. We consider the two 
cases: 1) the normal derivatives are zero, and 2) the normal derivatives are set to those induced by (11), multiplied by 0.5. 
Figs. 6, 7, 8 and 9 depict the difference between the strain energy distributions with and without higher-gradient terms. 
In these numerical simulations, we assume ÃL = ÃM = Ã
 = 10. Boundary effects associated with higher-gradient terms 
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are seen to be localized near the corners of the square and rectangular samples, whereas, for the circular disc, these are 
widespread near the boundary.

5. Conclusion

The present model provides a simple and easily implemented refinement of the classical membrane theory of structural 
networks that accounts for the bending and twisting resistance of the fibers constituting a network. This affords a tool that 
may be used to assess the effects of variations in boundary conditions relative to those associated with the classical theory. 
Such variations may be interpreted as boundary imperfections that are inevitable in the actual realization of any network 
structure.
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