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Arrhenius plots, which are used to represent the effects of temperature on the rates of chemical and bio-
physical processes and on various transport phenomena in materials science, may exhibit deviations
from linearity. Account of curvature is provided here by a formula which involves a deformation of the
exponential function, of the kind recently encountered in treatments of non-extensivity in statistical

mechanics. We present here examples on diverse topics — respiration rates of plants, speed of gliding
of bacteria, quantum mechanical tunneling in a chemical reaction - illustrating the variety of possible
applications and the additional insight that can be gained.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Increasing evidence from a variety of studies of the temperature
dependence of rate processes points out at the need of accounting
for deviations from the Arrhenius law to accurately model situa-
tions occurring in modern applications of chemical kinetics to a
wide range of phenomena. See Ref. [1], where it is outlined how
such deviations manifest as concave or convex Arrhenius plots
and can be referred to as sub- and super-Arrhenius behavior,
respectively. A formulation (see Section 2.1) can be given in terms
of a power series Taylor-like expansion of the logarithm of the
reaction rate as a function of the inverse of the absolute tempera-
ture. In the present letter we point out an approach, denominated
here as deformed-Arrhenius (d-Arrhenius) based on a non-Boltz-
mann distribution law occurring in non-extensive thermodynam-
ics (Section 2.2). The aim is to provide possible insight on the
observed deviations and a tool for extrapolating observations
beyond the experimentally accessible range. Three examples are
given in Section 3 and concluding remarks follow in Section 4.

2. Deviations from Arrhenius law
2.1. Quadratic Arrhenius plots

In an Arrhenius plot (see Fig. 1), the logarithm of an observed
reaction rate k against the reciprocal of the absolute temperature
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T sometimes turns out to be a curve, rather than the straight line
expected according to the Arrhenius law

k(T) = Aexp (f %); (1)
or

E,
Ink(T) = InA — & (2)

where A is known as the pre-exponential factor and E, as the acti-
vation energy. E, is assumed to be independent of temperature in
Egs. (1 and 2), but in general it is given by [2]
dink
Ei=—Fiv. 3
¢ d(1/RT) 3)

In empirical Arrhenius plots, linearity (Eq. (2)), can be enforced,
because number and accuracy of experimental data points are of-
ten not too high. Also, in most situations of biochemical and solu-
tion chemistry interest, the accessible range of the 1/T variable is
small.

In Refs. [1] and [3], deviations from linearity in Arrhenius plots are
accounted for by an additional quadratic term in 1/RT according to

B C

Ink(T)=InA+ —+—, 4

(1) KTt R )
where the sign of C dictates whether the plot is ‘concave’ or ‘convex’
(see Ref. [3]): correspondingly, we say that the reaction abides by a
sub- or super-Arrhenius dependence. Accordingly, the activation
energy E,, being connected to the slope of the Arrhenius plot, as
Eq. (3) shows, is no longer a constant but depends linearly on 1/T:
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Figure 1. Arrhenius plot for a typical value the activation energy of 50 kJ/mol, and
deviations described by the d parameter. In the graph we show the dependence of
the function log k(T) (upper panel) and the activation energy (lower panel), in terms
of the inverse absolute temperature and of the d parameter. The super-Arrhenius
processes are seen to be more sensitive to variations of the d parameter. Small
changes in d produce large variations in the curvature of the logarithm of reaction
rate. This figure has to be compared with Figure 2 in Ref. [1] and Figure 1 in Ref. [3].

dInk 2C
here the C coefficient, which is given by
2
Co_ d lnkz’ (6)
d(1/RT)

is positive or negative for the sub- or super-Arrhenius cases,
respectively.

As illustrated in the upper panel of Figure 1, the sub-Arrhenius
case, where higher than expected rates are observed as tempera-
ture decreases, corresponds to a ‘concave’ curve (this occurs as
e.g. for quantum mechanical tunneling or for the emergency of
competing mechanisms). In cases of higher than expected rates
as temperature increases, we have super-Arrhenius behavior,
according to a materials science nomenclature [1]: this is associ-
ated to a ‘convex’ curve in the upper panel of Figure 1.

2.2. Deformed Arrhenius plots

In the scientific literature there are a variety of deformed alge-
bras with applications in different areas of science [4-6]. In the
present letter we adopt a generalization of the Arrhenius law based
on algebraic deformations.

We define a deformed exponential function as follows,

expy(x) = [1 + dx]t. (7)

In the limit of the deformation parameter d — 0, the d-exponen-
tial function (Eq. (7)) coincides with the usual exponential function
according to the well known limit due to Euler

. x\"
et = i (1+7) ©
by identifying the deformation parameter d as a continuous gener-
alization of 1/n.

Such a deformation of the exponential function occurs in the
non-Boltzmann distribution of non-extensive Statistical Mechanics
[4,7,8] and has been used in recent work on Eyring’s transition
state theory [9-11] and in other applications [12-17]. Our defor-
mation parameter d corresponds to 1-q of Ref. [7] and [4], and to
v-1 of Ref. [9]. Borges [4] provides basic mathematical background
information.

Considering the d-exponential function (Eq. (7)) we introduce
the reaction rate in the following way,

k(T) = A expd(};—;) —A1- dRiT]%, 9)

and in the limit d — 0, & — E, (a constant) and the usual Arrhenius
reaction rate law is recovered. In applications, A, ¢ and d are three
phenomenological parameters. Taking the logarithm of the reaction
rate (Eq. (9)) we obtain the following expression for the Arrhenius
plot,

lnk(T):lnA+éln (1 —d%) (10)

The logarithm of the reaction rate found in this way against re-
ciprocal temperature shows a curvature, rather than the straight
line behavior described by the Arrhenius law. Figure 1, to be com-
pared with Figure 2 in Ref. [1] and Figure 1 in Ref. [3], shows that
the curvature of sub- and super-Arrhenius processes can be de-
scribed by changing the d parameter.

The activation energy is now

dink de\ !
= agugen (1 i) Y
Comparing with the quadratic expression, (Eq. (4)), the corre-

spondence holds for small deformations, since when de¢/RT <« 1,
Eq. (11) can be expanded as

82
Ea:8+dﬁ+"~ (12)

and in this limit (see Eq. (5)),
e=-B and de&? =-2C. (13)

According to Eq. (10), we can use the logarithm of the reaction
rate (Eq. (9)) to describe experimental data where curved (sub- or
super-Arrhenius) plots are observed. It is important to point out
that the success of this fitting procedure is, in part, due to the d-
exponential function’s flexibility. Also, Eq. (10) uses only three
parameters to fit the experimental data, while formulations based
on Eyring’s transition state theory [10,11] appear to need more
parameters, like all treatments employing piecewise linear fits
matched at an Arrhenius break temperature (see [1]).

3. Results and discussion

In the following, we discuss the significance of the deformed
Arrhenius approach, placing it in a broader context by considering
three different processes. The first case is related to a study of the
temperature dependence of the - respiration rates of leaves [18].
The next case study considers the leg-substrate interaction mech-
anism to explain the observed temperature dependence of Myco-
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Figure 2. Arrhenius and activation energy plots for the respiration rate of Camellia
Japonica leaves. The upper panel is semi-logarithmic plot of the reaction rate data
from the experiment (dots), d-Arrhenius (dashed line) and quadratic fit (solid line)
versus 1/T. The lower panel shows the corresponding 1/T dependence of the
activation energy (E;) given in kj/mol using both approaches. The logo A, B, and C
parameters of quadratic approach are —74.634, 3.667 x 10° (kJ/mol) and —4.802 x
108 (kJ?/mol?), respectively. This fit is consistent with that of Ref. [1], apart from the
higher number of significant digits presented here. In the case of the d-Arrhenius
approach logioA=—1.456, ¢=38593 (kJ/mol) and d=0.247 is dimensionless. The
reaction rates k(T) are given in kg~ ' s, Ref. [1].

plasma mobile bacteria [19]: the recently published findings on this
subject establish an important bridge with disciplines — chemical
kinetics, materials science - for which similar behavior has been
studied in a variety of rate processes. The enhanced increase in
reaction rates with temperature corresponds to an apparent de-
crease of the activation energy and is the reason for referring to
such curvature as ‘super-Arrhenius’ temperature dependence
(Fig. 1). Data found when plotting both the respiration rates of
Camellia Japonica leaves [1,18], as when plotting ‘peel-off’ rates of
M. mobile, show a ‘convex’ curved shape. As a third prototypical
case, we consider the reaction of fluorine atoms with hydrogen
molecules, where quantum effects play a crucial role at the inves-
tigated temperatures and the reactivity is essentially under barrier,
leading to the ‘concave’ curved shape of sub-Arrhenius behavior.

3.1. Plant - respiration rates

In Refs. [1] and [20], we have studied the respiration of Camellia
Japonica leaves stored under atmospheric pressure in temperature
controlled, light sealed vessels, by sampling the oxygen/carbon
dioxide ratio in the volume after specific time intervals. The rate
of oxygen consumption and carbon dioxide production gives an in-
sight into the mechanism of the enzymatic reactions that take
place inside the mitochondrion. Ref. [1] reports oxygen-18 mea-
surements and correlates super-Arrhenius behavior to increase of
catalytic activity as temperatures increases. Figure 2 reports the
Arrhenius and activation energy plots on the respiration of
C. Japonica leaves.
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Figure 3. Arrhenius and activation energy plots on the bacterial gliding application.
The upper panel is semi-logarithmic plot of the reaction rate data from the
experiment (dots), d-Arrhenius (dashed line) and quadratic fit (solid line) versus 1/T.
The lower panel shows the corresponding 1/T dependence of the activation energy
(Eg) given in kJ/mol using both approaches. The log;o A, B, and C parameters of the
quadratic approach are —121.11, 6.252 x 10° (kJ/mol) and —8.031 x 108 (kJ?/mol?),
respectively. In the case of the d-Arrhenius approach, logio A =1.787, € = 2654 (kJ/
mol) and d=0.881 is dimensionless. The reaction rates k(T) are given in pm/s,
Ref. [19].

3.2. Bacterial gliding

A recent paper [19] reports deviation from Arrhenius tempera-
ture dependence of motility of the bacterium M. mobile (regarding
mechanism of gliding on solid surfaces, see Ref. [20]). M. mobile
glides on solid substrates, a motility attributed to the interaction
between the substrate and many single protein ‘legs’ protruding
the membrane of the bacteria. Cells of M. mobile were deposited
on a glass slide under an optical microscope with a temperature
controlled stage. As had been reported previously [21], the gliding
velocity was measured with a video camera and was observed to
increase with temperature. The authors of Ref. [19] model the mo-
tor function of the leg proteins that goes through several separate
steps in a single cycle. The ‘foot’ reaches down to contact and stick
to a surface, subsequently dragging the leg along. It only ‘peels off’
the surface when it is being dragged forward by the leg (in Fig-
ure 2B of Ref. [19]). The temperature dependence of the individual
foot-substrate interaction is reflected in similar temperature
dependence for the velocity, generated by all the bacteria’s legs
as an ensemble. In Figure 3B of Ref. [19], data are displayed in an
Arrhenius plot, where the logarithm of the rate k at which a protein
foot peels off is reported as a function of 1/T. See also Refs. [22,23].
When the data from Ref. [19] are fitted either using the quadratic
polynomial of Eq. (4) or by the present d-deformed Arrhenius for-
mula, the fits are found to follow the data points excellently, as
shown in the upper panel of Figure 3. The corresponding activation
energy of the process as a function of reciprocal temperature is
plotted in the lower panel of Figure 3. Note that the authors of
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Ref. [19] call sub-Arrhenius behavior the observed curved appear-
ance of the plot. This is in contrast with the materials science liter-
ature, adopted here and recently discussed in the two papers [1]
and [18] on - respiration rates of leaves. Another matter of nomen-
clature involves what Chen et al. [19] refer to as an Arrhenius fac-
tor, which is given in units of kgT and is evidently to be identified
with an activation energy. The reported finding that this quantity
turns out to be a decreasing function of temperature (Fig. 3) is in-
deed consistent with super-Arrhenius behavior, resulting in higher
than expected rates when temperature increases. One of the pur-
poses of this letter is therefore also that of reconciling the nomen-
clature used by the authors of Ref. [19] with the one that has
become customary in the kinetics of a variety of phenomena,
adopted here and in part accounted for in papers [1] and [18].

3.3. Tunneling in the F + H, reaction

As a third example we consider the reaction of a fluorine atom
with hydrogen molecules from the d-Arrhenius point of view. In
Ref. [24] benchmark quantum mechanical rate constants have
been obtained using various potential energy surfaces differing in
details of the approach to the transition state. In view of the central
importance of rate constants in chemical kinetics, extensive exper-
imental and theoretical investigations have been devoted to their
determination for this prototypical reaction and to the study of
their temperature dependence, in an effort to provide insight into
the microscopic mechanism of chemical processes, and also in or-
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Figure 4. Arrhenius and activation energy plots on the F + H, reaction. The upper
panel is semi-logarithmic plot of the reaction rate data from the d-Arrhenius
(dashed line) and quadratic fit (solid line) versus 1/T. The lower panel shows the
corresponding 1/T dependence of the activation energy (E,) given in k]J/mol using
both quadratic and deformed Arrhenius approaches. The results emphasize that the
non-Arrhenius tunneling behavior of the F + H, quantum mechanics calculated rate
constants, at low temperature, is equally well described by both approaches. The
log10 A, B, and C parameters of quadratic approach are 12.156, —2069.0 (k]/mol) and
5.119 x 10° (kJ?/mol?), respectively. For the d-Arrhenius approach, log;o A = 12.175,
£=5119 (kJ/mol) and d = —0.167 is dimensionless. It can be checked that Eq. (13)
approximately hold. The reaction rates k(T) are given in cm®/molecule-s, Ref. [24].

der to test theoretical models of reaction rates. As discussed in Ref.
[24], the rate constants that have been calculated in a broad range
of temperatures, lead to the finding that reaction rates have an
Arrhenius-like behavior (exponential fall-off with inverse temper-
ature),interpreted as a manifestation of the fact that typically reac-
tivity proceeds overcoming a natural energy barrier giving rise to
an effective “activation energy”. Statistical theories satisfactorily
reproduce these features, but under cold and very cold conditions
this picture breaks down, and full quantum mechanical calcula-
tions are needed. Figure 4 reports exact quantum mechanical re-
sults [24], showing that the effect is small but definitely in the
sense of a ‘concave’ curvature, and therefore of a sub-Arrhenius
behavior. Here deviation from the Arrhenius law is small, and both
the quadratic and the d-deformed approaches give essentially the
same results.

4. Conclusion and further remarks

As a conclusion to this letter, we note that the three cases are
just illustrations of how to cope with a phenomenological descrip-
tion of deviations from Arrhenius’s law. Experimental and other
evidence is increasing rapidly. Both the quadratic expansion and
the d-deformed formula have merits, the latter providing some-
what higher flexibility and enabling extrapolation to more ex-
tended ranges of temperature. This is particularly evident in
Figure 2 and especially Figure 3, where the decrease with temper-
ature of the activation energy, according to the quadratic fit, ap-
pears to unphysically tend to negative values, while an
asymptotically correct behavior is described by the d-deformation
approach.

The previous papers [1 and 18] discuss and provide documenta-
tion of observed super-Arrhenius behavior in a variety of rate pro-
cesses (for an additional reference in materials science, see Ref.
[25]). To those reference lists, we add here other papers from mate-
rials science where sub-Arrhenius behavior is explicitly mentioned,
described and illustrated: Ref. [26], see Figure 1, Ref. [27], see Fig-
ures 11 and 12, Ref. [28] see Figure 2b. All these latter examples in-
volve concavity, in Arrhenius plot, to be contrasted with the
‘convex’ case of Figure 2. Indeed, while the figures illustrate the
suitability of the d-deformation formula for the phenomenological
description of the observed deviation of linearity in Arrhenius
plots, a detailed mechanistic interpretation of parameters evi-
dently varies according to the diversity of the contexts. It is ex-
pected that the established relationship with a distribution law
occurring in non-extensive statistical mechanics can provide fur-
ther insight with respect to the quadratic polynomial approach
and the underlying (microscopic and thermodynamic) interpreta-
tions discussed in Ref. [1].

Finally, on the general question of caution needed in attributing
deviations from linear Arrhenius dependence to abrupt changes in
mechanism or to phase-like transitions at a ‘break temperature’,
our discussion in Ref. [1] finds interesting correspondence in bio-
physical contexts. Such a word of caution appears that needs to
be applied for example to early work by Anson [29], who also
quotes Refs. [30-32], and to the more recent one by Boehm et al.
[33], who propose non-Arrhenius fits with a break temperature:
see discussions in Refs. [34,35]. In general, these approaches imply
one parameter more than those discussed here, which are there-
fore to be recommended from the viewpoint of economy of a phe-
nomenological description.

Current work involves extension to a variety of other cases, and
(more importantly) to the interpretation of deformations in terms
of non-extensive statistical mechanics, in view of getting further
insight with respect to the microscopic and ‘thermodynamic’ views
sketched in Ref. [1].
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