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Estimation of yield performance for crop products is a topic of interest in agriculture. In breeding programs, we
cannot test all possible hybrids created by crossing two parents (inbred and tester) since it would be too time
consuming and costly. In this paper, we exploit different machine learning algorithms including decision tree,
gradient boosting machine, random forest, adaptive boosting, XGBoost and neural network to predict the yield
of corn hybrids using data provided in the 2020 Syngenta Crop Challenge. The participants were asked to predict
the yield of missing hybrids which were not tested before. Our results show that the prediction obtained by
XGBoost is more accurate than other models with a root mean square error equal to 0.0524. Therefore, we use
XGBoost model to estimate the yield performance for untested combinations of inbreds and testers. Using this
approach, we identify hybrids with high predicted yield that can be bred to increase corn production.
© 2021 The Author. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Continuous increase in the world population together with the sub-
stantial environmental issues, namely undesirable weather conditions
caused by climate change, have led to a global concern to secure food re-
sources such as crops (Godfray et al., 2010). The prediction of crop yield
has a direct impact on national and international economies and plays a
crucial role in food management all around the world. Therefore, it is
very important to assist farmers and food industries with accurate
models to predict crop productivity. This will help them to assess their
current situation in terms of productivity and efficiency, and identify
possible enhancements such as improving soil quality or choosing
high-performance crop breeds. Furthermore, managers can utilize
such prediction models in their decision making process related to
agronomy and crop choice policies to minimize losses when undesir-
able environmental conditions like drought and pest problems occur
(Aubry et al., 1998).

Withadvancements incomputational technologyanddatacollection,
an essential need of developing novel models for yield prediction has
emerged. To this end, researchers have presented various yield predic-
tionmodels includingtraditionalmachinelearningalgorithms,datamin-
ing methods and deep neural network models (Liakos et al., 2018;
Chlingaryan et al., 2018; Vlontzos and Pardalos, 2017; Mucherino et al.,
2009; Papajorgji et al., 2006). In recent years, deep-learning based
modelshavebeenwidelyused incropyieldprediction. These techniques
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can model complex inputs with complicated interactions. You et al.
(2017) introduced a deep Gaussian process framework to predict crop
yield based on remote sensing data. In this study, relevant features
fromrawdatawereeffectivelyextractedusinganoveldimensionalityre-
duction method. Elavarasan and Vincent (2020) proposed a recurrent
neural network deep learning algorithm over the Q-learning reinforce-
ment learning algorithm to predict yield. Based on their experiments,
this approach can predict yieldwith an accuracy of 93.7% using environ-
mental, soil, water and crop parameters. In another study, a deep
convolutional neural networkmodel was developed to extract key fea-
tures from normalized difference vegetation index (NDVI) and RGB
data to predict yield (Nevavuori et al., 2019).

Corn hybrids and their performance evaluation have also been a
topic of interest in this field. During the last few decades corn (also
called maize) has become an important product among crops
(Burchfield and Schumacher, 2020). Besides the diverse usage of corn
in the food industry, it is also used for making animal food, bio-fuel
and other industrial products (Chavas and Mitchell, 2018). Due to the
increasing demand of corn, farmers are seeking new ways to improve
their productivity. Hybrids are new seeds created by crossing two par-
ents together in order to obtain a potentially stronger andmore produc-
tive seed (Crow, 1998) which might lead to higher corn yield. They are
shown to incorporate favorable qualitative traits and be adapted to dif-
ferent conditions. An important feature of hybrids is their higher toler-
ance to drought compared to natural breeds (Crow, 1998). Identifying
the hybrids withmaximum predicted yield has always been a challeng-
ing problem in agriculture. Several empirical breeding programs were
developed to explore the impact of the breeding on crop yield and
nications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://
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resistance to diseases and environmental factors like temperature and
water loss (Duvick et al., 2004). In these programs, outstanding hybrids
from inbred lines are selected. Results obtained frombreedingprograms
can provide farmers and managers options to manage crops and pick
the best strategy for planting schedules (Cooper et al., 2014). In breed-
ing programs, hybrid performance is evaluated from extensive yield tri-
als that are costly and time consuming (Lanza et al., 1997). While this
process traditionally used to be done only by trial and error, breeders
are now exploiting data analysis techniques to predict hybrids yield ac-
curately prior to field evaluation. Therefore, there is a remarkable de-
mand for new approaches to predict the performance of hybrids.

There are various models in the literature which tackled hybrid per-
formance prediction problem. They have utilized different methods de-
pending on their objectives and data. Bernardo (1996) proposed to use
best linear unbiased prediction model to identify high-yielding single-
cross corn hybrids. This method and its extensions were also applied
to other crops such as soybean and wheat (Panter and Allen, 1995;
Arruda et al., 2015). In another study researchers identified corn hybrids
tolerant to drought andheat using anunsupervised approach based on a
stress metrics obtained from a deep learningmodel (Khaki et al., 2019).
With recent progress in genome sequencing, phenotypic and DNA
marker characterizations provide helpful information to determine the
best parents with expected traits in different corn uses like food indus-
try (Somerville and Somerville, 1999). Riedelsheimer et al. (2012) have
shown that they can achieve a reliable accuracy in predicting biomass
and bioenergy-related traits in inbred and testers crosses using single-
nucleotide polymorphisms (SNP) and metabolites. They used ridge
regressionâ€“best linear unbiased prediction model to predict poly-
genic traits in corn hybrids. In another study, researchers compared per-
formance of three models including multi layer perceptron (MLP),
support vector machine (SVM) and Bayesian threshold genomic best
linear unbiased prediction (TGBLUP)models in predicting ordinal traits
in plant breeding (Montesinos-López et al., 2019). Khaki et al. (2020) in-
troduced an ensemble of matrix factorization and neural network
models to predict corn hybrid performance. Their proposed model
outperformed deep factorization machines, least absolute shrinkage
and selection operator (LASSO), and random forest.

In this paper, we aim to utilize machine learning algorithms to pre-
dict crop yield for new corn hybrids using the data provided by 2020
Syngenta crop challenge. In this challenge, participants were provided a
dataset containing the yield for 199,476 combinations of inbred and tes-
ters which are grown in 280 different locations within years 2016 to
2018. We first perform a data processing on the provided dataset to
do feature selection.We then apply different algorithms including deci-
sion tree (Safavian and Landgrebe, 1991), gradient boosting machine
(GBM) (Friedman, 2002), random forest (Svetnik et al., 2003; Breiman,
2001), adaptive boosting (Adaboost) (Freund and Schapire, 1997),
extreme gradient boosting (XGBoost) (Chen and Guestrin, 2016) and
neural network (Liu et al., 2017; Sze et al., 2017) on thedata and evaluate
their performance. We select the best model among them and utilize it
to predict yield for new combinations.
2. Materials & methods

2.1. Data source & summary

This study was performed as a part of the 2020 Syngenta Crop Chal-
lenge, which focuses on estimating yield performance of the cross be-
tween inbred and tester combinations to identify the best parent
combinations. The participants were given a dataset containing the ob-
served yield for 199,476 corn hybrids tested across 280 environments
between 2016 and 2018. These hybrids are created through crossing
of 593 unique inbreds and 496 unique testers.
2

Due to confidentiality concerns, the yield values are scaled to an in-
ternal benchmark to make the average and standard deviation of yields
1.0017 and 0.1047, respectively. These hybrids were tested in 280
unique locations. On average in each location 712 hybrids have been
tested during the study period. 21% of the observations were collected
in 2016 (with average yield 1.0082 and standard deviation 0.1060),
42% in 2017 (with average yield 0.9990 and standard deviation
0.0980), and 37% in 2018 (with average yield 1.0003 and standard devi-
ation 0.1110).

With 593 inbreds and 496 testers, there are 294,128 possible hy-
brids, among which only 10,919 (4%) hybrids have been tested. This
means around 96% of the hybrids are missing and we need to develop
a model to predict yield for these missing combinations.

The inbreds and testers are clustered based on an internal analysis
performed by the problem owner. Inbreds and testers are not treated
any differently when clustering. Therefore, same cluster number indi-
cates genetic similarity regardless of whether a parent is defined as an
inbred or a tester. Therefore, Inbreds and testers with same cluster ID
are considered independent. The inbreds and testers were clustered
into 14 and 13 groups, respectively. 47.8%of the crossing inbred and tes-
ter clusters were not tested in this study (Fig. 1). In the given dataset, 95
unique combinations of inbred and tester clusters are provided for the
performance analysis. These clusters were tested on average 2100
times in different locations during three years.

2.2. Input variables and outcome

In the given dataset, each observation consists of six input variables
including location, year, inbred, inbred cluster, tester and tester cluster,
and an outcome variable. The outcome is defined as the ratio of the hy-
brid yield to the benchmark in that environment.

2.3. Analytics workflow

To check whether the outcome depends on all the given input vari-
ables, we ran a GBMmodel (with 100 trees and shrinkage rate equal to
0.001) on the dataset. This variable selection helps to reduce overfitting.
In GBMmodel, we can calculate relative importance for variables which
indicates how significant each variable was in the construction of the
boosted decision trees within the model. Variables with zero relative
importance do not have any impact on the outcome. After removing
the insignificant variables (the variables with zero relative importance),
the mean yield of the observations whose independent variables are
identical was calculated to reduce the variability and avoid havingmul-
tiple records of the same observations because high variability might
mislead the model in predicting yield and affect the performance. The
final dataset has 10,919 unique hybrids with mean yield calculated for
each hybrid. Fig. 2 shows the conceptual diagram of what we have
done in this study.

We randomly picked 80% of the data as the training and the left 20%
as the testing set. This splitting has been repeated 5 times using 5 differ-
ent seeds to avoid overfitting.We ranmultiplemachine learningmodels
including Adaboost, decision tree, random forest, neural network,
XGBoost and GBM on the training set and evaluated the models using
the testing set. This procedure was performed on 5 different sets of
training and testing sets randomly chosen using five different seeds.

After preprocessing the data, we encoded all the data to convert the
categorical variables into numbers to have better understanding byma-
chine learning algorithms. In order to find the best encoding method,
we performed three methods on the data including one hot encoding,
integer encoding and feature hashing encoding (Potdar et al., 2017;
Fitkov-Norris et al., 2012; Seger, 2018). In integer encoding, we convert
the categorical data into integers. Data encoded using one hot encoding
has a binary variable for each category and in feature hashing encoding,



Fig. 1.Missing and present hybrids in the provided dataset created through crossing inbred and tester clusters. Missing rate is 47.8%. The goal is to develop a model using the available
tested hybrids and estimate the performance of missing inbreds and testers.

Fig. 2. Flow diagram of the 2020 Syngenta crop challenge analysis; Predicting yield performance of the cross between inbred and tester combinations. This diagram shows the sequence of
steps from data processing, model training and testing leading to new hybrids yield prediction.
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a hash function is applied on the data to map them into small finite set
of values. The encodingmethods were assessed using root mean square
error (RMSE) obtained in the testing phase. Yield performance is
unitless based on its definition. Therefore, RMSE of the models is
unitless, as well. Then,we ran themodels on the testing data and picked
the one that gave us the lowest RMSE. In the training phase, parameters
for the models were tuned to minimize RMSE. The final model was
picked based on the lowest RMSE obtained in the testing phase.

The parameters of the models were tuned as follows:

• Adaboost (with maximum depth 3, 1000 estimators, learning rate 1
and a linear loss function),

• decision tree (with minimum number of samples required to split an
internal node equal to 2 and maximum depth is set as default which
means nodes are expanded until all leaves are pure or until all leaves
contain less than 2 samples),

• random forest (with 10 estimators andmaximumnumber of variables
in each split equal to total number of variables)

• neural network (epoch50, batch size 32, andadropout layerhasbeen
addedtoeveryhiddenlayer[3layersintotal]withadropoutrateof0.5),

• XGBoost (with 1000 estimators, maximum depth 5, α = 10, and sub
sample ratio of columns when constructing each tree is 0.5) and,

• GBM (with 1000 trees and shrinkage rate equal to 0.05)

The analyses were performed using Python 3.7.5.
Fig. 3. Relative importance of the variables in the feature selection process. A GBMmodel was
Variables tester, inbred, tester cluster and inbred cluster have non-zero relative importance in

4

3. Results

3.1. Variable selection

To evaluate the effect of given variables on the yield, we utilized a
GBM model. The results indicated that the only variables with nonzero
relative importance were inbred, tester and inbred cluster and tester
cluster. As shown in Fig. 3, variable tester has the highest relative impor-
tance (63.5) among all of the variables and, variables year and location
have appeared in the model with zero relative importance. Therefore,
we concluded that the environmental effects across the locations during
the 3-year time period for all the hybrids does not have a significant im-
pact on the crop yield. Thus, we removed these two variables from the
dataset. The final dataset contains 10,919 unique hybrids (with average
yield 0.9960 and standard deviation 0.0586).
3.2. Model development and performance analysis

Five different experiments were conducted using different seeds to
test the models. The data were encoded using three methods. The best
encodingmethodwas one hot encoding bywhichwe obtained themin-
imumRMSE among all themodels. Fig. 4 demonstrates the performance
of the models developed using data encoded with three encoding
methods.
utilized to identify the significant variables for further inclusion in the training procedure.
this model.



Fig. 4. Comparison of the model performance using different encodingmethods. The performance of the models was assessed using RMSE. The models with one hot encoding have been
observed to have the lowest RMSE (on average 0.0546).

Table 1
RMSE of the machine learning models in each experiment using data encoded with
one-hot encoding method.

Experiment Decision
tree

Adaboost GBM Random
forest

Neural
network

XGBoost

1 0.0644 0.0596 0.0548 0.0559 0.0539 0.0537
2 0.0655 0.0585 0.0534 0.0553 0.0520 0.0524
3 0.0667 0.0585 0.0540 0.0550 0.0510 0.0526
4 0.0621 0.0578 0.0520 0.0529 0.0520 0.0509
5 0.0646 0.0591 0.0539 0.0543 0.0539 0.0525
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Table 1 displays the performance of the machine learning models
with 5 different seeds. The data fed into these models was encoded
using one-hot encodingmethod. As shown in Table 1, XGBoost achieved
the minimum RMSE in 3 of the experiments and neural network has a
slightly better performance in 2 of them. However, on average XGBoost
outperformed the other machine learning models.

The RMSE achieved in the testing phase was 0.0561±0.0043 (aver-
age ± 95% confidence interval). Among them XGBoost and neural net-
work model had the minimum RMSE. According to the results (Fig. 4),
we decided to encode the data using one hot encodingmethod and pre-
dict the yield for the hybrids using the XGBoost model which provided
the lowest RMSE (0.0524) in the testing phase.
3.3. Comparing implemented models

As observed in Fig. 4 and Table 1, XGBoost outperformed all the
models due to using advanced regularization in loss function. On the
contrary, decision tree algorithm achieved the worst RMSE among the
testedmodels. This poor performancemostly happens because decision
tree models are week learners and prone to overfitting. The best RMSE
in each of the models is obtained when the data is encoded using one
hot encoding. The performance of XGBoost algorithm with integer
5

encoding is slightly better than feature hash encoding. The samepattern
holds true for Adaboost and GBMmodels. Random forest is observed to
have better performance compared to Adaboost and decision tree using
data encoded by one hot encoding and feature hashing encoding
methods. Neural network model outperformed Adaboost and random
forest in every encoding methods.

3.4. Decision making by predicting yield performance of new hybrids

Weapplied our selectedmodel on 1200 combinations of inbreds and
testers which were not tested before. The predicted yield performance
had an average equal to 0.9963 with standard deviation 0.0212
(Fig. 5). Among these combinations, the maximum and minimum
yield performance are 1.0610 and 0.8798, respectively. Moreover, we
observed that 38% of the combinations have a predicted yield perfor-
mance higher than 1 which means their predicted yield is higher than
the benchmark in the corresponding environment. Decision makers
can further use these predictions in their breeding programs to obtain
a superior level of yield performance. The combinations were grouped
by inbred cluster and tester cluster and the average of predicted yields
was calculated for each hybrid. The heat map of this data is shown in
Fig. 6. Using this figure, we can identify the combinations with high
performance.

3.5. Determining the role of a cluster in a hybrid

In theprovided data set, there are 14 clusters defined by theproblem
owner. In breeding programs, depending on the role of a parent in a hy-
brid, whether it is an inbred or a tester, the same yield performance
might not be obtained. Fig. 7 is provided to compare the distribution
of hybrids yield performance when we use these clusters in two main
roles, inbred and tester. As depicted in Fig. 7, clusters 1, 4, 5, 7 and 10 ap-
peared to have yield distributions almost the same when these clusters
were used in a hybrid as inbred or tester. On the contrary, we observe



Fig. 5. Distribution of the predicted yield performance for the untested hybrids by the XGBoost model. Yield performance is defined as the ratio of the hybrid performance to the
benchmark in that environment. 38% of the hybrids were predicted to have yield performance greater than 1. The dashed line indicates the average (0.9963).

Fig. 6. Heat map of the average predicted yield performance for untested combinations of inbred and tester clusters.
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Fig. 7. Distribution of yield performance of hybrids with clusters as inbred or tester. In each hybrid, there are two roles that a cluster can play, tester or inbred. The hybrids might show
different performance when a specific cluster is used as a tester or an inbred.
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that the same cluster would produce higher yield when it is the inbred
in a hybrid like clusters 2, 3 and 11 compared to the hybrids where we
have these clusters as tester. Clusters 9 and 14were only used as inbreds
in this dataset. This information can give decision makers a rough idea
on how to maximize yield by choosing which clusters to play the role
of inbred and which cluster to be selected as tester in a hybrid.
4. Discussion

In this study, advancedmachine learning techniqueswere applied to
create a yield estimation model for corn hybrids. Our proposed ap-
proach is unique from other previous prediction models in that
encoding step before training the model. Depending on what encoding
method is applied, the performance of models can be improved. As
shown in the results section, XGBoost model with one-hot encoded
data outperformed the other models.

In our study, XGBoost algorithm has the best performance among
the tested machine learning models due to the following reasons:
1) XGBoost can handle sparsity in the input variables more efficiently
compared to other tested models (Chen and Guestrin, 2016) and,
2) due to the regularization used in XGBoost model, this algorithm can
control overfitting which leads to higher performance (Nielsen, 2016).
This model has been widely used in different fields such as agriculture,
healthcare and finance (Ogunleye and Wang, 2019; Torlay et al., 2017;
Nobre and Neves, 2019). In our study XGBoost has shown to have the
best performance compared to other models. Same result was obtained
in several studies. Qin et al. (2018) proposed an XGBoost model to pre-
dict corn economic optimal nitrogen rate and this model outperformed
ridge regression and LASSO in specific time windows of their study. In
another study, XGBoost algorithm exhibited higher accuracy compared
to random forest in predicting soybean yield using data acquired by un-
named aircraft system (UAS) (Herrero-Huerta et al., 2020).
7

The proposed model can be used by managers or farmers to maxi-
mize yield by selecting the best hybrid. This machine learning tool can
be beneficial to the decision makers in two ways. First, since we only
used 4% of the possible hybrids to develop the model, it will help
them to lower cost by decreasing the number of hybrid breeding trials.
Second, the whole breeding process is not time-consuming anymore
because there is no need to wait for the results from field trials. This in-
formation can be obtained from the model in seconds.

For the future work, we firstly suggest to define a new criterion for
inbreds and testers clustering. In the current study, inbreds and testers
were merely clustered based on the genetic features. Thus, further re-
search could address novel clustering approaches that might be more
informative for yield prediction. Secondly, to attain amore accurate pre-
diction model, we could include new features in the dataset. Crop pro-
duction environment consists of numerous factors such as pests,
diseases and human activities which can cause substantial variations
in the crop yield. Although we showed that the variables year and loca-
tion do not have any significant impact on the yield performance, this
conclusion might have been obtained because of the counteraction be-
tween some factorswhich are not provided in the dataset. Therefore, in-
cluding further factors to the study could improve the performance of
the models.

5. Conclusion

This paper presents an application ofmachine learning algorithms in
agricultural data analysis. We implemented various methods on the
dataset provided in the 2020 Syngenta crop challenge in order to esti-
mate the performance of new corn hybrids using available tested hy-
brids. The results in the testing phase implied that XGBoost algorithm
has a superior performance among all implemented techniques. We
next predicted the yield performance of the new combinations of in-
breds and testers using our proposed XGBoost model and presented
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the summary of results. The results demonstrated that more than one
third of the new hybrids had indeed a higher yield performance com-
pared to the benchmark in the corresponding environment. These hy-
brids are identified as potentially more productive seeds. Therefor, our
proposed approach can be utilized by decision makers in breeding pro-
grams to select outstanding hybrids from inbred lines only by using a
sample of tested hybrids. Using machine learning tools such as the
model developed in this study can lead to higher yield and lower cost
in agricultural industry.
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