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Abstract
Solar energy is one of the most powerful sources for many sustainable applications. Recently, efficient water distillation 
has attracted significant attention. The fresh water productivity depends on how efficiently the system harvests the 
incoming solar energy and converts it into useful heat. In the present work, nano-coated absorber plates (NCAPs) were 
examined in the single slope solar still (SSSS) for clean water production. The NCAPs were CuO, MoO3 and ZnO, respec-
tively. The CuO-NCAP was fabricated with the thermal evaporation method while the radio-frequency Magnetron Sput-
tering technique was used to fabricate the MoO3 and ZnO NCAPs. The attained particle size of the CuO, MoO3 and ZnO 
are 30–34 nm, 25–30 nm and 30–35 nm, respectively. The sphere (CuO), plate (MoO3), and wedge (ZnO) like morphologies 
are identified with field emission-scanning electron microscope. All the NCAPs and reference solar still were tested under 
the same environmental conditions. The climatic parameters (solar influx, ambient temperature and wind) and SSSS’s 
temperatures including water temperature (Tw), internal air temperature (Tint-air), inner cover (Tic), outer cover (Toc), and 
absorber plate temperature (TNCAP) were measured at 30 min intervals with the help of Type-J thermocouples. Herein, 
we present an evaporative heat transfer (hew), efficiency, and cost analysis of the SSSS with CuO, MoO3 and ZnO-NCAPs. 
Three different feed waters fetched from the surface well water, hill side well water and hill side pond water were used 
in this work for evaporation. The result reveals that the evaporation of conventional single slope solar still, CuO, MoO3 
and ZnO NCAPs were 2.1 l/m2 day, 2.9 l/m2 day, 2.7 l/m2 day and 2.6 l/m2 day, respectively.
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θ	� Bragg’s angle
σ	� Steffen Boltzmann constant (5.67 × 10−8 W/

m2 K4)

Subscripts
a, b, and c	� Lattice parameters
amb	� Ambient
b	� Basin
c	� Convection
e	� Evaporation
h, k, and l	� Miller’s indices
ic	� Inner cover
int-air	� Internal-air
oc	� Outer cover
w	� Water
r	� Radiation

Abbreviations
AFM	� Atomic force microscopy
AMS	� Air melamine sponges
BDL	� Below detection level
BGNPs	� Black gold nanoparticles
BW	� Bubble wrap
CS	� Carbon sponges
CSS	� Conventional solar still
CSSSS	� Conventional single slope solar still
EDS	� Energy dispersive spectrum
EPF	� Expanded polystyrene foam
FE-SEM	� Field emission-scanning electron 

microscope
KM plots	� Kubelka–Munk plots
HWW	� Hill well water
HPW	� Hill pond water
MIT	� Massachusetts Institute of Technology
NCAP	� Nanocoated absorber plate
NF	� Nanofluid
NP	� Nanoparticle
NR	� No relaxation
PCM	� Phase change material
PIL	� Porous insulating layer
PM	� Plasmonic membrane
SS	� Solar still
SSSS	� Single slope solar still
SSPCM	� Shape stabilized phase change materials
SWW	� Surface well water
TES	� Thermal energy storage
UV	� Ultraviolet spectra
WHO	� World health organization
XRD	� X-ray diffraction

1  Introduction

In recent decades, people have studied the effect of 
nanoparticles (NPs) as absorbers of solar energy in 
water evaporation systems. In traditional evaporation 
systems, the material’s absorptivity is not well matched 
with the broadband incident solar radiation range. But 
the emergence of nano materials coupled with solar 
energy shows a pathway to improved wastewater and 
seawater evaporation systems. The coated NPs absorb 
the incoming solar energy and convert it into useful heat 
(photo-thermal conversion). The heat generated by the 
NPs is used to evaporate the wastewater/seawater for 
reuse. Nano energy (NPs + solar energy) have been used 
to evaporate the wastewater for desalination [37, 39, 65, 
68, 69, 73].

These nano-enabled materials shift attention back 
towards the traditional solar-evaporation systems, sim-
ply called “solar stills” (SSs) [5–9, 11–13, 40, 42, 46, 53, 55] 
capable of producing more than 5 l/m2 day [9, 11]. The 
effect of nano-coated condensation surface was devel-
oped to augment the evaporation in the solar still [71]. 
The result was concluded that the silicone nano-coated 
condensation cover was improved the freshwater pro-
ductivity and yielded 5.8 kg/m2/day. The graphene oxide 
nanoparticle with phase change material (NPCM) was 
used in the tubular solar still to improve the evaporation 
rate. The result was inferred that, the productivity of with 
and without NPCM was 2.59 and 5.62 kg/m2/day [32]. 
Many researchers used real wastewaters in the solar still 
for purification. Tokumura et al. [61] experimentally stud-
ied the coffee waste water through solar light powered 
photo-Fenton reaction. The result concluded that the 
solar energy powered photo-Fenton process efficiently 
de-colorization the waste coffee effluent. Du et al. [18] 
investigated a removal of cytotoxicity through solar irra-
diation. The result reveals that the solar light reduced the 
cytotoxicity efficiently by 65% under 12 h of solar irra-
diation. Few other methods are involving the treatment 
of wastewater including zero-valent iron treatment [62], 
electrocoagulation-electro oxidation process [24], zinc-
oxide nanoparticle [52], photo-Fenton reaction [60] and 
removal of Cr(VI) process [57]. The modified cotton cloth 
was used for different application in the research nowa-
days including water treatment [35, 67], SiCl4 coated cot-
ton cloth for oil removal [25], carbonized cotton cloth as 
supercapacitors [23, 64], removal of toxic dye reduction 
[2], and electro-catalyst and splitting [72].

Solar still can evaporate any kind of wastewater for 
purification. Researchers used sea water [70, 72], river 
water [20], industrial wastewater [20] and synthetic 
water [69] in the solar still. The water quality result 
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reveals that the parameters greatly improved after 
evaporation [22, 34, 51]. The sustainable cost-effective 
clean water production is the welcome addition for 
eco-friendly environment. Further, some recent inves-
tigations in the absorbing materials in the solar still 
are follows. Suneesh et al. [58] experimentally studied 
the double slope solar still with cotton cloth on the top 
cover. The cotton cloths were laid on the solar still’s top 
cover to reduce the cover temperature. In this process, 
the evaporation rate was improved due to the tempera-
ture difference between the top cover and the basin liner 
was increased. Kabeel et al. [27, 28] experimentally stud-
ied the jute cloth knitted sand energy storage material 
in the solar still to augment the evaporation for desali-
nation. The capillary action by the jute cloth and sand 
energy storage in the distiller were produced of 5.9 kg/
m2 day. Agrawal et al. [1] investigated the effect of jute 
cloth on the solar still basin to enhance the evapora-
tion rate. Additionally, the jute cloths were laid on the 
vertical side of the solar still to improve the evaporation 
performance. The result was that the jute cloth enabled 
solar still enhanced the productivity of the distiller by 
62%. Modi and Modi [41] studied the small pack of cot-
ton cloth and jute material on the solar still. The pro-
ductivity results concluded that the small pack of jute 
cloth shows the maximum productivity (0.9 L/m2 day) 
than small pack of cotton cloths (0.9 L/m2 day). Arjunan 
[4] experimentally investigated the solar still with cot-
ton cloth energy storage for productivity enhancement. 
Four different cloths thickness including 2, 4, 6 and 8 mm 
were used in the solar still. The result elucidates that the 
6 mm cotton cloth gives the best productivity and 24.1% 
freshwater improvement over conventional solar still.

Researchers have used nanomaterials coated on 
sponges [20] and directly mixed with water as NFs [10]. 
Herein, an attempt is made to study CuO, MoO3 and ZnO-
NPs coated on a stainless steel 316 (SS316) substrate. Many 
authors have done their research work in solar distillation 
to purify the wastewater. In order to augment the evapo-
ration rate, efficient nano-structured materials were used 
in the solar distiller. In the present research, CuO, MoO3 
and ZnO nano-materials were coated on the substrate 

and investigated the evaporation rate enhancement. 
Researchers used nanomaterials in the solar distiller in the 
form of nano-fluids to improve the heat transfer rate. For 
the first time, the coated nanostructured materials were 
used in the solar distiller. Moreover, three different water 
samples, including surface well water (SWW) and other 
two samples were fetched from 4920 m high “Palamalai 
mountain” open pond water and open well water. For the 
first time, the water samples were collected from the high 
altitude location for the treatment process in the distiller. 
The NCAPs were characterized by X-ray diffraction (XRD), 
field emission scanning electron microscope (FE-SEM), 
energy dispersive spectrum (EDS) and corresponding col-
our mapping, UV–Vis spectroscopy, Raman spectroscopy, 
and atomic force microscope (AFM).

2 � Experimental setup and procedure

Herein, four identical SSSSs were designed and fabricated 
at Institute for Energy Studies, Anna University, India. The 
effective absorber area of each of the SSSSs was 0.50 m2. 
The vertical height of the sides are 0.35 m and 0.15 m, 
respectively. Transparent glass of thickness 3 mm was 
used for condensing for the SSSS with an angle of 11° 
from horizontal. The water level was replenished to 3 cm 
each day for the experiment [33]. The basin of the SSSS 
was painted black to enhance absorption. The CuO, MoO3 
and ZnO-NCAPs were 0.04 m × 0.04 m, respectively (30 
plates/sample). The NCAPs are arranged randomly at the 
bottom of the SSSS. The walls and bottom of the SSSS were 
sealed with bubble wrap (BW) to reduce heat loss to the 
surroundings [8]. A measuring jar was used to collect the 
condensed water from the distiller in every 30 min. J-type 
thermocouples were used to measure the temperatures of 
the water, inner cover, outer cover, internal air, NCAP (as 
appropriate) and ambient, Tw, Tint-air, Tic, Toc, TNCAP, and Tamb, 
respectively, at frequent time intervals (half an hour). Accu-
racy of the measuring instruments is shown in Table 1. The 
line diagram of the experimental arrangement is shown in 
Fig. 1. The BW insulated SS is shown in Fig. 2a, b.

Table 1   Accuracy of the 
measuring instruments

BDL below detection level, NR no relaxation, SWW surface well water, HWW hill well water, HPW hill 
pond water

S. no. Instrument Model/make Accuracy Range

1 Data acquisition system HP-Agilent 34970A ± 1 °C 0–100 °C
2 Pyranometer HUKSEFLUX CP02 ± 5 W/m2 0–1750 W/m2

3 J-type thermocouples GENERIC ± 0.1 °C 0–100 °C
4 Anemometer AVM-03 ± 2% 0–9990 CFM
5 Measuring jar Borosil ± 10 ml 0–1000 ml
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3 � Coating technique

All analytical grade chemicals were purchased from Hi-
media specialties and used without further purification. 
A 0.1 mm thick SS316 substrate and copper wire were 
purchased from local market, Coimbatore, Tamilnadu, 
India. The Cu, Mo and Zn metal target procured from 
Sigma Alrich (50 mm diameter and 3 mm thickness) with 
99.999% purity.

The SS316 substrates were polished using emery 
papers of 400, 1000 and 1500 grit sizes, followed by 
washing with acetone and deionized water 2–3 times. 
Then the substrates were kept under sonication for 1 h 
and were kept in a hot air oven overnight to remove 
impurities and organic residues thoroughly. The sub-
strates for MoO3 and ZnO were placed in reactive radio 
frequency (RF) magnetron sputtering system from Hut-
tenger, Germany in a customized down setup sputter-
ing mode with Ar+ (99.999%) used as working gas and 
O2 (99.999%) as reactive gas in 1:5 ratios. The Mo metal 
target was fixed in the working pressure of 10−2 mbar 
for depositing a thin layer. The MoO3 thin film seed 
layer thickness was 350 nm from a deposition rate of 

3 Å/s at 450 °C substrate temperature. Similar, the Zn 
metal target use the same working pressure and the 
ZnO seed layer thickness was 300 nm with a deposition 
rate of 3 Å/s at 400 °C substrate temperature [63]. Here, 
the surface contamination on the target material was 
removed by pre-sputtering the target at 0.01 mbar for 
10 min. The RF power for both MoO3 and ZnO was 150 W 
and the distance between the target and substrate was 
maintained at 50 mm. Likewise, the physical-thermal 
evaporation method was used to coat the CuO on the 
SS316 substrates [9, 11].

4 � Mechanism

The SS was properly insulated with the BW to trap the 
heat. The solar radiation strikes the SS and absorption 
takes place due to the blackened basin and NCAPs 
as applicable. The thermal energy is transferred by 
convective heat transfer to the basin water. This heat 
evaporates the water. Due to the temperature differ-
ence between the Tw and Tc, the evaporated water 
condenses on the cover and trickles down by gravity 
and is collected by the beaker. Adding nanomaterials 

Fig. 1   Schematic view of CSS and CuO, MoO3 and ZnO absorbers in the SSSS

Fig. 2   Photo of SSSS with bub-
ble wrap for experiment
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increases absorptivity in the basin, which increases 
the water temperature. Additionally, basin height [47], 
water depth [33], minimum glass temperature [44], and 
energy storage [16, 48] are key parameters involved in 
the productivity.

5 � Material characterization

The crystal structure of the NCAPs were analysed 
by Grazing Incidence X-ray Diffraction (GI-XRD) 
(Rigaku—Ultima IV) with a monochromatic Cu-Kα1 
(λ = 0.15406 nm), having a scanning rate of 3°/min and 
2θ range from 10° to 70°. Surface morphology was visu-
alized by using FE-SEM (FEI, QUANTA 250) at an accel-
erating voltage of 20 kV. The topological and surface 
roughness was determined by AFM (Veeco di-caliber). 
Raman spectra were recorded using a Raman spectrom-
eter (LABRAM-HR) with room temperature laser excita-
tion (λ = 514 nm). The optical spectra were recorded 
using a UV–Vis spectrophotometer (JASCO, V-660), and 
Kubelka–Munk (KM) plots were obtained.

6 � Results and discussion

The results and discussion comprises the findings of the 
XRD, FE-SEM, energy dispersive spectrum (EDS) and cor-
responding colour mapping, UV–Vis spectroscopy, Raman 
spectroscopy, AFM, effect of climatic parameters, recorded 
temperature variations in the solar still, recorded temper-
atures of NCAPs, evaporation rate, efficiency results, cal-
culated heat transfer coefficients, physical and chemical 
water quality analyses, comparison of results with other 
related works and economic analysis.

6.1 � XRD characterization

The XRD pattern of CuO coated NCAPs is shown in Fig. 3a. 
The diffraction peaks at 34.95° and 38.05° can be indexed 
to [002] and [111] planes of cubic phase; no other peaks 
were detected and well matched the standard data card 
(JCPDS file No: 45-0937) [9, 11]. The crystalline phase purity 
and structure of the MoO3 are determined by XRD. The 
XRD patterns of the MoO3 are shown in Fig. 3b. All the 
major diffraction peaks can be indexed to [020], [110], 
[040], [021], [111], [060], [200], [211] and [081] crystal 

Fig. 3   XRD results of NCAPs 
a CuO coated SS316, b MoO3 
coated SS316, c ZnO coated 
SS316 (arb arbitrary)
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planes. All the diffraction peaks are assignable to the 
orthorhombic phase of MoO3 nanosheets (JCPDS NO 
05-0508) obtained [43]. In addition, the X-ray diffraction 
peak intensities reveal different growth directions due to 
the fact that the substrate temperature of 450 °C produces 
highly crystalline single-phase orthorhombic MoO3. More-
over, the XRD patterns of the ZnO coated SS316 nanostruc-
tured thin films is shown in Fig. 3c. All peaks can be well 
indexed to the wurtzite hexagonal phase of ZnO (JCPDS 
36-1451) and no impurity phases are observed [3]. The 
sharp and strong peaks indicate that both samples have 
good crystalline nature.

The crystallite size (D) was calculated according to the 
Scherer’s equation

where ‘k’ is the shape factor, ‘λ’ is the X-Ray wavelength, 
‘β’ is the full width at half maximum and ‘θ’ is the Bragg 
angle. The attained crystal size of the CuO, MoO3 and ZnO 
are 30–34 nm, 25–30 nm and 30–35 nm, respectively. The 
lattice parameters of CuO, MoO3 and ZnO were calculated 
using Eqs. (2), (3), and (4):

where a, b, c are the lattice parameters, h, k, l are the miller 
indices and the d is the inter-planar spacing for the respec-
tive h–k–l. The inter-planar spacing is calculated using 
Bragg’s law in n� = 2d sin � [15].

6.2 � FE‑SEM analysis of CuO, MoO3 and ZnO NCAPs

The FE-SEM images of CuO, MoO3, and ZnO NCAPs are 
shown in Fig. 4a–c. The low and high magnification images 
of CuO-NCAP are shown in Fig. 4a. In this process, the 
conversion of Cu to CuO is dependent on the change in 
absolute temperature (1 °C/min). Moreover, the presence 
of oxygen plays a key role in changing the sphere-like mor-
phological arrangement in CuO [9, 11]. The low and high 
magnifications of the structure of MoO3 NCAP are shown 
in Fig. 4b. The combined effect of an increase in plasma 
power (150 W) and the substrate absolute temperature 
produces the plate-like morphology in MoO3 [17]. More-
over, FE-SEM images of ZnO NCAP are shown in Fig. 4c. 
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The effect of high substrate temperature and the oxygen 
ratio induces a multi-nucleation process which produces 
wedge-like morphology in ZnO  [38].

6.3 � Energy dispersive spectrum analysis

EDS and the corresponding colour mapping images are 
shown in Fig. 5a–f, respectively. The result is the atomic 
percentages of Cu (50%): O (49%) for CuO, Mo (25%): O 
(75%) for MoO3 and Zn (42%): O (58%) for ZnO. It is clear 
that there is a homogenous distribution of Cu, Mo and Zn 
(red) and O (green).

6.4 � UV–Vis analysis

The UV–Vis diffuse reflectance spectra of the NCAPs are 
shown in Fig.  6a–f. The CuO coated SS316 displays a 
strong reflection from 250 to 330 nm in the UV region 
as shown in Fig. 6a, d. Further, the band gap of CuO was 
estimated using a KM plot with [F(R)hν]1/2 versus photon 
energy (eV) of slope to be 1.8 eV in the UV region. Similarly, 
Fig. 6b, e shows the UV–Vis diffuse reflectance spectra of 
MoO3-NCAPs. The reflection peak and the calculated band 
gap energy are 430 nm and 3.2 eV. Further, Fig. 6c, f shows 
the ZnO-NCAPs strong reflection peak at 395 nm and band 
gap was 3.07 eV. The diffuse reflectance spectra for weakly 
absorbing samples can be expressed by the KM equation:

where R is the diffused UV reflectance, F(R) is KM function 
which corresponds to the absorbance, t is thickness and 
α is absorption coefficient. F(R) values were converted to 
the linear absorption coefficient. The calculated absorp-
tion coefficient of the CuO, MoO3 and ZnO were 666.22, 
552.43 and 290.79 cm−1, respectively [14].

6.5 � Characterization by Raman spectroscopy

The phase structure characterization of CuO, MoO3 and 
ZnO-NCAPs using Raman spectra is shown in Fig. 7a–c. 
Raman spectra show that three Raman active phonon 
vibrations of the 296  cm−1 peak correspond to the 
Ag mode and the 350 and 630 cm−1 peaks are the Bg 
mode for CuO-NCAPs [26]. Also, Fig. 7a shows that the 
MoO3-NCAPs have all sharp peaks that are well defined 
due to the highly crystalline nature of the materials. The 
high intense peaks identified at 822 cm−1 are the lay-
ered structure of symmetric and asymmetric vibrations 

(5)F(R) =
(1 − R)2

2R

(6)� =
F(R)

t
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of Mo–O bonds (O–Mo–O stretching modes), the band 
667 and 995 cm−1 are due to the triply and terminal oxy-
gen (O–Mo, Mo=O) stretching mode. The band at 130, 
160, 246, 290 and 340 cm−1 are wagging mode of vibra-
tions (O=Mo=O) of MoO3 nano-sheets structure. Conse-
quently, the peaks indicate good agreement with the 
orthorhombic phase of MoO3 nanostructure sheets [43]. 
Furthermore, Fig. 7b reveals that the lattice and phonon 
vibrations due to the high crystalline E2 (High) vibration 
at 437 cm−1 and 394 cm−1 belong to the A1 (TO) mode of 
vibrations. The vibrations at 331 cm−1 peaks for 3E2H–E2L 
correspond to multiple phonon scattering mode of ZnO 
coated SS316 substrate (see Fig. 7c). Finally, the substrate 
was thermally treated causing the peaks to be shifted 
slightly, and making stronger and sharper intensity in 
Raman spectra for XRD results [3].

6.6 � Characterization of AFM

The topography was investigated using AFM and the 
same is shown in Fig. 8a–c. All the NCAPs were studied 
across 1 × 1 mm scan area. The CuO-NCAP for entire sur-
face topography is nano-sphere like structure, with root 
mean square (RMS) of 120 nm height variation and aver-
age height of the nano-sphere of 1 μm (Fig. 8a). Also, the 
MoO3 coated SS316 substrate had height RMS of 11 nm 
and average height of nano-sheet of 250 nm (Fig. 8b). 
Finally, ZnO-NCAP, the RMS height is 22  nm and the 
average height of a nano-sheet is 220 nm (Fig. 8c). The 
uncoated and coated NCAPs are shown in Fig. 9a–d. The 
properties of CuO, MoO3 and ZnO-NCAPs are shown in 
Table 2.

Fig. 4   FE-SEM images of a CuO 
coated NCAP, b MoO3 coated 
NCAP, and c ZnO coated NCAP
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Fig. 5   EDS of CuO coated NCAP (a), MoO3 coated NCAP (b), and ZnO coated NCAP (c) and colour mapping images of CuO coated NCAP (red 
is Cu and green is O) (d), MoO3 coated NCAP (red is Mo and green is O) (e) and ZnO coated NCAP (red is Zn and green is O) (f)

Fig. 6   Results of Diffuse UV–Vis spectra for CuO coated SS316 (a), MoO3 coated SS316 (b), and ZnO coated SS316 (c) and results of KM plot 
vs Photon Energy of CuO coated SS316 (d), MoO3 coated SS316 (e), and ZnO coated SS316 (f)



Vol.:(0123456789)

SN Applied Sciences (2020) 2:1709 | https://doi.org/10.1007/s42452-020-03504-5	 Research Article

Fig. 7   Raman spectra charac-
terization of CuO coated SS316 
(a), MoO3 coated SS316 (b) and 
ZnO coated SS316 (c)

Fig. 8   AFM characterization of CuO coated SS316 (a), MoO3 coated SS316 (b), and ZnO coated SS316 (c)
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6.7 � Effect of solar radiation, ambient and wind 
velocity

The outdoor experiment was conducted at the rooftop 
of Institute for Energy studies Building, Anna University, 
India during the period of February 2018 to March 2018. 
Before the commencement of the experiment all four 
identical SSSSs had their inclined surface facing south to 
get the maximum solar influx. Figure 10 shows a photo of 
the experimental arrangement on the rooftop. The solar 
intensity, ambient temperature and wind velocity were 
recorded on 2018/03/22 and are shown in Fig. 11. Apart 
from the design aspects, the strong solar intensity, ambi-
ent conditions and appropriate wind velocity determined 
the productivity of the SS. The Tamb was measured near the 
SSs. The wind reduces the temperature of the top cover 
and enhances the condensation. The recorded solar inten-
sity was 503.4 W/m2 at 9:00 am and further increased to 
936 W/m2 by noon and then decreased after noon. The 

average solar intensity during the day was 625 W/m2. The 
ambient temperature was maximum of 37 °C at noon and 
average ambient temperature was 34 °C. The average wind 
velocity was 0.63 m/s during the SS operation from 9 am 
to 5:30 pm. Figure 12 shows the recorded average solar 
radiation, Tamb and wind for Feb 2018 to July 2018. Feb-
ruary to June are good for conducting solar experiments 
in Indian climatic conditions. The 13° South inclined SSSS 
directly faces the sun at solar noon on March 21. For Chen-
nai (Latitude 13° N), at solar noon, sun will appear in the 
sky at a zenith angle of 10.45° North on June 21 and 36.45° 
south on December 21 respectively. The mean zenith solar 
angle lies 13° (i.e. Latitude of Chennai) towards south from 
the vertical.

6.8 � Results of recorded temperatures in the distiller

Tw, Tint-air, Tic Toc of the CSSSS, SSSS-CuO, SSSS-MoO3 
and SSSS-ZnO-NCAPs are depicted in Fig. 13a–d. The 

Fig. 9   Pictorial view of a 
uncoated SS316 plate, b CuO-
NCAP, c MoO3-NCAP, and d 
ZnO-NCAP

Table 2   Properties of CuO, 
MoO3 and ZnO-NCAPs

S. no. Detail of the material CuO MoO3 ZnO

1. Material SS316 SS316 SS316
2. Thickness of SS316 (mm) 0.1 0.1 0.1
3. Mass of SS316 (g) 1.29 1.29 1.29
4. Coating method Thermal Evapo-

ration
RF Magnetron 

Sputtering
RF Magne-

tron Sput-
tering

5. Thermal conductivity (W/m. K) 76 30.7 29
6. Density (g/cm3) 6.4 4.6 5.6
7. Particle size (nm) 30–34 25–30 30–35
8. SEM morphology Sphere Plates Wedges
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absorptivity of the basin is the prime contributor to the 
rise the temperature in the SSSSs [56]. Apart from that, 
nanomaterials in the basin influence the heat transfer in 
the SSSS. The materials’ thermal properties and optical 
absorption characteristics play roles in the basin water 

temperature. The highest recorded Tw in the CSSSS, SSSS-
CuO, SSSS-MoO3 and SSSS-ZnO-NCAPs were 58.5  °C, 
65.8 °C, 62.4 °C and 60.2 °C, respectively. The changes 
in the graphs are mainly due to climatic parameters 
like solar radiation, ambient temperature and wind. 

Fig. 10   Photo of experimental 
arrangement

Fig. 11   Graphical view of solar radiaiton, ambient and wind
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Sometimes passing clouds causes sudden falls in the 
radiation and directly influence the temperature of the 
SS.

6.9 � The CuO, MoO3 and ZnO‑NCAPs in the SSSS

The CuO, MoO3 and ZnO-NCAP temperatures are illus-
trated in Fig. 14. The NCAPs were individually connected 
with J-type thermocouples to measure the variations in 
the temperature. The maximum recorded temperatures 
of CuO, MoO3 and ZnO NCAPs were 64.3 °C, 61.0 °C, and 
59.7 °C, respectively.

6.10 � Results of evaporation rate

The evaporation rate of SSSS with NCAPs are shown in 
Fig. 15. A reference CSSSS also operated with the modified 
SSSSs to measure the enhancement level. The AFM char-
acterization reveals that the surface roughness is higher 
for the CuO-NCAP than for the MoO3 and ZnO NCAPs. The 
surface roughness induces multiple scattering [66] and 
absorption on the surface of the CuO-NCAP. At the same 
time, since the NCAPs are submerged, the heat energy is 
efficiently transferred to the bulk water in the SSSS. So 
adding the nanomaterial in the SSSSs efficiently enhances 
the basin temperature. The thermal conductivity of CuO is 
higher than MoO3 and ZnO NCAPs. This may be why the 
CuO-NCAPs have higher productivity than the MoO3 and 

ZnO-NCAPs. The productivity of the CSSSS, CuO, MoO3 and 
ZnO-NCAPs were CSSSS, CuO, MoO3 and ZnO-NCAPs were 
2.1 l/m2 day, 2.9 l/m2 day, 2.7 l/m2 day and 2.6 l/m2 day, 
respectively. The total productivity is the sum of day and 
night time evaporation.

6.11 � Evaporation efficiency

The evaporation efficiency of the SSSS is calculated by 
Arunkumar et al. [7]

where M is the mass of the evaporated water (kg), L is the 
latent heat of evaporation during the phase-change (J/kg), 
I is the horizontal solar influx (W/m2), A is the horizontal 
area of the SSSS and t is the time (s). The calculated effi-
ciency of the CSSSS, SSSS-CuO, SSSS-MoO3, and SSSS-ZnO 
NCAPs were 23.3%, 32.1%, 30.5% and 28.9%, respectively. 
The CuO-NCAPs enhanced the efficiency by 38% over the 
CSSSS.

6.12 � Heat transfer coefficients

The heat transfer coefficients are calculated as follows:
The convective heat transfer coefficient between water 

and glass is estimated as [36],

(7)� =
M × L

I × A × t
× 100

Fig. 12   The aveage solar radiation during the day on a horizontal surface, ambient and wind for the months from February to July 2018
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Fig. 13   Recorded temperature profile of CSSSS (a), SSSS-CuO (b), SSSS-MoO3 (c) and SSSS-ZnO NCAPs (d)

Fig. 14   Recorded temperatures of CuO, MoO3 and ZnO-NCAPs Fig. 15   Fresh water productivity of CuO, MoO3, ZnO-NCAPs and 
CSSSS
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The evaporative heat transfer coefficient between water 
and glass is given as [59],

The radiative heat transfer coefficient between water 
and glass is given as [36],

where,

The convective heat transfer coefficient from the SSSS 
cover to ambient is calculated as [59],

The radiative heat transfer coefficient to ambient is esti-
mated as [59],

where

(8)

hc,w−ic = 0.884

[(
Tw − Tic

)
+

(
Tw + 273.15

)(
pw − pic

)
(
268900 − pw

)
]1∕3

(9)he,w−ic = 16.27 × 10−3 × hc,w−ic

[(
Pw − Pic

)
(
Tw − Tic

)
]

(10)
hr,w−ic = �effective�

[(
Tw + 273.15

)2
+
(
Tic + 273.15

)2][
Tw + Tic + 546

]

(11)�effective =

⎛⎜⎜⎝
1

1

�ic
+

1

�w
− 1

⎞⎟⎟⎠

(12)hc,oc−amb = 5.7 + 3.8u

(13)

hr,oc−amb =�effective�
[(
Toc + 273.15

)2
+
(
Tamb + 273.15

)2]

[
Toc + Tamb + 546

]

Fig. 16   Evaporation heat transfer coefficient of CuO, MoO3 and 
ZnO-NCAPs
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Figure 16 shows the evaporation heat transfer coef-
ficient (hew) of SSSS-NCAPs. The calculated evaporation 
heat transfer for SSSS-CuO, SSSS-MoO3, and SSSS-ZnO-
NCAPs were 43.1 W/m2K, 28.84 W/m2K, and 25.53 W/m2K, 
respectively.

6.13 � Physical and chemical water quality analysis

The physical and chemical water quality results are 
illustrated in Table  3. Three different water samples 
were evaporated by the CuO-NCAPs. Among the three 
samples, one of them was fetched from the surface well 
water (SWW) which was situated near the industrial area 
of Kanjikode, Kerala state of India and other two sam-
ples were fetched from 4920 m high Palamalai moun-
tains (11.00° N and 77.97° E) open pond water (HPW) 
and well water (HWW). The water quality test (Ref. No. 
31-4098/2018-19) was carried-out at the Kerala Water 
Authority, Quality Control District Laboratory, Palak-
kad, India. The result concluded that the water quality 
was improved after evaporation and found acceptable 
according to the range prescribed by the Indian stand-
ard (IS 10500-2012).

pw = e

(
25.314−

5144

Tw+273.15

)

pc = e

(
25.314−

5144

Tic+273.15

)

6.14 � Comparison of results with recent 
in nano‑enabled SSs

Many researchers have used NPs in different ways in SSs 
to enhance the freshwater productivity (see Fig. 17). NPs 
have been doped into black paint [33], mixed with bulk 
water as a NF [19, 29, 30, 45]; Sahota and Tiwari [49, 
50], integrated with phase change materials (PCM) [27, 
28, 54] and coated on the substrate [9, 11]. Apart from 
that, various NPs have been used as a NF to improve the 

Fig. 17   Comparison of various nanomaterials in the SS with present work (PW)

Table 4   Cost analysis of solar still with absorbing materials (NA not 
applicable)

US$ CSSSS SSSS with 
CuO-NCAP

SSSS with 
MoO3-NCAP

SSSS with 
ZnO-
NCAP

Galvanized iron 30 30 30 30
Top cover 6 6 6 6
Black paint 3 3 3 3
Fresh water port 2 2 2 2
Bubble wrap 1.55 1.55 1.55 1.55
CuO-NCAP NA 8 NA NA
MoO3-NCAP NA NA 9 NA
ZnO-NCAP NA NA NA 5
Pipes 2 2 2 2
Labour charge 15 15 15 15
Totals (USD) 59.55 67.55 68.55 64.55
L/m2/day (USD) 2.1 2.9 2.75 2.6
$/L water (USD) 0.0097 0.0080 0.0085 0.0085
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efficiency of the SS. Researchers experimented with the 
following NFs: CuO [21], Al2O3 [19], SnO2 [19], ZnO [19] 
and graphite [31] and they found that the NF improved 
the performance of the SS. The NPs in the SSs increased 
the basin absorptance and transferred the heat to the 
bulk water.

6.15 � Economic analysis

The cost of various components of the SSSSs are shown in 
Table 4. The cost of the CSSSS and SSSS with CuO, MoO3 
and ZnO NCAPs were $59.55, $67.55, $68.04 and $64.55, 
respectively. The SSSS-CuO NCAP with an output of 2.9 l/
m2/day, a life of 15 years, an equivalent of 80% sunny days 
and interest of 6% yields approximately $0.0080/L. Simi-
larly, it is $0.0097/L for CSSSS, $0.0085/L for SSSS-MoO3 
NCAP and $0.0085/L for SSSS-ZnO NCAP. Thus, the SSSS-
CuO NCAP has the lowest cost of water.

7 � Concluding remarks

In summary, three nano-enabled absorbers CuO, MoO3 
and ZnO were examined in SSSSs under natural solar 
influx. The NCAPs were allowed to contact directly with 
the water to transfer heat. The prepared NCAPs were 
characterized by the XRD, FE-SEM, EDS-colour mapping, 
UV–Vis, Raman spectroscopy, and AFM analyses. Three 
different water samples were examined in the SSSSs. 
The distilled output of the CSSSS, CuO, MoO3 and ZnO 
NCAPs were CSSSS, CuO, MoO3 and ZnO NCAPs were 
2.1 l/m2 day, 2.9 l/m2 day, 2.7 l/m2 day and 2.6 l/m2 day, 
respectively. Similarly, the calculated evaporation effi-
ciencies of the CSSSS, CuO, MoO3 and ZnO NCAPs were 
23.3%, 32.1%, 30.5% and 28.9%, respectively. The evapo-
ration heat transfer coefficient of the CuO-NCAPs was 
higher (43.1 W/m2 K) than the MoO3 and ZnO NCAPs. 
Therefore, the CuO-NCAPs has the highest productiv-
ity and efficiency. The CuO-NCAPs enhanced the ther-
mal conductivity and heat transfer of the basin due to 
their rough surface. The coated NPs on the substrate 
absorbed the incoming solar radiation due to multiple 
scattering. There was more reflection due to the smooth 
surface of the MoO3 and ZnO NCAPs. Finally, the physi-
cal and chemical tests reveal that the water quality was 
improved after evaporation and found within the limit of 
IS 10500-2012 drinking water quality standards.

8 � Future work

To increase the evaporation rate of wastewater in the 
SSSS, natural hydrophilic porous materials such as wood 
and leaves could be carbonized. The carbonized wood and 
leaves would be capable of absorbing the incoming solar 
radiation (broadband absorption) perhaps better than 
conventional absorbers. These materials could also act as 
sensible heat storage.
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