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Abstract
This paper reports a review on the relationship between seismic activity and the emissions of CO2 and radon. Direct, indirect 
and sampling methods are mainly employed to measure CO2 flux and concentration in seismic areas. The accumulation 
chamber technique is the mostly used in the literature. Radon gas emission in seismic areas can be considered as a short-term 
pre-seismic precursor. The study and the measurement of radon gas activity prior to earthquakes can be performed through 
active techniques, with the use of high-precision active monitors and through passive techniques with the use of passive 
detectors. Several investigators report models to explain the anomalous behavior of in-earth fluid gasses prior to earthquakes. 
Models are described and discussed.
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1  Introduction

Earthquakes are large-scale natural phenomena which, 
despite their inevitable occurrence when certain geologi-
cal conditions are met, are difficult to predict (Cicerone 
et al. 2009; Hayakawa et al. 2010). Earthquake prediction 

is a challenging subject for the scientific communitiy, with 
sereval reports on the pursuit of credible and unambigu-
ous precursors (Cicerone et al. 2009; Khan et al. 2011; 
Shrivastava 2014). Given the difficulty of delineating the 
different stages of earthquake generation, several papers pre-
sent significant research on features hidden in pre-seismic 
time series that can hint at the emergence of a forthcom-
ing earthquake (Petraki et al. 2015). Based on a generalized 
methodology, at some phase during the preparation of an 
earthquake, some type of pre-seismic activity is expected 
that can hopefully be detected by recurrent observations in 
the vicinity of the epicenter of the earthquake, or near the 
displacement or near the fracture zone (Khan et al. 2011). 
Earthquake prediction is multifaceted a-priori and should, 
ideally, provide estimates of the time, epicenter and magni-
tude of occurrence, especially for strong earthquakes (Cic-
erone et al. 2009). It has been viewed under different aspects. 
One aspect is the discrimination in five steps (Hayakawa 
et al. 2010): (a) preparation step where maps are created 
of all possible focal areas with potential magnitude sizes 
and forecast periods; (b) long-term forecasting step up to 
10 years; (c) intermediate forecasting step up to 1 year; (d) 
short-term forecasting step ranging from one week to one 
month; (e) immediate prediction step, where an earthquake 
is predicted within a day or less. This categorization is 
guided by the current level of physical understanding of the 
geological mechanisms leading to earthquakes and by the 
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society’s needs for a scientifically based preparedness before 
a strong earthquake occurrence. Hayakawa et al. (2010) 
reported another aspect: (1) long-term prediction between 
10 and 100 years; (2) intermediate prediction between 1 and 
10 years; (3) short-term prediction. The short-term forecast 
is the most highly regarded in terms of the protection of the 
general population, particularly, in very seismic areas. No 
one-to-one correspondence between specific seismic events 
and recording anomalies was established in either scheme 
of predictions (Nikolopoulos et al. 2014) and this should be 
emphasized.

In recent years, several methodologies have been pub-
lished and different experimental approaches have been 
employed for the study of seismic activity and the discovery 
of credible seismic precursors. Several researchers (Dud-
dridge and Grainger 1998; Chiodini et al. 2011; Cicerone 
et al. 2009) asserted that soil gas emission in seismic areas 
can be utilised to understand the relationship between the 
mechanisms of gas generation, release and migration dur-
ing earthquakes. CO2 is among the important gasses for the 
search of pre-seisimc precursors. In addition, considering 
that CO2 can be easily detected, it has also great significance 
for geosciences, in general. With the use of direct and indi-
rect methods, CO2 can be used to monitor volcanic activity 
(Frondini et al. 2004; Marty and Tolstikhin 1998), study the 
exchange of chemical compounds between soil and atmos-
phere (Morner and Etiope 2002; Zeebe and Caldeira 2008) 
and explore the relationship between CO2 emission and 
the internal processes within active faults (Chiodini et al. 
2004; Cioni et al. 2007; Ciotoli et al. 2016; Italiano et al. 
2009; Martinelli and Plescia 2004). The majority of the 
studies regarding the emission of soil CO2 in seismic areas 
determine both the flux and the concentration of CO2 and 
other gases present in the soil using, mainly, direct methods, 
such as the accumulation chamber technique (Ciotoli et al. 
2016; Lewicki et al. 2003; Quattrocchi et al. 2012) and the 
dynamic concentration technique, but also, by using indi-
rect methods, e.g., sampling and isotopic techniques (Ciotoli 
et al. 1998; De Paola et al. 2011; Duddridge and Grainger 
1998; Italiano et al. 2009).

Radon (222Rn) is a radioactive inert gas with a half-life 
of 3.82 days that has been acknowledged as a significant 
trace gas in hydrogeology, earth and atmosphere studies 
because of its ability to travel at comparatively long dis-
tances from its host rocks, as well as, its traceability, even, 
at very low levels (Richon et al. 2007). For this reason, 
the variations of radon and its progeny have been studied 
in geothermal fields (Whitehead et al. 2007), active faults 
(Al-Tamimi and Abumura 2001; King 1985), volcanic 
processes (Immè et al. 2005; Morelli et al. 2006) and in 
seismotectonic environments (Chyi et al. 2005; Cicerone 
et al. 2009; Khan et al. 2011; Majumdar 2004; Singh et al. 
2010). While other gases have also been considered as 

tracers of hidden faults, the bulk of related reports in the 
scientific literature are focused on radon (Petraki 2016; 
Yalm et al. 2012) and thoron (220Rn), which is the most 
significant isotope of radon in soil (Nikolopoulos et al. 
2012). Local increase in radon emission along faults could 
be caused by several processes, including precipitation, 
atmospheric pressure and temperature changes, alteration 
of parent nuclide concentrations due to the differentiation 
of the local radium content in the soil, increase of the 
exposed area of faulted material by grainsize reduction 
(Koike et al. 2009; Mollo et al. 2011), and carrier gas flux 
around and within fault zones (e.g., Annunziatellis et al. 
2008; King et al. 1996).

The migration of CO2 and radon gas by diffusion and/or 
advection along buried active faults can generate shallow 
anomalies with concentrations significantly higher than 
the background levels. These anomalies can provide reli-
able information about the location and the geometry of 
the shallow fracturing zone as well as the permeability 
within the fault zone (Annunziatellis et al. 2008; Baubron 
et al. 2002; Ciotoli et al. 2007; King et al. 1996; Sciarra 
et al. 2014). They can be attributed to the overall inter-
nal active fault procedures, because active faults are weak 
zones composed of highly fractured materials and fluids 
and, hence, favor gas leakage due to the increased perme-
ability of the soil (Baubron et al. 2002).

2 � Available Techniques and Methods

The measurement of CO2 flux and CO2 concentration in 
seismic areas is performed, usually, by employing both 
indirect and direct methods. The calculation of the CO2 
flux from the concentration gradient in the soil is an exam-
ple of an indirect method (Baubron et al. 1990). According 
to Chiodini et al. (1998), indirect methods are based on the 
determination of CO2 concentration in soil gas at different 
depths. Obviously, these methods can be applied only to 
steady-state diffusive flux measurements (Chiodini et al. 
1998). In this case, the flux values are calculated according 
to the one-dimensional steady-state model of gas transport 
through a homogeneous porous medium. But this meth-
odology requires knowledge of some soil properties like 
air-filled porosity, tortuosity and permeability, which are 
generally difficult to determine. According to Fick’s first 
law, parameters like soil porosity v and diffusion coeffi-
cient D are estimated following the equation:

where the steady-state diffusive flux is Φd and dC∕d� is the 
concentration gradient.

(1)Φd = −vD(dC∕d�)
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Regarding the advective flux, the action of the pressure 
gradient ( dP∕d� ) generates the movement and it is described 
by Darcy’s law:

where the advective flow is Φa , k is the permeability and � 
is the viscosity of the fluid. Direct methods for the measure-
ment of CO2 flux from soil require dynamic or static proce-
dures. Other methods have been developed to evaluate more 
accurately and make rapid flux measurements. Some of these 
are based on the absorption of CO2 in a caustic solution, e.g., 
the alkali adsorption method (Anderson 1973; Kirita 1971) 
and on the measurement of the difference in CO2 concentra-
tions between inlet and outlet air in a closed chamber (e.g., 
open flow infrared gas analysis, (Nakadai et al. 1993; Wit-
kamp and Frank 1969). Other widespread methods for meas-
uring soil CO2 flux are the accumulation chamber method 
(Chiodini et al. 1998; Norman et al. 1992; Quattrocchi et al. 
2012) and the dynamic concentration method (Camarda 
et al. 2006; Giammanco et al. 1995; Gurrieri and Valenza 
1988). The first method is based on the CO2 accumulation 
rate inside an open box (chamber) of known volume. The 
measurement is performed at ground level and the flux value 
is calculated by a theoretical equation, according to the 
volume, pressure and temperature values of the chamber’s 
atmosphere. The dynamic concentration method has been 
used in several field applications since 1988 (Badalamenti 
et al. 1991; Camarda et al. 2006; De Gregorio et al. 2002; 
Diliberto et al. 2002; Giammanco et al. 1998). This method 
has been, principally, applied to the monitoring of volcanic 
activity and in the study of the relationship between soil 
degassing and tectonics. The dynamic concentration method 
consists of measuring the CO2 content in a mixture of air and 
soil gas, which is obtained by a special probe. As deduced 
by Gurrieri and Valenza (1988) and Camarda et al. (2006), 
the dynamic concentration is proportional to the soil CO2 
flux according to an empirical relationship, which is experi-
mentally determined for CO2 flux values ranging between 

(2)Φa = (k∕�)(dP∕d�)

0.44 and 9.2 kgm−2day−1 and the permeability of soil which 
is, typically, of the order of 24 μm2. Gurrieri and Valenza 
(1988) suggested the use of a soil pipe installed inside the 
ground that it is opened at the base (1.3 cm in diameter and 
50 cm long). A pre-determined flux of gas is pumped out 
from the base of the pipe and the CO2 concentration of this 
gas is continuously measured. The obtained gas is replaced 
by atmospheric air entering the top of the pipe. After a given 
time, the CO2 concentration reaches a constant value called 
“dynamic concentration (Cd)” which is proportional to the 
flux of CO2 from soil. According to Camarda et al. (2006), 
Gurrieri and Valenza (1988) and Italiano et al. (2009), the 
formula to calculate the CO2 flux with the dynamic concen-
tration is the following:

where the CO2 flux is given by Φ
t
 , the flow rate of the pump 

is F and the dynamic concentration Cd is the measured CO2 
concentration (Fig. 1a). However, to calculate CO2 flux from 
soil, Cd must be multiplied by a factor which depends on 
the experimental device, working conditions, as well as, 
the physical characteristics of the soil in each measurement 
point. Besides, all dynamic procedures are additionally 
affected by possible overpressurization or depressurization 
of measurement device depending upon the design of the 
instrumental apparatus and the magnitude of the air flux 
chosen by the operator (Kanemasu et al. 1974).

Other researchers have performed soil CO2 flux meas-
urements using static techniques which utilize an alkaline 
solution (e.g., Cerling et al. 1991; Lieth and Quelletle 1962), 
or solid soda lime (Cropper et al. 1985; Edwards 1982) to 
absorb CO2 that is released from the soil into an inverted 
and closed container. The minimum detection limit of the 
soda-lime technique is less than 0.7 g m−2 day−1 but the 
measurement time is long (typically 24 h). Another static 
technique for measuring the soil CO2 flux determines the 
rate of increase in the CO2 concentration within an inverted 
chamber placed on the soil surface. This technique, known 

(3)Φ
t
= FC

d

Fig. 1   a Sampling technique. b 
Accumulation chamber method. 
c Passive technique
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as the accumulation chamber method or closed-chamber 
method, has been successfully used in agricultural sciences 
to determine soil respiration (Bicalho et  al. 2014; Pan-
osso et al. 2012; Parkinson 1981) and to measure the flux 
from soil of other gaseous species, e.g., N2O (Kinzig and 
Socolow 1994). Raich et al. (1990) measured CO2 efflux 
rates by means of both the soda-lime method and the closed-
chamber technique (using gas chromatographic determina-
tion of CO2 concentration increase), to compare these two 
techniques. No consistent differences in measured soil CO2 
flux were found in the range 1.7–11.4 gm−2day−1. Accord-
ing to Chiodini et al. (1998) and Quattrocchi et al. (2012), 
the accumulation chamber method (Fig. 1b), or “zero depth 
at time zero” chemical method is the best way to measure 
soil CO2 flux values of volcanological-geothermal interest 
and seismic areas, as it is an absolute method that does not 
require either assumptions or corrections dependant on soil 
characteristics. In addition, these investigators reported that 
if the soil CO2 concentration is higher than the CO2 con-
centration within the air, the accumulation chamber method 
permits the calculation of soil CO2 flux ( ΦCO2 ) according 
to the equation:

where a is the slope obtained by the relationship between 
CO2 concentration and Hc is the height of the chamber.

In recent years, a new methodology concerning the evalu-
ation of CO2 flux is increasingly applied thanks to techno-
logical evolution and this is none other than the application 
of satellite observations. These kind of study depends by the 
applications of high-quality sensors placed on satellites to 
estimate CO2 surface fluxes around the world. The Coperni-
cus Atmosphere Monitoring Service (CAMS) allows access 
to satellite data acquired and permits the reconstruction of 
reports and maps of CO2 gas emissions at a global scale. 
Moreover, the most important used satellites are owned 
by the Japanese Greenhouse Gases Observing Satellite 
(GOSAT) and NASA’s second Orbiting Carbon Observa-
tory (OCO-2). These satellites can give, in the future, impor-
tant results regarding the global CO2 efflux and, with dedi-
cated sensors and satellites, investigate with high accuracy 
in selected places as seismic areas to detect possibly CO2 
flux variations from soil that could be consider as seismic 
precursors.

Radon flux from soil is also described similarly to the flux 
of CO2, namely through Eqs. (1) and (2) (Nazaroff 1988). 
The methodologies described so far for CO2 can also been 
applied to the estimation of radon flux from soil. However, 
radon measurements, due to every possible source (soil, 
groundwater, atmosphere, etc.), are usually performed via 
active and passive methods. Active techniques employ high 
precision and high-cost instruments while passive techniques 

(4)ΦCO2 = aHc

employ low-cost detectors (e.g., Solid State Nuclear Track 
Detectors (SSNTDs)) that integrate the measurements over 
long-time period (Fig.  1c). Active instruments provide 
quick measurements (from 1 to 60 min per measurement, 
usually, 10–15 min per measurement) that can be employed 
efficiently for field measurements. Active techniques do not 
necessitate special personnel and can also be controlled 
remotly (Nikolopoulos et al. 2012, 2014). On the other hand, 
passive techniques require specific laboratory application of 
certain techniques (chemical or electrochemical etching) and 
measurement through the optical microscope or automatic 
techniques, all of which need specific specialised laboratory 
personnel to implement. Well-known instruments for active 
radon measurements are the Alpha Guard (capable of meas-
urements in soil water, groundwater and air in atmosphere), 
the Sarad GmBh Instruments, the Baracol VDG Instrument, 
the RADIM and others. All these active monitors employ 
certain probes that either collect through pumping and diffu-
sion radon from soil or they measure radon in water through 
closed vasel circulation or water circulation.

3 � CO2‑Radon Emissions Versus Seismicity

Significant information about the spatial distribution and 
morphology of a fracturing zone can be provided by the 
detection of disturbances in seismic areas. Among the 
various seismic precursors, CO2 present in soil has been 
acknowledged as an important candidate and it is also sig-
nificant in other geological applications (Cicerone et al. 
2009). For example, Camarda et al. (2016) reported CO2 
flux measurements in a seismic area and outlined the impor-
tance of CO2 flux to find credible seismic precursors (see 
Fig. 2). These authors reported also daily variation of soil 
CO2 flux in a seismic area from 20 to 320 gm−2day−1. De 
Paola et al. (2011) reported research on the behaviour of CO2 
flux from carbonate rocks stress in seismic areas. Cicerone 
et al. (2009) reported the importance of soil CO2 measure-
ments on precursory activity of impending earthquakes. 
Lewicki et al. (2003) reported that CO2 flux measurements 
delineate the behaviour of CO2 in seismic areas. The authors 
reported CO2 values as high as 428 gm−2day−1 near the fault 
zone using the accumulation chamber technique. Quattroc-
chi et al. (2012) reported CO2 flux measurements using the 
accumulation chamber method applied to an Italian active 
fault area. They also reported the relationship between CO2 
flux and certain geological patterns. CO2 flux range was 
from 0.134 to 1471.02 gm−2day−1. Ciotoli et al. (2016) also 
reported CO2 flux measurements in a seismic area using the 
accumulation chamber method. The CO2 flux value range 
was from 10 to 88 gm−2day−1. Additionally, according to 
Werner et al. (2014) long-term CO2 emission can be used 
effectively to investigate seismicity.
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Seismic area structures are associated with scale-depend-
ent phenomena and can be investigated with several tech-
niques, from which, the fractal ones are of great signifi-
cance. Towards this, Perfect and Kay (1995) and Eghball 
et al. (1999) asserted that phenomena with scale-dependent 
spatial variability can be studied through the concept of 
fractal dimension. The technique has also been applied to 
non-continuous spatial and temporal phenomena (Mandel-
brot 1977). According to Pachepsky and Crawford (2004), 
fractal dimension applied to the characterization of soil 
can provide an evidence of scale regularity and irregular 
behavior. Scale dependency and spatial variability have 
been explored in the relationship between CO2 flux and soil 
attributes (Allaire et al. 2012; Ryu et al. 2009). In addition, 
Panosso et al. (2012) reported that the spatial variability of 

CO2 flux is partially subject to experimental semi-variogram 
adjustments, which must be properly selected. This subjec-
tivity can be attributed to the dependence of the experi-
mental semi-variogram on grid characteristics, such as the 
direction and sampling distance used at the experimental site 
(Burrough 1981; Palmer 1988). Previous studies have used 
different range values of CO2 flux for different locations, soil 
types and vegetation covers (Konda et al. 2008; Kosugi et al. 
2007; La Scala et al. 2000; Ohashi and Gyokusen 2007). 
Certainly, new approaches and more research are needed to 
better understand the spatial variability of CO2 flux at differ-
ent scales (Bicalho et al. 2014). Some studies were carried 
out to understand the fractal behavior in seismic areas (Cha-
moli and Yadav 2015). According to Weinlich (2014) and 
Fisher et al. (2017), CO2 fluxes in seismic areas can be used 

Fig. 2   Example of continuous soil CO2 fluxes detected in four different stations related with the seismicity, from Camarda et al. (2016)
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to estimate the relationships between CO2 gas emissions and 
seismic activity (Table 1).

Regarding radon anomalies, after decay, radon dissolves 
in the pores and fluids of the soil and from there to surface 
and underground waters and the atmosphere (Barkat et al. 
2018). For example, the first evidence of anomalous radon 
in groundwater was, historically, found after the 1966 Great 
Tashkent Earthquake (Sadovsky et al. 1972). Thereafter 
several studies (e.g., King 1980, 1985; Ohno and Wakita 
1996; Virk et al. 2001) have suggested that the fluctuation 
of radon concentration in water could be an effective tool for 
earthquake prediction. Negarestani et al. (2014) designed 
a continuous monitoring network for earthquake predic-
tion studies of radon gas and concluded that such sources 
are useful to hot springs. Radon levels in groundwater 
increase before or after earthquakes in regions where high 
stress accumulation occurs within the earth’s crust (Tarakc 
et al. 2014). Meteorological parameters like precipitation, 
temperature, humidity, pressure and local geological con-
ditions are some of the factors that control the process of 
subsurface degassing which force the emanation of radon 
gas but the geophysical changes are the dominant factors 
when present (Immè and Morelli 2012). Due to this, radon 
in groundwater and soil has been employed extensively in 
earthquake prediction studies and is considered as a poten-
tially credible short-term precursor (Cicerone et al. 2009; 
Petraki 2016). Significant pre-seismic radon anomalies 
have been reported in soil gas, thermal spas, atmosphere 
and groundwater (Ghosh et al. 2012; Majumdar 2004; Singh 
et al. 2010). It should be noted though, that there is no uni-
versal model to describe the various geo-physical mecha-
nisms prior to earthquakes (Petraki 2016) and for this reason 
many papers address pre-seismic radon anomalies and try to 
attribute these to internal geological-geophysical processes 
(Table 2). In addition, some publications present notewor-
thy evidence of, potentially, robust criteria to recognise 

pre-seismic patterns that are hidden inside the preseismic 
time-series. The concepts of fractality, self-organization and 
block entropy are such types of evidence (Cicerone et al. 
2009; Hayakawa et al. 2010). Recent papers have outlined 
that the above characteristics are inherent in radon anomalies 
before important earthquakes that occurred in Greece (Pet-
raki et al. 2015). Related work in Ghosh et al. (2012), also 
reported fractal characteristics in pre-seismic radon anoma-
lies through Multifractal Detrended Fluctuation Analysis 
(MFDFA). New approaches employ Detrended Fluctuation 
Analysis (DFA), entropy analysis, wavelet spectral fractal 
analysis, Rescaled Range (R/S), whereas similarities have 
also been addressed between pre-seismic radon anomalies 
and electromagnetic disturbances in the ULF, LF and HF 
ranges (Petraki et al. 2015).

4 � Available Models

A model that is widely used is the Dilatancy-Diffusion 
(DD) model (Sholz et al. 1973). The DD model relates 
detected abnormal radon disturbances with the growth rate 
of mechanical cracks within the dilatancy. A porous rock 
saturated with cracks is considered as the basic medium. 
When the tectonic stress increases, cracks develop and 
detach near soil pores. This renders the organization 
of favourably oriented cracks into a bigger crack. This 
decreases the pressure of the pores within the earthquake 
generation zone. Due to this, water flows into the gen-
eration zone from media surrounding it. As the pressure 
returns to trivial values, large cracks are generated that 
lead to abrupt changes in concentrations of soil fluids. The 
crack-avalance (CA) model (Planinic et al. 2001) is also 
widely used. The cracks grow within a focal rock zone as 
the tectonic stress increases. This growth varies slowly 
with time. This may explain, according to the theory of 

Table 1   some examples regarding CO2 flux and seismicity are also reported the techniques used to acquire CO2 data

Fault/locality Historical E.Q CO2 range values/CO2 observations Technique used References

Jaut Pass, French 1980 M = 5.1 0.039–3.75% InfraRed (IR) spectometer Baubron et al. (2002)
Eastern Sicily, Italy 13/12/1990 M = 5.6 0 ppmv–20,000 ppmv Dynamic Concentration (DC), IR Bonfanti et al. (1993)
Central Italy 24/08/2016 M = 6.0 10.73–88.3 (g m−2 day−1) Accumulation Chamber (AC) Ciotoli et al. (2016)
San Andreas, USA 1989 M = 7.1 6 – 20 (g m−2 day−1) Accumulation Chamber (AC) Lewicki and Brantley (2000)
Friuli V.G., Italy 1976 M = 6.4 200–39,100 ppm AC, DC Italiano et al. (2009)
L’Aquila, Italy 06/04/2009 M = 6.3 0.134–1471.02 (g m−2 day−1) Accumulation Chamber (AC) Quattrocchi et al. (2012)
Sicily, Italy 06/09/2002 M = 5.6 20 – 320 (g m−2 day−1) Dynamic Concentration (DC), IR Camarda et al. (2016)
Calaveras, USA 03/09/2000 M = 5.0 10–428 (g m−2 day−1) Accumulation Chamber (AC) Lewicki et al. (2003)
Southern Taiwan 05/12/1946 M = 6.1 0.00–21.39% Sampling technique Walia et al. (2010)
Val d’Agri, Italy 09/09/1998 M = 5.5 0.039–3.1% Gas counter Colangelo et al. (2005)
Tuscany, Italy 27/08/2004 M = 3.7 anomalous values 12 day before 

event
InfraRed (IR) spectometer Cioni et al. (2007)
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Table 2   Some study case regarding Rn and CO2 anomalies observed and seismicity are reported

Earthquake/locality Magnitude (M) Date Gas studied Range values (back-
ground value)

Anomaly observed References

Kobe, Japan 7.2 17/01/95 Rn 2950 cpm 
(3100 cpm)

 < 24 h before event Ohno and Wakita 
(1996)

Chiba-ken Toho-oki, 
Japan

6 06/01/90 Rn 2225 cpm 
(2350 cpm)

2 days before event Wakita et al. (1991)

Nagano, Japan 6.8 14/09/84 Rn Observed gradually 
increase

2 weeks before event Hirotaka et al. (1988)

San Andreas, USA 4.3–4.0 1978 Rn Value of 60% above 
the average value

2–3 months before 
events

King (1980)

N-W Himalayas, 
India

6.5 29/03/99 Rn Anomaly Rn 
observed

2 days before event Walia et al. (2005)

N-E Italy 2.5–4.2 Dec. 1996–Mar. 
1997

Rn Anomaly Rn 
observed

1 month before 
events

Garavaglia et al. 
(1998)

Acapulco, Mexico 5.1 30/10/94 Rn Anomaly Rn 
observed

6 days before event Monnin and Seidel 
(1998)

Ashkhabad, Turk-
menistan

5.2 14/03/83 Rn Increasing Rn con-
centrations

1 week before event Alekseev et al. (1995)

S-W Taiwan 11 E.Q. > 4.5 Mar. 2003–June 
2004

Rn 200 kBq m−3 
(15 kBq m−3)

1–20 days before 
events

Yang et al. (2005)

Kremen, Slovenia 3 28/07/00 Rn Anomaly Rn 
observed

3 day before event Zmazek et al. (2005)

Liaoyang, China 7.3 1975 Rn Increasing Rn con-
centrations

6 h before event Teng (1980)

Chengkung, Taiwan 6.8 10/12/03 Rn 12.2 Bq l−1 
(28.9 Bq l−1)

45 days before event Kuo et al. (2006)

Irpinia, Italy 6.9 23/11/80 Rn Anomalous Rn 
increasing

4–5 months before 
event

Allegri et al. (1983)

Iceland 2.0–4.3 1978–1979 Rn Anomaly Rn 
observed

17–37 days before 
events

Hauksson and Goddar 
(1981)

Afyonkarahisar, 
Turkey

2.6–3.9 Aug. 2009–Sept. 
2010

Rn Anomalous Rn 
decreasing

1–2 months before 
events

Yalm et al. (2012)

Krsko basin, Croatia 1.8–3.2 17–20/04/2000 Rn Anomaly Rn 
observed

1–10 days before 
events

Gregoric et al. (2012)

Amritsar, India 5.7–6.8 26/04/1986–June 
1988

Rn Anomaly Rn 
observed

1–2 months before 
events

Singh et al. (1991)

Sicily, Italy 4.5 29/10/02 Rn Anomaly Rn 
observed

1 month before 
event

Immè and Morelli 
(2012)

Bolu, Turkey 5.7 05/07/83 Rn Anomaly Rn 
observed

1–20 days before 
events

Friedmann et al. 
(1988)

Central Italy 6 24/08/16 CO2, Rn CO2 and Rn anom-
aly observed

2–3 weeks after 
event

Ciotoli et al. (2016)

Sicily, Italy 5.6 13/12/90 CO2, Rn CO2 and Rn anom-
aly observed

1 week after event Bonfanti et al. (1990)

West Bengal, India 3.1–5.2 Sept 2006–Aug. 
2007

Rn Increasing Rn con-
centrations

2–18 days before 
events

Ghosh et al. (2012)

Central Italy 6.3 09/04/09 CO2, Rn CO2 and Rn anom-
aly observed

1–3 weeks after 
events

Voltattorni et al. 
(2012)

S-W Greece 6.5 08/06/08 Rn Anomaly Rn 
observed

1–3 months before 
event

Nikolopoulos et al. 
(2012)

S-W England 3.8 10/11/96 CO2, Rn CO2 and Rn anom-
aly observed

2 months before 
event

Duddridge and 
Grainger (1998)
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stress corrosion, abnormal changes in gas concentration, 
under the assumption that stress corrosion is saturated with 
groundwater (Anderson and Grew 1977). Another model is 
the Lithosphere–Atmosphere–Ionosphere Coupling Model 
(LAIC) (Pulinets and Ouzounov 2011). LAIC model 
attributes stress accumulation within the ground to the 
movement of tectonic blocks which, consequently, result 
in the evolution of microcracks and, finally, fracture. The 
mix of microfractures and water reach the ground from 
various sources. According to this model, the transporta-
tion of in-earth gasses is facilitated through carrier gas-
ses and water (Gregoric et al. 2008). Nikolopoulos et al. 
(2016) proposed the, so called, asperity model. This model 
has been used with success to explain anomalous emission 
of gas concentration during earthquake generation. The 
pre-seismic gas concentrations, are associated with frac-
tional Brownian model (fBm) and exhibit long-memory 
and fractal behaviour. The model suggests that the focal 
area consists of a backbone of large and strong asperities 
that sustain the focal zone. These asperities are modelled 
as fBm profiles. Before the occurrence of an earthquake, 
the asperities are surrounded by a heterogeneous medium 
that blocks the asperity backbone. During this process, 
critical anti-persistent radon disturbances are observed. 
As the asperities are impacted by the abrupt tectonic stress 
changes of the surrounding media, they begin to break. 
When this happens, the breaking of the asperities back-
bone is unavoidable and this leads the inevitable evolution 
towards global failure. Other models are also proposed as 
well. Talwani et al. (2007) attributed the abnormal changes 
in gas emission to the widening of the spaces within the 
pores due to tectonic stress increase. Crustal activities 
have been also recognised with the help of radon accord-
ing to related papers (Awais et al. 2017; Jilani et al. 2017; 
Riggio and Santulin 2015; Yu et al. 1986).

Regarding anomalous behavior of in-earth gasses and 
earthquake-related parameters, Rikitake (1987) suggested 
that the precursory time T  and the magnitude M is described 
by equation (Ghosh et al. 2009):

Guha (1979) associated the precursory time, T  and the 
magnitude, M of an earthquake as

where A and B are coefficient determined statistically. Tal-
wani (1979) suggest that the local magnitude, ML , and the 
precursory duration, D , in days, can be modeled as:

All these approaches, however, are not universal and fur-
ther research is needed in this field.

(5)logT = 0.76M − 1.83

(6)logT = A + BM

(7)ML = logD − 0.07

5 � Conclusions

1)	 Earthquakes are associated with deformations within 
seismic preparation zones and as a result, anomalous 
concentrations of CO2 and radon emissions may occur.

2)	 In seismic areas, CO2 flux can be measured through 
direct and indirect methods and CO2 concentration can 
be measured via sampling techniques and mainly via the 
accumulation chamber method.

3)	 Precursory radon activity can be measured through 
active techniques, with the use of high-precision active 
monitors and through passive techniques with the use of 
Solid State Nuclear Track Detectors (SSNTDs).

4)	 DD, CA and the asperity models are the most used to 
explain the anomalous behavior of fluid of in-earth gas-
ses prior to earthquakes.

5)	 High-Quality Satellite observations could be used in the 
future as instruments to detect CO2 flux variations in 
seismic areas.
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