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Abstract
This paper deals with the classification of volcanic activity into three classes, referred to as Quite, Strombolian and
Paroxysm. The main purpose is to give a measure of the reliability with which such a classification, typically carried out
by experts, can be performed by Machine Learning algorithms, by using the volcanic tremor as a feature. Both supervised
and unsupervised methods are considered. It is experimentally shown that at least the Paroxysm activity can be reliably
classified. Performances are rigorously assessed, in comparison with the classification made by expert volcanologists, in
terms of popular indices such as the f1-score and the Area under the ROC curve (AuC). The work is basically a case study
carried out on a dataset recorded in the area of the Mt Etna volcano. However, as volcanic tremor is a geophysical signal
widely available, considered methods and strategies can be easily applied to similar volcanic areas.

Keywords Supervised classification · Unsupervised clustering · K-means · Fuzzy-c means · Gaussian mixed models ·
Volcanic activity

Introduction

Nowadays, classifying volcanic activity is delegated to
human experts, as it requires a timely consultation of various
kinds of instrumental data. This activity is then all the
more demanding as the time interval between samples is
smaller. It is therefore interesting to know to what extent
Machine Learning (ML) approaches can help to solve this
problem by automatically processing instrumental data. In
particular, among several kinds of geophysical data, such as
seismic, ground deformation, chemical, etc., in this paper
we chose to consider the seismic tremor, which is widely
available in areas of active volcanism. Although the use
of volcanic tremor for classifying volcanic activity is not
new in literature, see for instance (Langer et al. 2011) who
applied Self-Organized Maps (SOM) and Fuzzy clustering,
with the aim of detecting imminent eruptive activity at
Mt Etna, we must consider that a clear measure of the
reliability of ML algorithms to cluster volcanic activity,
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based on the use of volcanic tremor, is still incomplete
and could benefit from additional contributions. In this
work, we aim to contribute to this field, providing a
reliable estimation of the performances of both supervised
and unsupervised classifiers, adopting as metric the f1-
score, which, as is known, represents the harmonic mean
between Precision and Recall and in terms of Area under
the ROC (AuC). Furthermore, we will compare the f1 index
obtained by using the unsupervised approaches against a
supervised classification algorithm, in order to estimate
the performance loss. Results presented in this paper can
integrate those recently presented by Spampinato et al.
(2019), who measured the reliability of a warning system,
based on the use of seismic tremor measured on Etna, in
terms of the AuC index, estimating AuC � 0.8. The validity
of the results shown in this work is based on a dataset,
recorded at Mt Etna from January 2011 and December 2015,
which contains a quite high number of paroxysm episodes
(namely 48) and therefore allowing a reliable estimate of the
classifiers performances.

Review papers concerning clustering approaches are
provided by Liao (2005), Xu and Tian (2015), and Bano and
Khan (2018), while some application of Machine Learning
for the specific field of volcanic seismic signals processing
has been recently provided by Malfante et al. (2018).
Recent papers dealing with ML application in solid Earth
geoscience and seismology have been provided by Bergen
et al. (2019) and Kong et al. (2019). Other ML methods
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and applications in geophysics, with specific examples to
classify tremor data can be found in the recent book (Langer
et al. 2020).

The paper is organized as follows: in Section “State-
ment of the problem” the problem is stated. The con-
sidered dataset and pre-processing steps are described
in Section “Dataset and preliminary analysis”. Con-
sidered supervised classification methods are listed in
Section “Supervised classification of volcanic activity”,
together with a description of the classification met-
rics. Numerical results concerning supervised methods are
reported in Section “Supervised classification”. Unsuper-
vised classification approaches considered and results, in
comparison with the supervised approaches are reported in
Section “Numerical results concerning unsupervised clas-
sification”. In Section “Discussion and Conclusions”, con-
clusions are drawn. A formal description of considered ML
approaches and hints about their implementation is reported
in Appendix A.

Statement of the problem

The problem of classifying volcanic activity consists in
associating a label to each kind of activity observed at
the summit crater area. In particular, in this work we
will follow the line drawn by Cannavó et al. (2017)
and subsequently continued by Hajian et al. (2019), who
classify the volcanic activity into three classes based on the
following description:

– The class of Quite (Q) state, labeled also as 0,
indicates quiet, i.e. no relevant activity or unknown
activity, characterized by low amplitudes of all physical
features that can be related with the volcanic activity.
Representing classes with a double symbol, numerical
and literal, make easier on one hand the visualization as
a timeseries of classes (numeric representation) and the
readability (literal representation).

– the class of Strombolian (S) activity, labeled also as 1,
indicates Strombolian activity, essentially characterized
by a mildly explosive activity, with medium amplitude
of seismic tremor RMS, shallower source of the seismic
tremor, presence of clustered infrasonic events, no
eruption column, but possible ash emissions.

– the class of Paroxysm (P) activity, labeled also as 2,
indicates paroxysm, i.e. an energetic activity with lava
fountains, characterized by high amplitude of seismic
tremor RMS, presence of clustered infrasonic events,
shallower source of the seismic tremor, eruption column
formation and ash emissions.

For example, Mt Etna would appear to an observer as
represented in Fig. 1, during a Strombolian activity and

Fig. 1 Example of Strombolian activity at Mount Etna. The image was
kindly provided by the INGV-Sez. di Catania

as in Fig. 2 during a paroxysmal. Comparing the two
images it is evident that the ejected matter reaches even
some thousands of meters for Paroxysm and only a few
tens or some hundreds of meters for Strombolian activity.
This is representative of the fact that the energy levels
corresponding to the various kinds of volcanic activity can
be quite different.

In a well-monitored volcanic area, such as Mt Etna, the
onset of this type of activity can be detected by various
instruments such as cameras or Doppler radars. However,
in remote volcanoes, very often these kinds of sensors are
not present, while seismic monitoring networks are more
frequently installed.

The classification of volcanic activity at Mt Etna by
using a supervised Bayesian Network (BN) classifier, which
discriminate the three kinds of activity mentioned above,
based on five features, namely the seismic RMS tremor, the

Fig. 2 Example of Paroxysm activity at Mt Etna. The image was
kindly provided by the INGV-Sez. di Catania
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infrasonic RMS tremor, the depth of the volcanic source,
the radar Doppler and the tilt derivative, was first proposed
by Cannavó et al. (2017). Other supervised classification
approaches, namely Decision Tree (DT) and K-Nearest-
Neighbor (KNN), on the same dataset have been applied by
Hajian et al. (2019).

Dataset and preliminary analysis

The dataset taken into account in this study was recorded
from January 1, 2011 to December 31, 2015 and after
processing was sampled every 10 minutes. During this
time interval the eruptive activity of Mt Etna was rich in
episodes characterized by phases of degassing, alternating
with explosive and effusive activities, to periodic eruptions
from fissures opened on its flanks. A detailed description
of the activity occurred is outside the scope of this work
and the interested readers can refer to Cannavó et al.
(2017) and references therein. For the purposes of this
paper, it is enough to mention that expert volcanologists
have labeled the 262944 samples into 213190 samples of
Q activity, 49048 of S activity and 706 samples of P
activity. Samples labeled as Q, S and P are the 81.08%,
18, 65% and 0.27% of the total, respectively. This time-
series of classes, shown in Fig. 3, will be, again, considered
in this paper for evaluating to what extent classification
of volcanic activity can be performed by unsupervised
classifiers (i.e. clustered) and estimate the performance in
comparison with supervised ones. Classification will be
carried out considering the seismic tremor as the only
feature.

Fig. 3 Time series of classes from January 2011 to December 2015,
recorded at Mt Etna with 10 m sampling time: 0, 1 and 2 represents
Quiet, Strombolian and Paroxysmal activity, respectively. The dataset
was kindly provided by the INGV-Sez. di Catania

Volcanic seismic tremor

Volcanic seismic tremor, also referred to as harmonic
tremor, is a sustained release of seismic and infrasonic
energy typically associated with the underground movement
of magma, the venting of volcanic gases from magma, or
both. It is a long-duration release of seismic energy, with
distinct spectral lines, that often precedes or accompanies
volcanic activity. More generally, volcanic tremor is a
long-duration continuous signal generated by a spatially
distributed source, which contrasts distinctly with transient
sources of seismic radiation, such as earthquakes and
explosions. The relation between long-period events and an
imminent eruption was first observed by Chouet (1996).
As indicator of the level of volcanic seismic tremor, the
root mean square (RMS) amplitudes of seismic signals
in the tremor band have been routinely recorded at the
Istituto Nazionale di Geofisica e Vulcanologia (INGV),
Osservatorio Etneo, for real-time volcano monitoring,
through the so-called permanent seismic network, equipped
with broadband (40 s cutoff period), three-component
seismometer, which records data in real time at a sampling
rate of 100 Hz. The original signals are then filtered in the
band [0.5, 5.5] Hz, since, as suggested by (Chouet 1996), it
concentrates the main part of released seismic energy. The
geographic coordinates of most of the considered seismic
stations are reported in Table 1.

Regression analysis of tremor time series

RMS tremor recorded at different stations of Mt Etna are
linear correlated. To illustrate this aspect, we have computed
linear regression models of the form:

y(t) = mx(t) + b (1)

where:

– x(t) is the tremor value measured at time t in a given
reference station, assumed as input;

– y(t) is the tremor estimated by the linear model, into
another station, assumed as output;

– m and b are the slope and the offset coefficients,
respectively.

Figure 4, report, as an example, the scatter plots of
tremor recorded at the couples ESLN-ECZM, assuming
the tremor recorded at the ESLN station as input and that
at ECZM as output; the strong linear correlation appears
evident. In order to highlight that this is almost independent
of the particular class of activity, samples belonging to
different classes were represented by different colors. The
regression coefficient R, the slope and the offset, for the
whole set of stations are reported in Table 2. It can be
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Table 1 StationID and geographic coordinates of the considered seismic stations

StationID Latitude Longitude Elevation Location

ECNE 37.7653 15.0018 2946 Etna Cratere Nord Est

ECBD 37.7802 15.0865 1465 Etna Case Bada

ECZM 37.7313 14.9041 1391 Etna Case Zampini

ECPN 37.7437 14.9865 3038 Etna Cratere del Piano

EMCN 37.7912 15.0336 1916 Monte Conca

EMFO 37.7357 15.0902 1209 Etna Monte Fontane

EMFS 37.7196 14.9979 2552 Etna Monte Frumento

EMNR 37.8168 15.026 1845 Etna Monte Nero

EMPL 37.679 14.9703 1484 Etna Monte Parmentelli

EMSG 37.8208 4.9498 1435 Etna Monte Spagnolo

EPDN 37.7659 15.0168 2862 Etna Pizzi Deneri

EPIT 37.8113 15.0567 1657 Etna Pozzo Pitarrone,

ESLN 37.6934 14.9744 1787 Etna Serra La Nave

ESPC 37.6925 15.0274 1655 Etna Serra Pizzuta Calvarina

ESVO 37.7731 14.9469 1736 Etna Monte Scavo

seen that almost all stations exhibit R close to 1. The
lower R values corresponds to stations, namely ECNE,
ECPN, EPDN, located very close to the active craters areas,
which are, probably for this reason, characterized by very
high tremor levels and/or other kinds of local phenomena.
For classification purposes, the high linear correlation of
tremor time series, implies that the dataset dimensionality
can be significantly reduced, as it will be discussed in the
next section. For now, we mention here that this property
suggested to us a strategy for filling missing data at several
stations. Indeed, in the considered time interval a not
negligible quantity of missing data has plagued the network,
as shown in the last column of Table 2. It is possible to

Fig. 4 Scatter plot and corresponding linear regression model at the
ECZM - ESLN couple of stations

see that in the considered time interval, the percentage of
missing data ranges between about 19% and 38%, and in
particular, only two stations are below 20%.

In order to overcome this shortcoming, which would have
involved the loss of many samples useful for classification,
among the various candidate strategies, we have chosen
to fill missing data by the average value of the tremor
calculated using expression (2), learned from (Cannavó
et al. 2017),

TRMS(t) = 1

n

n∑

i=1

RMSi(t) − μt {RMSi(t)}
σt {RMSi(t)} (2)

In this expression, the index, i refers to the n seismic
stations, μt represents the median operator over two years
previous the time t , and σt represents the interquartile range
over the same period. An example of filled time series at the
station EBCN, in comparison with the true one, is reported
in Fig. 5.

Supervised classification of volcanic activity

In this paper, to perform the supervised classification,
of volcanic activity at Mount Etna, the six classification
models listed below were considered:

– A Fisher Discriminant model, here simply referred to
as DISC, implemented by using the fitcdiscr function
of the Matlab Statistical and Machine and Learning
Toolbox, choosing a linear kernel. More details about
this kind of classifiers are reported in Section A.1.1.

– A Multiclass error-correcting output model. In partic-
ular, as ECOC, in this paper we refer to an Ensemble
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Table 2 Regression model coefficients assuming the tremor measured at the ESLN station as input. The last column reports the missing data in
percent

Station R slope offset Missing %

EBCN 0.91 1.78 2.42 38.86

ECBD 0.78 0.55 0.19 21.96

ECNE 0.07 2.07 3.75 30.03

ECZM 0.90 2.71 2.50 27.15

ECPN 0.33 0.41 0.41 22.81

EMCN 0.68 1.07 0.55 29.78

EMFO 0.89 0.56 0.17 31.83

EMFS 0.89 1.36 0.52 19.27

EMNR 0.52 0.44 0.24 25.26

EMPL 0.6 0.77 0.24 19.14

EMSG 0.69 0.41 0.29 25.29

EPDN 0.14 2.27 1.84 32.91

EPIT 0.32 0.57 0.62 32.72

EPLC 0.77 1.5 1.79 32.16

ESLN 1 1 0 24.90

ESPC 0.99 0.68 0.17 23.48

ESVO 0.94 0.69 0.59 27.51

multiclass classifier implemented by using the fitce-
coc Matlab function, using a Support Vector Machine
(SVM) algorithm, with linear kernel and One-Versus-
One (OVO) coding scheme. More details are reported
in Section A.1.2.

– An Ensemble model, here referred to as ENSE,
implemented through the fitcensemble function of the
Matlab Statistical Toolbox. We have adopted as basic
learner a Adaboost2 algorithm, building a medium
coarse tree with a maximum number of splits set to 20,
a maximum number of cycles up to 30 and a learning

Fig. 5 Filled and original tremor time series at the ECBD station

rate set to 0.1. A short description of Ensemble models
is reported in Appendix A.1.3.

– A K-Nearest Neighbor model, here referred to as
KNN, implemented through the fitcknn function of the
Matlab library, setting Euclidean distance metrics and
10 samples as the maximum number of neighbors. More
details in Section A.1.4.

– A Naive-Bayes model, here referred to as NBYE,
based on the fitcnb function of the Matlab library,
with normal kernel distribution and unbounded support.
More details in Section A.1.5.

– A Decision Tree for multiclass classification, here
simply referred to as TREE, implemented through the
Matlab function fitctree, growing a medium coarse tree,
with a maximum number of splits up to 20. The Gini’s
index was adopted as a split criterion. More details in
Section A.1.6.

There are no particular reasons behind the choice of these
methods, other that are among the most popular. Obviously,
many other supervised classification algorithms could have
been chosen, including the popular neural networks. We
want to stress here that the main aim of this work is not to
compare classification algorithms, but to measure to what
extent the described problem can be solved using widely
available and easily implementable algorithms. More deep
details concerning these approaches can be found in popular
textbooks such as Bishop (2006), Hastie et al. (2008), and
Goodfellow et al. (2016) or directly from the MATLAB
Statistical and Machine Learning Toolbox (Inc 2017).
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Reducing the dimensionality of the dataset

As well known, see for instance (Liu and Motoda 2008),
performances of classification algorithms significantly
depend on the number of features. Therefore, reducing the
dimensionality of the dataset is a good practice (Mohamed
2020). We have performed this task by using the Principal
Component Analysis (PCA), which consists of projecting
each data point onto the main directions in the feature
space, in order to obtain lower-dimensional data, while
preserving as much of the data variability as possible. The
first principal component can be defined as the direction that
maximizes the variance of the projected data. Similarly, the
ith principal component is the direction orthogonal to the
first (i − 1)th principal ones that maximizes the variance of
the projected data.

For our data set, the cumulative variability explained,
versus the number of principal components, is shown in
Fig. 6. It can be seen that taking the first two components
it is possible to account for about 96% of the dataset
variability. This percentage rises to 99%, if the first three
principal components are considered. Therefore, the PCA
analysis points out that the original 17-D dataset can be
reduced to 2-D or 3-D. In this paper, in order to be
more conservative, we have chosen to consider 3 principal
components. However, the effectiveness of reducing the
dataset dimensionality by using the PCA must be done with
some caution, as a known drawback of the PCA approach
for classification problems is that the variance is preserved
regardless of the classes (see for instance (Lei et al. 2017)).
Thus, a subspace with large variance is not necessarily one
in which classes are well separated.
In addition to the reduction of the dataset dimensionality
through the PCA, we have explored the possibility of

Fig. 6 Cumulative explained variance versus the principal components

performing this task by heuristically choosing two stations
of the network and finally by averaging the seismic tremor
among all the stations in the network through expression
(2). Summarizing, the following three reduced data set were
considered to perform the supervised classification:

1. The 3-D dataset represented by the first three PCA
components;

2. a 2-D dataset consisting of tremor recorded at two
selected stations of the network, namely ESLN and
EBCN;

3. the 1-D dataset obtained averaging the RMS tremor
over the whole network, by using expression (2).

The stations ESLN and EBCN, were selected according to
the following criteria:

– The time series recorded at these stations are not
affected by very high tremor levels, as for instance
observed at stations ECNE, EPDN and EPIT.

– From trials performed, it seems that this couple of
stations allow a good classification of class P. However,
it is to be stressed, that other choices would be
possible, without significantly affecting the classifier
performances.

Classificationmetrics

Given a classification experiment, let us indicate as P(i)

and N(i) the number of actual positive and actual negative
cases in the ith class, respectively. Moreover, let T P (i),
T N(i), FP(i) and FN(i) the number of true positive,
true negative, false positive and false negative cases,
respectively, recognized by the classifier, for the ith class.
Referring to these quantities, the following rates can also be
defined:

T PR(i) = T P (i)

P (i)
= T P (i)

T P (i) + FN(i)
= 1 − FNR(i) (3)

T NR(i) = T N(i)

N(i)
= T N(i)

T N(i) + FP(i)
= 1 − FPR(i) (4)

FNR(i) = FN(i)

P (i)
= FN(i)

FN(i) + T P (i)
= 1 − T PR(i) (5)

FPR(i) = FP(i)

N(i)
= FP(i)

FP (i) + T N(i)
= 1 − T NR(i) (6)

The meaning of the above indices can be expressed as
follows:

– The T PR(i) expresses the proportion of actual
positives that are correctly classified by the model as
belonging to the ith class. Best values of TPR approach
to 1, while in the worst case TPR approach 0. The T PR

is referred to also as specificity or Recall (r).
– The T NR(i) expresses the proportion of actual

negatives that are correctly classified as not belonging
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to the ith class. As for the T PR, best values of TNR
approach 1, while worst values approaches 0. The T NR

is referred to also as specificity of selectivity.
– The FNR(i) expresses the proportion of false negatives

in the ith class, with respect to all actual positives in the
same class. Of course in the best case FNR approaches
0, while in the worst case approaches 1.

– The FPR(i) expresses the proportion of false positives
in the ith class with respect to the total number of actual
negatives in the same class. Similar to the FNR in the
best case FNR approaches 0, while in the worst case
approaches 1.

Another useful index, is the Positive Predicted Value (PPV)
or simply Precision, which, for the generic class i is defined
as:

PPV (i) = T P (i)

T P (i) + FP(i)
= 1 − FDR(i) (7)

In expression (7), FDR stands for False Discovery Rate.
For the purposes of this paper we also make use of the

f1-score, defined as:

f1(i) = 2T P (i)

2T P (i) + FP(i) + FN(i)
(8)

It is easy to verify that indicating as r(i) the T PR for the
ith class and as p(i) the PPV , the f1 can be also written as:

f1(i) = 2
r(i)p(i)

r(i) + p(i)
(9)

which highlights that it is the harmonic mean between
p(i) and r(i). Therefore, f1 is a more reliable measure of
performance than the simple Precision and/or Recall. For
this reason, in this paper we will always show f1, instead of
the simple Precision and/or Recall.

A useful way to collect most of the performance indices
shown above is the so-called Confusion Matrix (CM). On
the CM, see for instance the next Section “Numerical
results concerning unsupervised classification”, the rows
correspond to the predicted class (Output Class) and the
columns correspond to the true class (Target Class). The
diagonal cells correspond to observations that are correctly
classified. The off-diagonal cells correspond to incorrectly
classified observations. Both the number of observations
and the percentage of the total number of observations are
shown in each cell. The column on the far right of the
plot shows the percentages of all the examples predicted
to belong to each class that are correctly and incorrectly
classified, i.e the PPV and the FDR. The row at the
bottom of the plot shows the percentages of all the examples
belonging to each class that are correctly and incorrectly
classified, i.e. the TPR and the FNR, respectively. The cell

in the bottom right of the plot shows the overall Accuracy.
The accuracy can formally be described by using expression
(10)

Accuracy = 100

∑N
n=1I (C(xn) = yn)

N
(10)

where

– I (g) is a function that returns 1 if g is true and 0
otherwise,

– C(xn) the class label assigned by the classifier to the
sample xn

– yn the true class label of the sample xn

– N is the number of samples in the testing set.

Another useful index for evaluating the degree of accuracy
and reliability of a statistical classification is Cohen’s
Kappa, since it compensates for random hits. It can
be computed (see for instance (Tallon-Ballesteros and
Riquelme 2014)) starting from the CM, by using expression
(11)

κ = N
∑m

i=1 CMii − ∑m
i=1 CitrueCipred

N2 − ∑m
i=1 CitrueCipred

(11)

where:

– m is the dimension of the confusion matrix CM, i.e. the
number of classes.

– N is the number of samples in the testing set.
– CMii, i = 1, . . . , m the entries of the CM main

diagonal.
– Citrue the true number of labels of class i.
– Cipred the predicted number of labels of class i.

The range of Kappa values extends from −1 ≤ κ ≤
1, with positive one indicating strong agreement, negative
one indicating strong disagreement, and zero indicating
chance-level agreement.

Another useful tool for evaluating the reliability of
supervised classifiers is represented by the Receiver
Operating Characteristic (ROC) metric and in particular
the so-called area under curve AuC. ROC curves typically
feature true positive rate on the Y axis, and false positive rate
on the X axis. This means that the top left corner of the plot
is the ideal point, since it is characterized by a false positive
rate of zero, and a true positive rate of one. Even though this
is not very realistic, it does mean that a larger area under
the curve (AUC) is usually better. For a specific application
of the ROC curves to evaluate the reliability of a warning
system in volcanic areas, the readers can see the recent paper
(Spampinato et al. 2019). For more general further details
about metrics concerning classifiers, see Powers (2011).
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Supervised classification

Preliminary considerations

Before starting with the description of supervised classifi-
cation results, it can be useful to make some preliminary
considerations regarding the separability of the three con-
sidered classes, using the seismic tremor as the only fea-
ture. While in Section “Reducing the dimensionality of the
dataset” we have drawn attention to the fact that the tremor
recorded in the various stations is linearly correlated, which
implies that the dimensionality of the dataset can be signif-
icantly reduced, here, we want to point out that classes, as
labeled by the experts, are largely overlapping in the fea-
ture space of the RMS tremor. To justify this statement,
we can look at Fig. 4, from which it is easy to realize
that the three classes are largely overlapping. This is more
evident between classes Q and S which therefore, regard-
less of the classification technique, we may expect that will
result poorly separable. Among the three classes, class P
seems to have more chances to be correctly classified. To
further confirm that the three classes are not easily sepa-
rable, by using the seismic tremor as the only feature, we
have applied the Silhouette criterion (Rouseeuw 1987). The
test was performed by using the K-means algorithm and
the search was extended in the range from 1 up to 6 clus-
ters. Results reported in Fig. 7 show that that the highest
Silhouette value occurs at 2 clusters, suggesting that this is
the optimal number of clusters, regardless of the dataset,
among the considered ones. It is also to be observed that the
K-means operating on the 3-D data set was not able to con-
tribute, since it indicates a silhouette value independent of
the number of classes.

Fig. 7 Silhouette values versus the number of clusters for the three
reduced dataset

Assessing the generalization capabilities of
classifiers

A popular strategy to estimate the generalization capabilities
of a model is to divide the available samples in at least
two subsets for training and for testing, respectively. The
former is used for tuning the model parameters and the
latter for assessing its performance on fresh data. However,
sometimes the testing set is used in some way during the
training, for instance to understand when the training must
be stopped. In this case, a third set of data, referred to as the
validation set is introduced, in order to be more confident
that performances are evaluated on a really fresh dataset.

Since we have a limited number of samples in the P class,
a validation set is not realistic. To overcome this drawback,
we have adopted the k-fold cross validation strategy. This
technique consists of splitting the dataset into k groups, after
shuffling the samples randomly. Then for each unique group
the following steps are performed:

– A group is held out and used for testing.
– The remaining groups are used for training a model.
– The fitted model is evaluated on the testing set.
– The obtained score is then retained while the model is

discarded.

This means that each sample is given the opportunity to be
used in the hold out set 1 time and used to train the model
k − 1 times. At the end of the rotation process, the skill of
the model is evaluated using the sample of model evaluation
scores.

In the next section, we report validation accuracy
computed for the three different reduced dataset, as above
discussed.

Numerical results

We start with the global indices, i.e. computed averaging
over the classes, namely the Accuracy, the f1 index and
Cohen’s K, which are shown in Fig. 8.

Roughly speaking, it is possible to say that in terms
of Accuracy, there are not significant differences between
the various classifiers and to the use of a particular
kind of reduced dataset. Instead, the global f1 index
points out a slight advantage using the ENSE and the
KNN.

As for the Cohen K index, it is always higher than
0.6, thus meaning that the classification is globally enough
reliable. Furthermore, also this index contributes to assign
an advantage to the use of ENSE and KNN.

However, as stressed above, for our application, non all
classes have the same importance. In order to evaluate the
reliability in discriminating individual classes, we report in
Fig. 9, the single class f1 indices. The figure highlights
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Fig. 8 Global indices for the three options

that this index, regardless of the classification method and
the data set, is quite high for the Q class, but limited
for the S class, which is therefore poorly discriminated.
Another aspect, probably the most interesting for the
purposes of this work, is that the f1 index for the P class
is about 0.7 for almost all the considered models, and
in particular for the DISC, ENSE and KNN classifiers,
regardless of the reduced dataset. However, even if it may
seem trivial, with regard to the classification of class P, there
is no substantial difference even to operate with the 1-D
dataset.

The ROC curves for the six classifiers are shown in
Fig. 10. It is possible to see that regardless for the considered
classifiers the P class is always best classified among the

Fig. 9 f1 evaluated for each class and each classification approach

others. In more detail, the Area under curve (AuC) for the
six classifiers and for each class is reported in Fig. 11. It
is possible to see that almost all classifiers work well for
classifying P class samples, but perform poorly for the Q
and S classes. On average, for the P class the AuC index
is 0.87, while for the Q and S class are 0.65 and 0.64,
respectively.

Operating with the 2-D dataset offers the possibility to
visualize the boundary regions, as shown in Fig. 12. The
regions in red, green and blue colors represent couples
of values classified as class Q, S and P, respectively.
In most of the cases, the shape of these areas can be
easily interpreted. For instance, looking at the DISC, which
was trained as a classifier with linear boundaries, it is
possible to see that low values of RMS at both the ESLN
and EBCN are attributed to the Q class, low values at
ESLN and high at EBCN are attributed to the S class
and, finally, high values at both stations are attributed to
the P class. An easy interpretation can also be found for
the NBAY, ECOC, ENSE and TREE classifiers, while the
interpretation of the KNN is a little more difficult. Indeed,
the classification regions for this classifier exhibit, in the
middle-upper part of the plan, an area assigned to class S,
that the other classifiers definitely assign to class P. This is
due to the fact that not only classes Q and S are partially
overlapping in the expert classification, but also classes S
and P.

Supervised classification by using amore balanced
data set

Among the criticisms that can be made to the results
shown in the previous section, there could be that of
having carried out the classification on data set in which
the number of samples in the various classes are strongly
unbalanced, especially comparing class Q and class P.
Indeed, as mentioned in Section “Dataset and preliminary
analysis”, the original data set, from now referred as
the Full dataset, contains 262944 samples labeled into
213190 samples of class Q, 49048 of class S and
only 706 of class P, which in percent are the 81.08%,
18, 65% and 0.27%, respectively. Therefore, one might
be led to think that reducing the weight of the Q class
samples, which are overwhelmingly, there could be some
advantage in terms of performance. To address this question,
we carried out the classification experiment described
below.

From the Full dataset we extracted a new dataset, in
the following referred as the Subset, which includes all the
P samples of the Full data set, almost all the S samples,
but a smaller amount of samples of the Q class. In order
to extract such a subset we have considered that the Full
dataset contains 48 paroxysmal episodes occurred onMount
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Fig. 10 ROC curves for the six
classifiers trained using the 2-D
dataset

Etna during 2011-2015. With the aim of preserving all P
samples, we extracted 48 data windows, centered on the
starting date of each paroxysmal episode and spanning a
prefixed number of samples before and after this date. The
time series of classes obtained in this way is shown in
Fig. 13.

Such a time series consists of 10278 samples, of which
5834 labeled as Q, 3738 as S and 706 as P. This means that
in the Subset the weights ofQ, S and P are 56.76%, 36.37%
and 6.87% respectively.

Fig. 11 Area under the ROC for all methods and classes.

With the obtained Subset, the models of six super-
vised classifiers, were obtained, trained, by using the
k-folding technique. These new classifiers were sub-
jected to classifying the Full dataset and the perfor-
mance indices were estimated and compared with those
of the corresponding classifiers, trained and tested with
the Full dataset. Such a comparison, in terms of the
f1 index, evaluated for the single classes, is shown in
Fig. 14.

The following considerations can be made:

– The f1 indices for the Q class are almost equal for the
two intercompared cases, except that the ECOC model
trained with the subset was not able to classify samples
of this class.

– As concerning the S class, the f1 index is lower than
0.6 for all classifiers and in particular DISC and ECOC
perform very poorly. It is to be stressed that the ECOC
model trained with the Subset was not able to correctly
classify any samples of the Full dataset assigned to the
S class.

– For the P class there are not substantial differences for
the two inter-compared cases.

In summary, from experimental results, it seems that there
are no advantages training the classifiers with the Subset,
if it is used for classifying samples of the Full dataset,
which of course is what a user would like to do. On the
contrary, some classes are worse classified compared to
the case in which the training is carried out on the Full
dataset.
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Fig. 12 Classification regions
computed for the six classifiers,
trained by using the k-fold
approach (axes units represent
RMS of seismic tremor). The
axes are graduated in RMS of
seismic tremor; on the abscissa
and ordinate we have the values
measured at the ESLN and
EBCN stations, respectively

Numerical results concerning unsupervised
classification

In this section we report numerical results obtained by using
the following three clustering approaches:

– k-means.
– Fuzzy c-means.
– Gaussian mixture models.

A short description of each algorithm is provided in Section
A. The kmeans, fcm and fitgmdist functions of the Matlab

Fig. 13 Time series of the classes for the Subset

Statistical and Machine Learning Toolbox, were considered
for implementing the three approaches listed above. The
criteria for setting the parameters, left to the user are
indicated below. During the model fitting, in this case,
dealing with unsupervised classification, the dataset was
not split, i.e. the whole dataset was given as input to the
classifiers.

Similarly to what was done for the supervised classifica-
tion, we report results obtained performing the clustering

Fig. 14 f1 index obtained for the model trained and tested with the
Full data set and the model trained with the Subset and tested with the
Full set
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Fig. 15 Global Accuracy, f1 and Cohen K for the 1-D, 2-D and 3-D
dataset and for the three considered clustering approaches

on three dataset with reduced dimension, presented in
Section “Supervised classification”. The performances of
the unsupervised clustering were evaluated assuming as
true the time series of classes shown in Fig. 3. The global
indices, in terms of Accuracy, f1 and Cohen K, for the
three dataset are shown in Fig. 15. In the figure, in cor-
respondence with the f1 index relating to the 3-D dataset,
the values should not be considered zero, but Not a Num-
ber. The reason is that, for all trials carried out, choosing
different options for the tunable parameters, the considered
clustering algorithms, were not able to correctly recognize
any sample of the class P class. For this reason, in the fol-
lowing of this section we will report results for the 2-D and
1-D data sets, only.

Fig. 16 Classification regions obtained performing the K-means
clustering; cluster centers for the three classes are also indicated by the
× symbol

Fig. 17 Samples classified by the K-means (axes units represent RMS
of seismic tremor)

Results by using the k-means and the 2-D dataset

As explained in Section A.2.1, using this approach it
is necessary to choose the kind of distance. Based on
trials performed, among the Euclidean, cityblock, cosine
and correlation, we have chosen the former one. The
classification regions of the K-means performed on 2-D
dataset in the ESLN-EBCN feature plane, are shown in
Fig. 16. It can be seen that the algorithm determines well-
distinct regions: the one in the lower corner in red color,
characterized by low values of the tremor at both stations,
represents the Q class, the intermediate one in green
represents the S class and, finally, the region in blue color,
characterized by high values of tremor at both the stations,
represents the P class. For each class, the searched cluster
centers are reported in Table 3. Applying the classification
mask shown in Fig. 16 to the 2-D dataset, we obtained the
pattern distribution shown in Fig. 17. Performances of the
k-means classifier, in terms of Confusion Matrix, assuming
as target the expert classification, are reported in detail in
Fig. 18.

The behavior of the K-means algorithm, referring to the
P class, can be considered relatively satisfactory. Indeed, of
the 706 samples labeled by the expert as belonging to P, 424
have been correctly attributed, while 255 were recognized

Table 3 Class centers using the K-means in the ESLN-EBCN plane

Class μ1 μ2

Q 0.8697 2.9700

S 11.9562 26.9495

P 52.4986 89.0279
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Fig. 18 Confusion Matrix obtained classifying the 2-D dataset by
using the K-means algorithm

as S and only 27 as Q, therefore giving T PR% = 60.1 and
PPV% = 69.9. A weak point of the K-means classifier, for
the considered dataset is the low value of TPR (8.4%) for the
class S. Indeed, 44797 samples of the total 49048 assigned
by the human expert as belonging to the S class, are instead
recognized asQ. Obviously, this contributes to lowering the
classifier’s performance also with respect to the Q class.

The ROC curves obtained applying the K-means
algorithm to the 2-D dataset are reported in Fig. 19. The
figure confirms that in terms of ROC curves, the only class
classified with acceptable accuracy by K-means is class P,
being AuC = 0.81. For both the remaining classes Q and S
we have AuC = 0.54, therefore indicating a behavior very
close to a random classifier.

Results by using the FCM and 2-D dataset

Working with the FCM algorithm, in addition to the
choice of the metrics, which also in this case we have
chosen as Euclidean, it is possible to tune the m parameter
(see Section “A.2.2”), which controls the degree of fuzzy
overlap among the clusters. After some trials, we have
experimentally found that best results were obtained by
setting m = 2, which is also the default value assumed by
the fcmMatlab function. The cluster centers obtained for the
FCM model, reported in Table 4, are a bit different from the
ones searched by the K-means algorithm.

Fig. 19 ROC curves of the K-means classifier for the three classes

The classification regions provided by the FCM in the
ESLN-EBCN feature plane are shown in Fig. 20. Compared
with the analogous mask obtained by the K-means it is
possible to see that the area assigned to the Q-region is
smaller, while that assigned to the P one is larger. The
performances of this classifier are reported in Fig. 21 in
terms of Confusion Matrix. It is possible to see the FCM,
compared with the K-means, gives higher TPR for the P and
S classes, but with a lower PPV. In particular, for the P class
we have a TPR of 82.9%, but with a PPV = 56%, which in
terms of f1 means f1 = 0.67. Therefore, by using the FCM,
we get a higher number of samples correctly classified but
at the price of a higher level of false positive.

The ROC curves obtained applying the FCM algorithm
to the 2-D dataset are reported in Fig. 22 which shows that
for this classifier the AuC assumes the values AuC = 0.91
for the P class and about 0.67 for both the S and Q classes.
Therefore, while the P class is classified with an acceptable
accuracy, the Q and S are poorly classified. However, in
terms of ROC curves, the FCM performs better than the
K-means.

Results by using the GMM

Tuning a GMM model offers to the user the possibility
of choosing different settings for the covariance matrices.

Table 4 Class centers using the FCM algorithm in the ESLN-EBCN
plane

Class μ1 μ2

Q 0.6598 2.0578

S 1.8531 6.5577

P 39.7895 69.0634
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Fig. 20 Classification regions obtained by using the FCM algorithm.
The cluster centers are indicated by the × symbol

Indeed, even if ultimately the covariance matrices are
automatically computed by the software, the choice of their
structure is left to the user. After some trials, with the aim
of maximizing the model performances against the P class,
we have found convenient to assume, diagonal covariance
matrices, shared among the classes. The obtained mixing
coefficients πi and mean μi parameters of the GMM model
are reported in Table 5. The classification mask, in the
feature plane ESLN-EBCN, is shown in Fig. 23.

Fig. 21 Confusion Matrix obtained classifying the 2-D dataset by
using the FCM algorithm

Fig. 22 ROC curves for each class obtained by using the FCM
algorithm

It is possible to see that also this model, similar to the
k-means and FCM ones, simply classifies as Q low RMS
values recorded at both ESLN and ECBN, as S low RMS at
ESLN and high at ECBN and, finally, as P high RMS values
at both the stations. Obviously, the position of the boundary
regions are different with respect to K-means and FCM.

The classier performances in terms of CM are reported
in Fig. 24, while the ROC curves are reported in Fig. 25.
This last figure shows that for this classifier the AuC is 0.80
for the P class and about 0.54 for both the S and Q classes.
Therefore, while the P class is classified with an acceptable
accuracy, theQ and S are poorly classified. In terms of AuC,
the GMM performs worse than the FCM and similar to the
Kmeans.

Comparison among the unsupervised classifiers for the 2-D
data

A direct comparison among the three unsupervised classi-
fiers, in terms of global Accuracy, f1 and Cohen’s K, by
using the 2-D dataset is reported in Fig. 26. It is possible to
see that Kmeans and GMM perform quite similar in terms of
all the three considered global indices. In particular, while
they outperform the FCM model in terms of Accuracy and
Cohen’s K, the FCM performs better in terms of global f1.

Table 5 Components of the fitted GMM model

Component πi μ1 μ2

1 0.982276 0.8756 3.0013

2 0.015458 12.9308 28.3762

3 0.002266 54.5323 88.9329
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Fig. 23 Classification regions obtained by using the GMM algorithm

The performance indices for each single class are shown
in Fig. 27. The figure shows that the f1 score for class Q
is quite high regardless of the clustering algorithm and so is
the Accuracy. For class S both the f1 and Accuracy indices
are low. For class P, the f1 index is about 0.7 regardless
of the clustering method. Furthermore, it should be noted
that the Cohen K index for class Q is very low, unlike the
Accuracy index, thus indicating that the statistic on class Q
is not very reliable. On the contrary, the statistic on class P
is very reliable.

Fig. 24 Confusion Matrix obtained by using the GMM model

Fig. 25 ROC curves for the three classes obtained by using the GMM
algorithm

Models in 1-D and comparison with 2-D

Operating in 1-D, i.e. training the models by using the
average seismic tremor, estimated model parameters are
reported in Tables 6 and 7 for the K-means and FCMmodel,
respectively. The parameters of the fitted GMM model are
reported in Table 8.

A comparison of the performance, in terms of f1 and
AuC, Accuracy and Cohen’s K indices, between models
fitted by using the 1-D and 2-D dataset, is reported in
Figs. 28, 29, As a general comment it is easy to say
that there are not meaningful advantage in performing the
unsupervised clustering operating on the 2-D with respect
to the 1-D dataset. This result which may appear trivial, is

Fig. 26 Comparison among the unsupervised classifiers in terms of
global Accuracy, f1 and Cohen’s K, by using the 2-D dataset
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Fig. 27 Comparison among the unsupervised classifiers in terms of f1
for each individual class by using the 2-D dataset

essentially due to the fact that the seismic tremor timeseries
at different stations are strongly correlated, as discussed in
the previous Section “Regression analysis of tremor time
series”.

In more details, Fig. 28 shows that the f1 index, averaged
among the methods, is about 0.88 for the Q class, about
0.25 for the S class and about 0.66 for the P class. So it
might seem that in terms of f1, both class Q and class P
are well classified. In reality, if we look at the AuC index
reported in Fig. 29, we realize that class Q has an Auc index
of 0.58 while class P has an AuC of 0.84. Bearing in mind
that a random classifier has an AuC = 0.5, we can conclude
that while the value of f1 = 0.88 is not representative of
the true performance of the classifier with respect to class
Q, the value average value of f1 = 0.66 for class P is
representative of the true capabilities of the classifier. In a
few words we can conclude that the unique class reliably
discriminated is class P.

Another result that could be interesting to observe is
that the value of Auc for class P, estimated in this paper,
could agree with that obtained by Spampinato et al. (2019),
operating with different methodologies on the same area,
who computed a value AuC ∼ 0.8.

Table 6 Cluster centers using the Kmeans and the 1-D dataset

Class μ

Q 0.2272

S 17.5085

P 65.8976

Table 7 Cluster centers using the FCM and the 1-D dataset

Class μ

Q 0.1791

S 16.2816

P 62.1765

Measuring the performance of the FCM classifier assuming
as true the output of the ENSE supervised classifier

In this section we report a comparison between one of the
best among the unsupervised classification algorithms, in
our case the FCM operating on the 1-D dataset, and one
of the best supervised classifiers presented in the previous
section. For this comparison we have chosen the ENSE
classifier. In order to perform this comparison, we have
computed a CM, assuming as target the time series obtained
by the ENSE classifier and as output the one provided by
the FCM. Such a CM is shown in Fig. 30. It is possible to
see that:

– Supervised and unsupervised algorithms almost fully
agree in classifying samples of class Q, being
T PR% = 100 and PPV% = 91.6.

– The two kinds of classifiers almost fully agree also for
the P class, being T PR% = 100 and PPV% = 97.6.

– Supervised and unsupervised algorithms do not fully
agree with samples of S class, exhibiting PPV =
100% but T PR = 18.5%.

This experimentally demonstrates that the unsupervised
classification of RMS tremor can effectively replace the
supervised one, limited to the clustering of paroxysm
activity. In other terms, it is possible to reach the same
level of performances, avoiding the laborious commitment
of the experts or at least they could take the results
provided the unsupervised classifier as a good starting point
for further developments. Furthermore, without significant
loss of performance, it is possible to carry out the
classification on the 1-D dataset, that is, using the average
RMS tremor time series, obtained using the expression
(2).

Table 8 Parameters of the fitted GMM model and the 1-D dataset

Component πi μ

1 0.981812 0.8756

2 0.015824 18.8321

3 0.002364 54.5323
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Fig. 28 Performance in terms of the f1 index by using the 2-D and the
1-D dataset

Comparing the true and the unsupervised time
series of class

The following discussion aims to show that the misclassified
samples occur during the transition phases from quiet to
paroxysm and vice versa. Indeed, the 706 samples classified
by the experts as belonging to the P class, form actually
48 paroxysmal events (or patterns). A few of these episodes
are shown in Fig. 31. The time series of classes provided
by the unsupervised classifier is reported in yellow color,
the average RMS tremor is reported in red color, and the
expert class in blue. The figures also show that paroxysm is

Fig. 29 Comparison in terms of AuCindex by using the 2-D and the
1-D dataset

Fig. 30 Confusion Matrix obtained assuming as target the output of
the ENSE supervised classifier and as output class the output of the
FCM clustering algorithm

always preceded by Strombolian and usually also followed.
It is also possible to see that the yellow and the blue
curves usually agree during paroxysm, while the major
differences can be observed during the Strombolian activity.
It is also interesting to observe the close correlation between
the average level of the RMS tremor (red curve) and the
time series of class provided by the unsupervised classifier
(yellow curve). Therefore, the greatest uncertainties concern
the classification of the S episodes, for which the average
level of the RMS tremor is not particularly different from
the level it assumes during the activity classified as Q.

Discussion and Conclusions

In this work we have addressed both the problem of
supervised and unsupervised clustering of volcanic activity,
based on seismic tremor, a kind of geophysical signal widely
available in many volcanoes around the world, in order
to objectively evaluate to what extent popular clustering
algorithms can automate this task, usually performed by
human experts. Results achieved can be summarized as
follows:

– All the considered classification algorithms, both
supervised and non, agree that by using the RMS of
tremor as the only feature, only events belonging to
class P can be classified with a reliability that, measured
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Fig. 31 Comparison among the
true (blue color) and clustered
(yellow) time series of classes
for a few paroxysm episodes;
the red curve is the average
RMS tremor

in terms of the f1 index, is about 0.7 and in terms of
AuC about 0.8.

– Almost all the supervised classifiers considered are able
to perform this task of classifying the class P events, but
a limited superiority can be assigned to ENSE, KNN
and TREE models. Similarly, among the considered
unsupervised classifiers a limited superiority can be
assigned to the FCM one.

– The greatest uncertainties of classifiers concern the
attribution of events belonging to class S. In this regard,
the RMS level of tremor alone is not enough to safely
discriminate whether these samples are to be attributed
to class Q or to class S.

As a final remark, it is to stress that the expert classification
is not necessarily based exclusively on the evaluation of
physical signals and the dating of the events can therefore
be imprecise. Therefore, a basic problem arises, concerning
the establishment of objective criteria that experts must
consider to classify volcanic activity. However, this problem
is beyond the scope of this paper and is left for future
developments.

Appendix A

The purpose of this section is to provide a formal description
of the ML methods considered in this paper and to give
some useful insights on how they have been implemented.
All the software used in this work has been coded by

the author by using the standard Matlab Statistical and
Machine Learning Toolbox library (Inc 2017). In the
following we report a brief description of each method and
references to papers where these methods were originally
introduced.

A.1.1 Supervised classification

In this section, we provide a description of the six
supervised approaches considered in the paper, starting with
the Discriminant Analysis.

Discriminant analysis

Discriminant analysis, here referred as DISCR, is the
evolution of the original Fisher discriminant, named for its
inventor (Fisher 2008). The model for discriminant analysis
works as follows:

– The class vector Y is generated assuming that the input
data X can be reliably fitted assuming a Gaussian
mixture distribution.

– For linear discriminant analysis, the model assumes
the same covariance matrix for each class, i.e. only
the means vary. It could be easily demonstrated that
assuming different covariance matrices for each class,
the boundary curves become, in general, quadratic.

Predictions are performed according with the following
expression:
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ŷ = arg min
y=1,...,K

K∑

k=1

P̂ (k|x)C(y|k) (12)

where

– ŷ is the predicted class.
– K is the number of classes.
– P̂ (k|x) is the posterior probability of class k for

observation x.
– C(y|k) is the cost of classifying an observation as y

when its true class is k.

Therefore, the user can choose the type of boundary regions
(linear or quadratic) based on the kind of assumption about
the structure of covariance matrix (e.g equal or different for
the various classes, diagonal or full etc).

Another choice left to the user is the cost function C. By
default, the standard form of the cost matrix C, is Ci,j = 1
if i �= j and Ci,j = 0 if i = j . Entries for the C matrix can
also be negative. In this paper we have assumed the standard
form.

In the Matlab Statistical toolbox this method is imple-
mented by the function fitcdiscr which allows several
options. Among these we have chosen to operate with a lin-
ear discriminant type. This implies that we have assumed
that all classes have the same covariance matrix. Further-
more the algorithm applies a regularization expression of
the form
∑̂

γ
= (1 − γ )Σ̂ + γ diag(Σ̂) (13)

where Σ̂ is the empirical pooled covariance matrix and γ is
the amount of regularization 0 ≤ γ ≤ 1. In this paper we
have set γ = 0. Moreover, we have adopted a double logit
score transformation of data.

A.1.2 Error-correcting output codes

Error-Correcting Output Codes (ECOC) (Dietterich and
Bakiri 1995) is an ensemble method designed for multi-
class classification problem (i.e. K > 2 ). Indeed, while
some algorithms, such as Decision Tree, Naive Bayes can
handle multi-class problems directly, ECOC is a meta
method which combines L binary classifiers in order to
solve the multi-class problem. All kinds of classifiers can
be used as binary classifiers, such as Discriminant, KNN,
Naive Bayes, SVM, Decision Trees etc. The number L

depends on the kind of coding considered among several
available, such as one-versus-all (OVA), one-versus-one
(OVO), etc. For instance if the OVO coding is adopted the
number of needed binary classifiers is L = K(K − 1)/2,
where as usual, K is the number of classes. The basic
ingredients of the ECOC method are:

– a coding design matrix M

– a binary loss function g(·, ·)
The coding design matrix is a matrix whose elements
direct which classes are trained by each binary learner,
that is, how the multiclass problem is reduced to a
series of binary problems. Each row of the coding design
matrix corresponds to a distinct class, and each column
corresponds to a binary learner. In a ternary coding design,
for a particular column (or binary learner):

– a row containing 1 directs the binary learner to group all
observations in the corresponding class into a positive
class.

– A row containing −1 directs the binary learner to
group all observations in the corresponding class into a
negative class.

– A row containing 0 directs the binary learner to ignore
all observations in the corresponding class.

For instance, suppose that, as is the case in this paper, that
the goal is to classify data into 3 classes, namely Q, S and
P. Choosing the one-versus-one (OVO) coding, the coding
matrix assumes the form shown in Table 9.

In this ECOC model the Learner L1 trains on observa-
tions in Class Q or Class S, and treats Class Q as the positive
class and Class S as the negative class. The other learners
are trained similarly.

In general, indicating as:

– M the coding design matrix whose elements are mk,l ,
– sl be the predicted classification score for the positive

class of learner l

– g(·, ·) a binary loss is function
– L the number of learners

the algorithm assigns a new observation to the class k̂ that
minimizes the aggregation of the losses for the L binary
learners. Different expressions can be used to compute the
predicted class for the observation. For instance, in the
loss-based decoding, the class producing the minimum sum
of the binary losses over binary classifiers determines the
predicted class of an observation, as expressed by Eq. 14

k̂ = arg min
k=1,...,K

L∑

l=1

|mk,l |g(mk,l, sl) (14)

Another possible choice is the loss-weighted decoding,
where the class producing the minimum average of

Table 9 OVO coding matrix to classify into 3 classes

Class L1 L2 L3

Q 1 1 0

S -1 0 1

P 0 -1 -1
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the binary losses, over binary classifiers, determines the
predicted class of an observation, that is Eq. 15.

k̂ = arg min
k=1,...,K

∑L
l=1|mk,l |g(mk,l, sl)∑L

l=1|mk,l |
(15)

As concerning the loss function g(·, ·) a number of
possible choices are possible, such as the Hamming
function, the exponential function, etc. Here, just to give an
idea, we report the Hamming Loss function (16).

g(yj , sj ) = 1 − sign(yj sj )

2
(16)

where, yj ∈ {−1, 1, 0} is a class label for a particular binary
learner and as sj is the score for observation j . In the Matlab
Statistical and Machine Learning Toolbox the ECOC model
is implemented by the function fitcecoc, which allows
several parameters to be chosen. In this application we have
considered all default parameters which use K(K − 1)/2
binary Support Vector Machine (SVM) models together
with the one-versus-one coding system.

A.1.3 Ensemble methods

Under the name Ensemble Methods, here referred as ENSE,
a wide range of algorithms can be recognized, based on the
idea that the use of multiple learning algorithms allows to
obtain better predictive performance than could be obtained
from any of the constituent learning algorithms alone. This
idea can be formalized as follows. Consider for example a
set of k regression models. Suppose that each model makes
an error εi on each example, with the errors drawn from a
zero-mean multivariate normal distribution with variances
E[ε2i ] and covariance c = E[εiεj ]. Then it is possible to
demonstrate (Goodfellow et al. 2016) that the expected error
of the ensemble predictor is

E

[(
1

k

∑

i

εi)

])
= 1

k
v + k − 1

k
c (17)

This means that in the case where the errors are perfectly
correlated and c = v, the mean squared error reduces to
v, so the model averaging does not help at all. In the case
where the errors are perfectly uncorrelated and c = 0,
the expected squared error of the ensemble is only 1

k
. This

means that the expected squared error of the ensemble
decreases linearly with the ensemble size. In other words,
on average, the ensemble will perform at least as well as
any of its members, and if the members make independent
errors, the ensemble will perform significantly better than
its members. Different approaches are available to build the
ensemble of models. Among the most popular we have the
Bagging and the Boosting approaches.

In the framework of the Matlab Statistical and Machine
Learning Toolbox, the Ensemble method is implemented as

the function fitcensemble that has been used in this paper. In
particular we have adopted as basic learner the Adaboost2
algorithm building a medium coarse tree with a maximum
number of splits set to 20, a maximum number of cycles up
to 30 and a learning rate set to 0.1.

A.1.4 K-Nearest Neighbor K classifier

In classification problems a key point is that of estimating
the posterior probability p̂(y|x), x ∈ Rp and y ∈ 1, . . . , nc,
i.e. the probability of having the class k ∈ [1, . . . nc], after
observing the feature vector x. To perform this estimation,
let assume the following.

Suppose that we have a training data set T =
{(xi, yi)}, i = 1, . . . , N, y ∈ {1, . . . , nc} and let Nk be the
number of points x that belongs to the class k. Obviously,
we must have

∑nc

k=1Nk = N . If we wish to classify a new
point x, we draw an hypersphere centered at x containing
precisely K points irrespective of their class. Here, we are
indicating for historic reasons as K this number which
might be confused with the number of classes we want
to discriminate, but the reader will understand the true
meaning by the context.

Let us indicate as κ the number of points inside the sphere
belonging to the class k. It is trivial to understand that:

– the conditional density associated with each class y = k

can be written as

p(x|y = k) = κ

NkV
(18)

– the unconditional density p(x) can be written as

p(x) = K

NV
(19)

– the priority for each class can be written as

p(y = k) = Nk

N
(20)

In order to classify a new observation x, we can introduce
the following estimation function

ŷ(x) = k, k = arg max
y=1...,nc

p(y = k|x) (21)

Now, in order to estimate p(y = k|x) we can use the Bayes’
rule

p(y = k|x) = p(x|y = k)p(x)

p(y = k)
(22)

Substituting expressions (18),(19) and (20) into (22), we
obtain the following estimation function

ŷ(x) = k, k = arg max
y=1...,nc

p(y = k|x) = κ (23)

The interpretation of Eq. 23 is simple: a new observation
vector x will be assigned to the class corresponding to the
samples that are in greater number in its neighborhood.
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It is trivial to understand that the parameter κ controls the
trade-off between the bias and the variance.

The K-Nearest Neighbor classifier is implemented in the
Matlab Toolbox under the function fitcknn that we have used
in this paper, setting the dimension of the neighbor to 10 and
the Euclidean distance as metrics.

A.1.5 Naive-Bayes classifier

Naive Bayes classifiers, here referred to as NBYE, are
probabilistic classifiers based on the Bayes theorem, with
a strong (naive) independence assumption between the
features. In more detail, indicating as X the features
matrix, and as Y the output class, the generic feature
x ∈ X is assigned to one of K class label y ∈ Y

such that ŷ = argmaxy p(y|x), where p(y|x) is the
class posterior probability density, which is computed by
applying the Bayes rule. The assumption of independence
among features greatly simplifies the computation of
p(y|x). Naive Bayes classifiers are implemented in the
Matlab Toolbox under the function fitcnb that we have used
in this paper choosing a normal kernel distribution and
unbounded support.

A.1.6 Decision learning tree

Decision Tree (DTs) algorithms, here referred as TREE,
originally introduced by Breiman et al. (1984)), belongs to
the non-parametric supervised learning methods, used for
both classification and regression problems. They are based
on the use of a tree-like model of decisions which mimic the
human level thinking so, in simple cases, they can be easily
interpreted. The key idea underlying tree-based methods is
that of partitioning the feature space into a set of cuboids,
and then fit a simple model (like a constant) in each one.
A DT consists of a tree in which each internal (i.e. non-
leaf) node is labeled with an input feature. Therefore, a basic
problem during the building of the tree is the choice of the
feature to be associated to a splitting node. This problem
is basically solved by invoking the concept of impurity.
Several definition of this quantity are available, such as:

– the Gini’s impurity or Gini’s Diversity Index (gdi),
defined as

gdi = 1 −
∑

i

p2(i) (24)

where the sum is over the classes i at the node, and p(i)

is the observed fraction of classes with class i that reach
the node. A node with just one class (a pure node) has
a Gini index 0; otherwise the Gini index is positive. So
the Gini index is a measure of node impurity.

– The Deviance, defined as

D =
∑

i

p(i) log2 p(i) (25)

where p(i) is defined as for the Gini index.

Decision trees are implemented in the Matlab Statistical and
Machine Learning Toolbox under the function fitctree, that
we have considered in this paper by using the Gini’s index
as split criterion.

A.2. Unsupervised classification

Among the numerous unsupervised classification algo-
rithms, in this work we have taken what are probably
the simplest and most popular: K-means, Fuzzy C-Means
(FCM) and Gaussian Mixture models (GMM).

A.2.1 K-means

The K-means is the prototype of distance based clustering
algorithms. After indicating the number K of classes
the user intends to classify, the algorithm searches for
the cluster centers which best represent the classes, by
optimizing an appropriate cost function. Formally, if we
have a data set {x1, . . . , xN } consisting of N observations
of a random D-dimensional Euclidean variable x, let us
indicate as μk, k = 1, . . . K a set of prototypes, i.e.
candidates as cluster centers, associated with the classes.
Then, the following cost function is defined

J =
N∑

n=1

K∑

k=1

rnk‖xn − μk‖2 (26)

which represents the sum of the squares of the distances
of each data point to its assigned prototype vector μk . In
expression (26), rnk ∈ {0, 1, } is a binary indicator variable
describing which of the K clusters the data point xn is
assigned to, so that if data point xn is assigned to cluster k

then rnk = 1, and rnk = 0 for j �= k.
With these definitions, the clustering problem is to find

values {rnk} and {μk} which minimize J . This optimization
problem can be solved with an iterative procedure in which
each iteration involves two successive steps corresponding
to successive optimizations with respect to the rnk and
the μk . In the first step J is minimized with respect to
the rnk , keeping the μk fixed. In the second phase J is
minimized with respect to the μk , keeping rnk fixed. These
two steps of updating rnk and updating μk correspond
respectively to the E (expectation) and M (maximization)
steps of the known EM algorithm that we encounter also in
the Gaussian Mixture algorithm. Here, it must be stressed
that the Euclidean distance in expression (26), which is
usually adopted, for special purposes can be replaced. A
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list of allowed distance definitions is reported in (Xu and
Tian 2015). For high dimensional dataset others definitions
may be adopted, such as the L1 distance (also known as
cityblock), the cosine distance, i.e. one minus the cosine of
the included angle between points (treated as vectors), the
correlation, i.e. one minus the sample correlation between
points, and so on. In the Matlab toolbox the K-means
is implemented under the function kmeans which was
considered in this paper with the default parameters, in
particular by using the squared Euclidean distance metric.

A.2.2 Fuzzy c-means

The Fuzzy c-means (FCM) (Bezdec 1981) can be consid-
ered an extension of the K-means, but while in this latter
algorithm each point belongs exclusively to one class, the
FCM allows each data point to belong to multiple clus-
ters, with varying degrees of membership. In more detail
the FCM algorithm is based on the minimization of the
following cost function:

J=
D∑

i=1

N∑

j=1

μm
ij‖xi − cj‖2 (27)

where:

– D is the number of data points.
– N is the number of clusters.
– m is the fuzzy partition matrix exponent for controlling

the degree of fuzzy overlap, with m > 1. Fuzzy overlap
refers to how fuzzy the boundaries between clusters are,
that is the number of data points that have significant
membership in more than one cluster.

– xi is the ith data point.
– cj is the center of the jth cluster.
– μij is the degree of membership of xi in the jth cluster.

For a given data point, xi , the sum of the membership
values for all clusters is one.

The FCM algorithm performs the following steps:

1. Randomly initialize the cluster membership values, μij .
2. Calculate the cluster centers:

cj =
∑D

i=1μ
m
ij xi

∑D
i=1μ

m
ij

(28)

3. update μij according with the following expression

μij = 1

∑N
k=1

( ‖xi−cj ‖
‖xi−ck‖

) 2
m−1

(29)

4. Calculate the objective function, Jm.
5. Repeat steps 2 to 4 until Jm improves by less than a

specified minimum threshold or until after a specified
maximum number of iterations.

The user can choose a fuzzy partition matrix exponent,
indicted as m, being m > 1, for controlling the degree of
fuzzy overlap.

In the Matlab toolbox the FCM algorithm is implemented
under the function fcm and considered in this paper
assuming the default parameter, which means that the fuzzy
partition matrix exponent is set to m = 2 and the maximum
number of iterations set to 100.

A.2.3 Gaussian mixture models

Gaussian mixture models are probabilistic clustering
algorithms which can be useful for fitting multidimensional
dataset by a superposition of K Gaussian distributions, as
shown in expression (30)

p(x) =
K∑

k=1

πkN(x|μk, �k) (30)

where πk are the so-called mixing coefficients, K the
number of clusters the user would like to separate,
N(x|μk, �k), normal gaussian distribution with mean μk

and covariance �k . Obviously, in a multidimensional space
μk are vectors and �k matrices. The mixing coefficients
are themselves probabilities and must meet the condition:∑K

k=1πk = 1.
One of the main advantages of using Gaussian mixtures

is that it is possible to determine the shape of the distribution
depending on the data covariance. Various options for
the covariance matrix structures, represent the degree of
freedom for the user. A Gaussian Mixture clustering model
makes use of the iterative Expectation-Maximization (EM)
algorithm (Xu and Jordan 1996). In the Matlab Toolbox,
the training of a GMM model can be performed by using
the fitgmdist function by which allows several parameters
to be set, including other than the class number K, also
the kind of assumptions concerning the covariance matrices
(full or diagonal), the maximum number of iterations,
the regularization value. In this paper we have set the
Covariance Type to full, the Shared Covariance option to
True and the Regularization Value to 0.01.
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