Food and Bioprocess Technology
https://doi.org/10.1007/511947-022-02761-z

REVIEW ARTICLE q

Check for
updates

An Insight into the Gelatinization Properties Influencing the Modified
Starches Used in Food Industry: A review

Ishita Chakraborty' - Pooja N' - Sib Sankar Mal? - Uttam C. Paul® - Md. Hafizur Rahman* - Nirmal Mazumder'

Received: 18 August 2021 / Accepted: 3 January 2022
© The Author(s) 2022

Abstract

Native starch is subjected to various forms of modification to improve its structural, mechanical, and thermal properties for
wider applications in the food industry. Physical, chemical, and dual modifications have a substantial effect on the gelatini-
zation properties of starch. Consequently, this review explores and compares the different methods of starch modification
applicable in the food industry and their effect on the gelatinization properties such as onset temperature (7)), peak gelati-
nization temperature (7)), end set temperature (7), and gelatinization enthalpy (AH), studied using differential scanning
calorimetry (DSC). Chemical modifications including acetylation and acid hydrolysis decrease the gelatinization temperature
of starch whereas cross-linking and oxidation result in increased gelatinization temperatures. Common physical modifications
such as heat moisture treatment and annealing also increase the gelatinization temperature. The gelatinization properties of
modified starch can be applied for the improvement of food products such as ready-to-eat, easily heated or frozen food, or
food products with longer shelf life.
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Introduction linked by o (1-4) glycosidic linkage whereas, in amylopec-

tin, glucose units are linked linearly with a (1-4) glycosidic

Starch is a widely available, biodegradable natural, and
hydrophilic polymeric carbohydrate derived from plants.
Major sources of starch include cereals, roots, tubers, and
legumes, which contain nearly 70% of starch by dry weight
(Alcazar-Alay & Meireles, 2015; Wang et al., 2020). Starch
has two polysaccharide components — amylose (15-30%)
and amylopectin (70-85%) (Wang et al., 2020). The ratio
of amylose and amylopectin in starch differs based on their
botanical source. Amylose is a linear chain of a-D-glucose
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linkage, but branching occurs by a (1-6) glycosidic linkage
frequently at 24 to 30 glucose units. Internally, starch gran-
ules are composed of alternating semi-crystalline (amylo-
pectin) and amorphous (amylose) rings, which are referred
to as growth rings. These rings are about 100—-400 nm thick.
Starch has several applications in various industries includ-
ing the textile, pharmaceutical, and food industries. In the
food industry, starch is either used in unprocessed native
form (extracted from the plant) or in processed/modified
form (Mathobo et al., 2021; Ulbrich & Floter, 2019; Wang
et al., 2019a, b, c). Unprocessed or raw native starches
are not widely used in advanced food industries. This is
because they possess low thermal and shear resistance, and
higher retrogradation tendency which is the main reason
behind the staling of food products (Wang et al., 2019a, b,
¢). To overcome these liabilities, starch modification is an
obligation to alter its physicochemical properties based on
the requirement. Starch modifications may be of different
types like chemical, physical, or dual modifications (Dai
et al., 2020). The chemical modification alters the physi-
ochemical properties of starch by introducing new chemical
or functional groups in starch without altering the shape and
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size of starch granules. Physical modifications change the
morphology and structure of starch influenced by physical
factors such as moisture, temperature, pressure, pH change,
radiation treatment, and ultrasonic treatment. Dual modifica-
tion is when starch is modified using two different methods.
Compared with physical modifications, chemical methods
provide more options for the functionalization of starch and
therefore broaden the application field significantly. How-
ever, those treatments can be harmful to the environment
(Fan & Picchioni, 2020). Modified starch is widely used in
the food industry as a fat replacer, thickener, stabilizer, or
textural modifier. Starch is modified by hydrolysis to form a
fat replacer such as maltodextrin. It is widely used in low-fat
spread, mayonnaise, and ice cream (Chen et al., 2020). Mod-
ified starch is also used as a water-soluble gelling agent to
stabilize high-shear emulsions such as mayonnaise and salad
dressings (Depree & Savage, 2001). Several studies have
also been conducted on the use of modified starch to improve
the textures of food products. Bread crumbs prepared with
phosphorylated cross-linked tapioca starch exhibit a dry tex-
ture compared to bread produced from flour substituted with
native hydroxypropylated and acetylated tapioca starches
(Abbas et al., 2010). The limits of starch modification, use,
and labeling are distinctly specified by the US Code of Fed-
eral Regulation and its consumption does not usually exhibit
any side effects (Abbas et al., 2010). However, a rare case
study had reported that acetylated distarch phosphate starch,
a modified starch used in some baby foods, leads to diar-
rhea. In the experiment, 20 normal infants and 21 toddlers
aged 8-24 months were fed with formulae that contained
8% native or 8% acetylated distarch phosphate waxy maize
starch. The study concluded that acetylated distarch phos-
phate starch consumption contributed to increased breath
hydrogen and loose stools (Lebenthal-Bendor et al., 2001).

Modifications, whether physical, chemical, or dual, end
up affecting the gelatinization parameters of starch making
it suitable for several purposes that the native starch may be
unable to fulfill. When starch is heated with water, inter-
molecular bonds within the starch molecule are broken, and
this phenomenon is known as gelatinization. The process
of gelatinization is exceedingly influenced by starch modi-
fications (Shi et al., 2020). Gelatinization is an important
phenomenon when it comes to the cooking properties, tex-
ture, and palatability of starch-based food products. Starch
gelatinization disrupts the molecular orderliness within the
granule and results in granular swelling, crystallite melting,
loss of birefringence, increase in viscosity, and solubiliza-
tion. Figure 1A depicts the mechanism of starch gelatini-
zation from various sources in the presence of water and
heat. This review elaborates on the applications of various
modified starch in food industries and their gelatinization
properties studied using differential scanning calorime-
try (DSC). Finally, the purpose of this review will contribute
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to develop specialized modified starch-based food products
with specific applications of modification methods including
improved texture, better freeze—thaw stability, and reduced
syneresis.

Factors Affecting Gelitinization of Starch

The gelatinization property of starches is a very crucial
factor in the food industry. The differential scanning calo-
rimetry (DSC) is a very powerful technique to study the
effect of modifications on the thermal behavior, gelatiniza-
tion, and structural organization of starch granules. During
gelatinization, DSC measures the degree of disruption of
hydrogen bonds within the starch granules and quantifies
the heat energy that is represented by enthalpy (Liu et al.,
2019). A DSC instrument may be of two types, namely, heat
flux DSC and power compensation DSC. In a heat flux DSC,
the difference in temperature between the reference and the
given sample is measured as a function of temperature. On
the other hand, power compensation DSC directly measures
the change in enthalpy of the sample as a function of time
(Menczel & Kohl, 2020). Figure 1B depicts a commonly
used typical heat flux DSC instrument with a gelatinization
curve of starch.

Gelatinization is a semi-cooperative or cooperative pro-
cess in which the starch breaks down in presence of water
and heat; first, the amorphous region (amylose) hydrates and
swells, straining and tearing away crystalline regions (amy-
lopectin). Gelatinization begins in the amorphous regions
since the hydrogen bonds are weaker in this domain. This
process is initiated at the hilum of the starch granule and
slowly spreads to the periphery. The gelatinization properties
depend on the molecular structure of amylopectin and the
ratio of amylopectin to amylose (Abbas et al., 2010). There-
fore, starch gelatinization is an “order-to-disorder transi-
tion” that results in loss of birefringence, increased swelling
power, and solubility (Palanisamy et al., 2020). This action
of gelatinization stresses the crystallites so that they coop-
eratively melt at a lower temperature. Structural relation-
ships between the amorphous and crystalline domains of the
starch granule are accountable for the peak temperature of
gelatinization, and the sharpness of the gelatinization endo-
therm. Starch gelatinization is obtained as an endotherm as
starch granules consume heat energy resulting in disruption
of their molecular order. However, the peaks of the endo-
therm may be up or down, due to the instrument program,
depending on the manufacturer. Onset (7)) and end set/
ceasing (T,) refer to the temperature of onset and ceasing of
gelatinization process. The peak temperature of gelatiniza-
tion (7)) is defined as the temperature at the peak apex of the
gelatinization endotherm of starch. Gelatinization enthalpy
(AH) shows the loss of molecular organization in the granule
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Fig.1 (A) Gelatinization of native and modified starch from various sources in presence of water and heat. (B) Working mechanism of a heat
flux DSC instrument with typical gelatinization curve of starch
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(Alvani et al., 2011). The palatability, structure, and texture
of starch-based food are mostly affected by functional prop-
erties including starch swelling and gelatinization behavior.
Interpreting the mechanisms affecting the gelatinization of
the starch is essential for developing food formulations with
enhanced nutritional composition, such as sugar reduction
and fiber enrichment (Renzetti et al., 2021). The phenom-
enon of starch gelatinization depends on various factors are
discussed in the following.

Variety and Origin of Starch

The gelatinization properties of starch largely depend on vari-
ous factors such as their botanical origin, amylose—amylopectin
ratio, granular shape and size, relative crystallinity, and mois-
ture content (Govindaraju et al., 2020). The most common
sources of starch are corn, wheat, rice, sorghum, potato, and
barley (Hu et al., 2020). A previous study has reported that
changes in gelatinization properties of starch occur primarily
based on particle size where smaller starch granules result in
decreased thermal stability (Hong et al., 2020). Another study
has reported that large granules are gelatinized first at higher
temperatures followed by smaller granules at lower tempera-
tures and a broader gelatinization range (Vermeylen et al.,
2005). In a recent study, ten indigenous rice varieties from
Northeast India were subjected to gelatinization study using
DSC. All ten varieties exhibited variations in 7, Tp, T, and
AH values. These variations were accredited to factors men-
tioned above including the architecture of the starch granules,
amylose—amylopectin content, and crystallinity (Govindaraju
et al., 2021). According to Zhu and Liu (2020), the internal
molecular structure of amylopectin plays an important role in
starch gelatinization and concluded that a more ordered struc-
ture of amylopectin in starch results in higher thermal stability
and melting enthalpy changes of the starches.

Moisture and Temperature

Moisture content also affects the gelatinization of native
starch. In excess water, as temperature rises, the starch crys-
tals melt cooperatively as a single peak at higher gelatini-
zation temperature (7),1). In limited water, starch crystals
melt partly, and the remaining crystals produce a second
peak at higher temperatures (7,,). A study reported that
rice and maize starches displayed gelatinization tempera-
tures ranging between 58.9 and 72.4 °C (rice) and 64.3 and
77.2 °C (maize). Further, starch that has been pre-treated
with heat—water will have an increased gelatinization tem-
perature. It was reported that the degree and temperature of
gelatinization of 5% (w/w) tapioca, corn, potato, and wheat
starch suspensions increased with an increase in treatment
temperature in the range between 25 °C (Bauer & Knorr,
2005). Corn starch was treated at specific temperatures
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ranging between 35 and 90 °C for 30 min. An increase in
T, and AH was observed with the increasing temperature
of treatment (Jackson & Ratnayake, 2006). Another study
revealed that a high-temperature exposure during the rice
grain filling stage led to an increase in gelatinization temper-
atures of rice starch, irrespective of rice genotypes. Studies
have reported that the increase in gelatinization temperatures
is usually accredited cooperative melting of starch crystal-
lites mediated by water (Liu et al., 2017).

Concentration of Sugar and Salt

Sugar is known to increase the temperature of starch gelati-
nization (Zhang et al., 2020), (Table 1) since it limits the
availability of water to starch. When sugar is placed in water,
it binds some of the water and lowers the free water in the
system. Research suggests that the chemical nature and con-
centration of salts can cause either an increase or a decrease
in gelatinization temperature and enthalpy of starch. A study
reported that the increasing concentrations of NaCl to native
potato starch exhibited a rise in gelatinization temperature
and a decrease in AH (Shi et al., 2019).

Lipid and Protein Content

Starch, lipids, and proteins are three macronutrients in the
human diet that provide the body with energy. Lipids and
protein content influence starch gelatinization properties. In
a study, three rice varieties, namely, high-lipid rice (GZ1),
a low apparent amylose content (GZ93), and parent rice
(R7954), were employed for thermal characterization using
DSC. It was noted that the AH value of GZ1 with high lipid
content was lower than those of R7954 and GZ93. However,
the removal of lipids significantly increased the AH value
(Zhang et al., 2019a, b, c). Starch and lipids form inclu-
sion complexes or starch-lipid complexes either naturally
or during repeated heating and cooling, commonly occur-
ring during food processing. The formation of starch-lipid
complexes with the amylose component of starch alters the
gelatinization properties of starch. On the other hand, pro-
teins bind to starch molecules, preventing the escape of exu-
dates through the granule surface. The interaction between
protein and starch is mainly electrostatic, between the ani-
onic groups of the starch and the positively charged groups
of the protein. The protein—starch interactions in bulk solu-
tions and at interfaces have an important influence on the
stability properties of food dispersions. This protein—starch
interaction results in increased gelatinization temperature
of starch. A recent study revealed the effect of starch—pro-
tein interactions on the thermal properties of starch using
DSC. Obtained results showed that corn starch-whey pro-
tein isolate (WPI) blends exhibited delayed gelatinization as
the swelling process was restricted. This was accredited to
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the interference of starch—water interactions during gelati-
nization due to the presence of protein, therefore showing a

= = significant increase in gelatinization temperature and drop
S § in AH (Yang et al., 2019a, b). Starch and protein from cere-
= ; als, meat, and other sources play key roles in providing the
3 E 5] appropriate textural and rheological characteristics in food
s % . .
2 = <§ items (Jamilah et al., 2009).
ki z G
~ = O

2|e o Starch Modification

| 3 2 = ke

q| 2 ) = )

S To procure appropriate for use in food industries, native
R 8 3 & starches undergo chemical, physical, or dual modification
N B ! > . . . .
5= & < S S to get the desired properties such as adhesion, texture, heat
2|0 o tolerance, and solubility. These chemical and physical modi-
§ E " § % é fications also affect the gelatinization properties of starch
8 = which are discussed in detail in the following section.
£12lg = %

Slel e o < Chemical Modification

Chemical modification includes introducing a new func-
tional group into the already existing native starch molecule
that results in distinctive changes in its physicochemical
properties. Chemical modifications affect characteristics
like proximate composition, gelatinization temperature,
retrogradation, and pasting characteristics of native starch
granules. Major types of chemical modifications used in the
food industries include the following.

Acid-Hydrolyzed (Thinned) Starches

110 °C for 16 h with 25% moisture
HHP: Modified at 600 MPa for 6 cycles of

HMT: Modified by heating starch in an oven at 64.98
10 min at 21 °C

Bhd. (Pulau Penang, Malaysia) with 21%

amylose content
sodium sulfate and 30% propylene oxide for

etherification
purchased from a local market with 32.94%

Extracted from unknown cultivar of potatoes
amylose

Purchased from SIM Supply Company Sdn.

Acid thinning: modified by 0.14 N HCI at
Hydroxypropylation: modified by 20% w/v

Experimental conditions
50 °C for 24 h

Acid-hydrolyzed (thinned) starches are obtained by treat-
ment of starch with mineral acids such as hydrochloric
or sulfuric acids resulting in depolymerization of the
starch polymer. (de Siqueira et al., 2017). Acid modi-
fication is performed to improve the physicochemical
properties of starch and eliminate fatty substances asso-
ciated with native starches. Acid-treated starches exhibit
many desired properties such as increased AH, reduced

£ &

E E
g gg = tendency to be retrograded and swelling power, and
g S § % broadened range of gelatinization temperature as well
= z g Z as loss in pasting viscosities (Pratiwi et al., 2018). The
g % % % acid treatment initially affects the amorphous domain of
E 2 éné 2 éo the starch granule which is more susceptible followed
E § S = § 2 by slowly moving towards the crystalline domain of
the starch granule. Acid hydrolysis leads to an increase
'g in short amylose chains and favors the retrogradation
SlZ of starch that leads to resistant starch formation. Acid
é ; affects hydrolysis amorphous domains followed by slow
g %D degradation of crystalline regions leading to an increase
= |3 - in the peak gelatinization temperature (7). In a recent
% g g § study, native and hydrochloric acid-modified (0.1 and
e |3 £ £ 0.5 mol L™!) pine seed starch was studied using DSC

@ Springer
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and it was concluded that higher acid concentrations
promoted crystallinity reduction and loss in the internal
structure of the starch granule. However, the gelatiniza-
tion behavior varied between different genetic varieties
(de Siqueira et al., 2019). Another study reported that
there is an approximately three-fold reduction in the AH
of granules, indicating a weakening of granules post-
acid hydrolysis modification (Mehfooz et al., 2019). Fig-
ure 2A depicts the DSC endotherm of acid-hydrolyzed
tapioca starch. Acid-thinned starches are widely used
in the manufacture of gelled sweets like gum candies
and baked goods. Acid hydrolysis also reduces the tol-
erance of starches to refrigeration, storage (5 °C), and
freeze—thaw cycles (Thys et al., 2013; Ulbrich & Floter,
2019). To summarize, acid thinning lowers the peak
gelatinization temperature of starch and increases the
solubility. This is also accompanied by loss of swelling
capacity and viscosity.

Acetylation of Starch

During acetylation, the acetyl group replaces the —OH groups
of glucose molecules using acetic anhydride and catalysts
such as sodium hydroxide. During the acetylation process,
the hydroxyl groups (—OH) of glucose monomers are con-
verted into CH;COO (acetyl) groups. Hence, acetylation
can be considered as esterification of hydroxyl groups that
present an anhydroglucose monomer of the starch molecule
(Fitch-Vargas et al., 2019). Acetylated starches serve different
purposes depending upon the degree of substitution (Colussi
et al., 2017). Acetylation increases the solubility of starch in
acetone and chloroform in which native starch is sparingly
soluble (Abba et al., 2014). Acetylation introduces hydro-
philic acetyl groups in the amorphous domain of the starch
granules resulting in a decrease of the onset temperature (7,,),
suggesting initial disruption of the order in the starch gran-
ules with a temperature rise. This decrease indicates the fact

Chemical modifications

= B b

~

=

2 3

o

- 1

i 2

[}

I \ 4
d 5

80 100 20 30 40 50 60 70 80 0 20 40 60 80 100 120 140 160 180 200 220
Temperature (°C)

Physical modifications

Anncaled ,/,

"""""" T

|/

HMT 10 min

HMT 30 min

HMT 60 min

Heat flow (J/g)

Native E i ii F
N
- / \ Native
B73 raw

W64 Raw

[__/ US 60%
W64 A Anncaled
[ EN N

G H

US 50%

‘ US 40%
e/ Ai 2B

300 I\IPa/J .

SOME____ N\

80 90 100

60 70 80 90 100 40 60 80 100 120

Temperature (°C)

Fig.2 (A) DSC curve of acid-modified tapioca starch and its derivative
for measuring temperature. Figure reproduced from Atichokudomchai
et al. (2002) with kind permission from John Wiley and Sons. (B) The
DSC curves of native corn starch (a), acetylated corn starches with a
degree of substitution (DS) of 0.071 (b), with a DS of 0.105 (c), with
a DS of 0.133 (d). Figure reproduced from Han et al. (2012) with kind
permission from Elsevier. (C) The heating DSC curves of native and
hydroxypropylated phosphate cross-linked potato starch with different
degrees of hydroxypropyl substitution and phosphate cross-linking.
Figure reproduced from Morikawa et al. (2000) with kind permission
from Elsevier. (D) DSC curves of the native starch and the oxidized
starches with different degrees of oxidation (1) native starch, (2) oxi-
dized starch 5.9%, (3) oxidized starch 19.5%, (4) oxidized starch 40.5%,
and (5) oxidized starch 56.3%. The figure is reproduced from Zhang
et al. (2012) with kind permission from Elsevier. (E) Effect of heat

@ Springer

moisture treatment on DSC curves of rice starch for different periods.
Figure reproduced from Arns et al. (2015) with kind permission from
Elsevier. (F) The DSC spectra (i) exhibit typical endothermic thermo-
gram of commercial starch: raw and annealed, (ii) comparison of raw
and annealed starches from two varieties of maize, namely, B73 and
W64 A starches. Annealing conditions were 50 °C for 48 h. The fig-
ure was reproduced from Krueger et al. (1987) with kind permission
from Wiley. (G) DSC thermograms for wheat starch after HHP treat-
ment in 0.1 M NaCl (1:1, w/w) for 15 min at 257 °C. The image was
reproduced from Kweon et al. (2008) with kind permission from Wiley.
(H) DSC curves of native and ultrasonically modified (US) purple taro
starch. The figure has been reproduced from Martins et al. (2020) with
kind permission from Springer
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that the gelatinization of starch is controlled in part by the
molecular structure of amylopectin that is affected by any
form of chemical modification (Olayinka et al., 2015). While
studying the thermal properties of yellow sorghum starch, a
similar reduction in AH was observed from 1.7 to 1.61 J/g in
acetylated starch. The 7, Tp, and T, values also decrease with
an increasing degree of acetylation (Beninca et al., 2008).
In another recent study, the effect of acetylation of hulless
barley starch on its thermal properties was studied. They
have found a declined 7, with the increased acetylation. The
hydrophilic acetyl groups make the starch more susceptible
to water leading to early gelatinization (Chang & Lv, 2017).
A similar trend was also observed while studying the thermal
properties of microwave pre-treated acetylated corn starch
with different degrees of substitution. With the increasing
degree of acetylation, a downward trend in 7}, and AH was
observed. According to the authors, this decrease of Tp and
AH in microwave-pre-treated acetylated starch was accred-
ited to the destruction of the amorphous regions in starch
molecules, hindering the spatial association of starch mol-
ecules, thus promoting improved hydration and easy gelatini-
zation compared to native starch (Lin et al., 2019). Figure 2B
depicts the decrease in peak areas with an increasing degree
of acetylation. The onset temperature (7,), peak temperature
(Tp), and ceasing temperature (7,) value also decrease with
increasing degree of acetylation. In the food industry, they
may act as adhesion, thickening, texturizing, film-forming,
stabilizing, and binding agents; plentiful applications in are
found in the food industry in baked, frozen, and baby foods
(Zia-ud-Din et al., 2017). Acetylated starch is stable at low
temperatures and resists retrogradation. It also affects the
swelling power and freeze—thaw stability of starches (Abba
etal., 2014).

Cross-linking of Starch

Cross-linked starch is obtained by treating native starches
using different cross-linking agents like sodium trimet-
aphosphate (STMP), sodium tripolyphosphate (STPP),
epichlorohydrin (ECH), and phosphoryl chloride (POCl;).
Cross-linking of carboxymethylated starch (CMS) pro-
duces hydrogels which can be used in the removal of metal
ions from water, as a pharmaceutical gelling agent and
emulsion stabilizer, as a tablet disintegrant, or for drug
delivery systems (Hagq et al., 2019; Wilpiszewska et al.,
2019). (Shah et al., 2016). Cross-linking increases resist-
ance to high temperature, high shear, and low pH and fur-
ther improves the viscosity and texture of starch. It also
restricts the swelling of starch granules under cooking
conditions and prevents gelatinization (Ayoub & Rizvi,
2009). Cross-linking is often used in the food industry
to decrease the retrogradation and gelation of amylose

in starch. Cross-linking affects other bonds like hydro-
gen bonds resulting in resistance to higher temperatures,
lower pH, and higher shear compared to native starch.
Cross-linked starches exhibit biphasic endotherms with
a relatively narrow endotherm compared to native sam-
ples. Gelatinization temperatures were found to be sig-
nificantly increased with increasing degrees of cross-
linking. The introduction of cross-linking agents such as
phosphate groups strengthens the molecular organization
of the starch molecules, thus inhibiting gelatinization
and increasing 7),. In a study, the thermal characteristics
of glutaraldehyde-cross-linked corn starch were stud-
ied using DSC in both acidic and alkaline mediums. T,
of cross-linked starches in the acidic medium increased
while AH decreased substantially. However, in alkaline
medium, both Tp and AH decreased compared to the
native starch (Gonenc & Us, 2019). In another study con-
ducted on faba bean and field pea, and corn starch was
cross-linked using three methods: phosphoryl chloride
(POCl;-aqueous), sodium trimetaphosphate/sodium trip-
olyphosphate (STMP/STPP) (STMP-semidry), and STMP/
STPP (STMP-aqueous). Corn starch exhibited the highest
T, Tp, and T, compared to faba bean and field pea starch,
owing to its characteristic compact crystal arrangement of
A-type crystalline cereal starch, compared to C-type crys-
talline pulse starches. The unique C-type starch crystal
structure consists of both A- and B-type polymorphs (Guo
et al., 2017). Gelatinization in C type starch granules ini-
tiates from B-type polymorphs at the central hilum at a
lower temperature due to loose packing and then moves
to A-type polymorphs. The lower T, T,,, and 7., for native
starches indicate low amylopectin contents. Cross-linking
increased 7, T, T, and AH, but the extent of increase in
T,, T,, and T, varied with the technique of cross-linking
and type of starch. The influence of STMP-semidry on
thermal stability was more pronounced in faba bean and
field pea starch, while the Tp of corn starch was more
influenced more by the POCl;-aqueous method (Dong &
Vasanthan, 2020). A study reported that the gelatiniza-
tion properties of different hydroxy propylated phosphate
cross-linked potato starch (HPS) by heating and classi-
fied as HSP1, HSP2, and HSP3 based on the degree of
hydroxypropyl substitution and phosphate cross-linking.
It was observed that the Tp of HPS1, 2, and 3 were about
15 °C lower than that of the native potato starch, but the
AH did not differ between the three HPS samples. This
decrease was due to an increasing degree of hydroxy-
propylation as the phosphate cross-linking content was
almost equal in all three cases (Morikawa & Nishinari,
2000). This is depicted in Fig. 2C. Cross-linked starches
are extensively used in the food industry as thickeners
and stabilizers and to improve food textures as well as
freeze—thaw stability of starch.
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Oxidization of Starches

Oxidized starches are obtained by treating them with oxi-
dizing agents such as sodium hypochlorite or hydrogen per-
oxide, or potassium permanganate. The hydroxyl groups
of starch can be subjected to a wide number of reactions
for modification like oxidation. The oxidizing agents react
with the free hydroxyl group in the monomer (glucose)
which results in a carbonyl or carboxyl group. Oxidation
of starch results also in the depolymerization of starch
molecules by breaking the glycosidic linkages (Moreno
et al., 2017). The use of oxidized starch as food additives
is increasing in the food industry due to its low viscosity,
high stability, and binding properties (Zhang et al., 2012).
Oxidation of starch also leads to increased relative crys-
tallinity compared to its native counterpart and shows an
increase in gelatinization temperature. It was reported that
oxidized white sorghum starch substantially increased the
T, Tp, and T, (Mehfooz et al., 2019). In another recent
study, the thermal properties of vacuum-assisted oxidized
corn, cassava, and canna starches were studied. The AH of
native starches were the highest followed by oxidized and
vacuum-oxidized starches, respectively. This indicated that
oxidation partially degrades the crystalline region of the
starch granule, and therefore, less energy was required for
gelatinization. Vacuum-oxidized corn and canna starches
exhibited lower T, Tp, and T, compared to their native
counterparts. This reduction was explained by the weak-
ening of starch granules, resulting in the destruction of
amylopectin in the crystalline region. However, vacuum-
oxidized cassava starch revealed an opposite trend with
an increase in 7, T,,, and 7, compared to its native form.
This was explained by depolymerization in the amor-
phous region of the starch granule and subsequently in
the destruction of their destabilizing effect on the crys-
talline regions, thus resulting in a rise of T, TP, and T,
(Zhang et al., 2018). Figure 2D depicts DSC thermograms
of oxidized starches. The oxidized starch is used in the
food industry for its exceptional functional properties such
as low viscosity, high stability, clarity, film-forming, and
binding properties. Oxidized starch is often used for coat-
ing, sealing, batter binding, emulsification, and dough con-
ditioning in baking (Matsuguma et al., 2009).

Physical Modification

Physical modification of starch includes alcoholic—alkaline
and drum drying methods. These are novel methods for the
physical modification of starch. Physically modified starch
alters the starch properties including morphology, and func-
tional properties like swelling capacity, water absorption,
pasting, and gelatinization, influenced by factors such as

@ Springer

temperature, moisture, and pressure. Pre-gelatinization,
heat moisture treatment (HMT), and annealing (ANN) are
common methods that have found wide applications in the
food industry (Lv et al., 2018; Yan & Zhengbiao, 2010).
Commonly used physical modifications techniques are-

Pre/Partially Gelatinized Starches

They are pre-cooked starches that are dried using a drum
(drum drying) to form a stable suspension that can be
dispersed in cold water. Drum drying is an extensively
popular method to modify the starch to obtain improved
textures and porous structures for better functional proper-
ties in different types of industry. For example, partially
gelatinized corn starch exhibited peak gelatinization
between 64—72 °C which is higher compared to the native
starch. According to a study conducted by Li et al. (2020),
the addition of pre-gelatinized starch increased the viscos-
ity and improved the texture of a gluten-free dough (Li
et al., 2020).

However, a decrease in AH was observed when compared
to native starch (from 12.97 +0.28 to 0.51 +£0.08 J/g) (Fu
et al., 2012). A study was conducted to reveal the effect
of partial gelatinization on the physicochemical properties
of corn, waxy corn, and wheat starch. The partially gelati-
nized starches exhibit less AH compared to their native
counterparts. For native corn, wheat, and waxy corn starch,
the T, increase from 65.5 to 80.3 °C, from 58.1 to 77.9 °C,
and from 64.3 to 77.4 °C, respectively. Further, the T, is
also found to increase from 70.6 to 83.9 °C, from 62.4 to
81.6 °C, and from 69.9 to 81.6 °C, respectively, for corn,
wheat, and waxy corn starch. The rise in gelatinization tem-
perature indicates the degree of reorganization during partial
gelatinization (Hickman et al., 2009). These are widely used
in the food industry, as a thickening agent. Pregelatinized
starch is used extensively in products such as instant food
items for infants, confectionaries, and soups. Pre-gelatinized
starch swells rapidly in cold water and resulting in improved
viscosity and texture of starch-based food products (Vanier
et al., 2019).

Hydrothermal Modification of Starch

Heat—moisture treatment (HMT) and annealing are types of
physical modifications involving the heating of starch above
glass transition temperatures along with water. Annealing
differs from HMT in terms of water content used. Annealing
occurs with excess water, whereas the heat—moisture treat-
ment requires less than 35% water. Hydrothermal treatments
affect the functional properties of starch which results in
better application in starch-based food products (Kaur &
Singh, 2019; Schafranski et al., 2021). The hydrothermal
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treatment during the gelatinization process especially in
the food processing industries is known to cause disori-
entation of the starch granular organization (Wang et al.,
2016). HMT results in a decrease in onset temperature and
an increase in 7}, due to the strengthening of intramolecu-
lar bonds promoted by the HMT indicating better thermal
stability (Singh et al., 2005). High temperature during
HMT increases the mobility of double helixes that form
the crystal structure, leading to breakage of hydrogen bonds
decreasing in the AH of hydrothermally treated starches
when compared to that of native starches (Arns et al., 2015).
Figure 2E depicts the effect of HMT on the thermal proper-
ties of rice starch. Annealing like HMT increases the onset
and peak gelatinization temperature and decreases the AH
as well as the gelatinization temperature range of starch.
Figure 2F exhibits gelatinization endotherms of annealed
starch. These changes during annealing are accredited to
the structural transformation of the crystalline domain
into amorphous domains, providing increased thermody-
namic stability and increased peak gelatinization tempera-
ture. The decrease in enthalpy with annealing or HMT of
starch implies that the molecular order of the treated starch
granules had increased. Annealing of starch thus increases
granule structure stability and structural transformations
of crystalline domains into amorphous domains. Recent
studies were conducted on a new source of starch obtained
from Kithul palm (Caryota urens) and observed that the
gelatinization parameters (7, Tp, and T) of Kithul starch
are higher than that of sago and corn. The Kithul starch
was subjected to dual chemical modification (oxidation
and acetylation), and physical modification like anneal-
ing. DSC analysis showed that modified forms of Kithul
starch exhibited an increase in gelatinization temperatures
compared to native starch (Sudheesh et al., 2019a, b). This
change depends on crystalline perfection, and the interac-
tion between new functional groups presenting hydroxyl
groups in starch granules. An increase in 7, T, and T,
was observed in annealed starch. This rise is credited to
an escalation in the interaction between amylose—amylose,
and amylose—amylopectin chains. HMT starch exhibits
greater thermal stability and shear resistance and is hence
used in food products like confectionaries, sauces, soups
noodles, and pasta. Recent studies have explored the use of
HMT starch in food items like pasta and noodles to obtain
desirable qualities like good expansion, minimum cook-
ing time, and good tensile strength (Chandla et al., 2017,
Kaur & Singh, 2019; Liao et al., 2019; Schafranski et al.,
2021). Annealing is a lucrative and simple technique used
to modify the functional properties of starch to develop
several food products. Annealed starches are used majorly
as viscosity modifiers, glazing agents, fat replacers, emul-
sion agents, encapsulation material, and bulking agents
(Schmiele et al., 2018).

Non-Thermal Physical Modification of Starch

Food items are preserved by exposing them to high tem-
peratures for a short period. These treatments result in the
loss of essential nutrients, and flavors. These problems can
be solved by non-thermal technology. Non-thermal treat-
ments preserve the important characteristics of food includ-
ing texture, color, nutrients, and taste as compared to the
traditional thermal processes (Zhang et al., 2019a, b, c).
Some of the non-thermal methods use ultrasound effects,
high hydrostatic pressure, and microwave treatments for the
modification of starches. Some established applications of
ultrasound in food processing consist of homogenization,
defoaming, filtration, extraction, emulsification, crystalliza-
tion, and extrusion (Jambrak et al., 2010). High hydrostatic
pressure has been effectively used to prolong the shelf life
of food products with the least impact on their taste, nutri-
tion, and aroma (Huang et al., 2017). Effects of high hydro-
static pressure (100, 300, and 500 MPa for 15 and 30 min
at 25 °C) on thermal properties of maize, potato, and sweet
potato starches (20%, w/w) were investigated by Rahman
et al. (2020). It was observed that the effect of high hydro-
static pressure on starch is a function of molecular structure.
Sweet potato starch with a complex molecular structure is
not affected by high hydrostatic pressure compared to maize
and potato starch which show an increase in gelatinization
temperature (Rahman et al., 2020). Figure 2G exhibits DSC
parameters of high hydrostatic pressure treated starch.
Microwaves are electromagnetic radiations in the fre-
quency range of 300 MHz-300 GHz. The microwaves
generate heat inside the starch granules due to alternating
electromagnetic fields at high frequencies. Other advantages
of microwave treatment involve faster and selective heat-
ing, energy efficiency, and control of the treatment process
(Colman et al., 2014). A study conducted by Colman et al.
(2014) showed that starch exposed to microwave exhibits
an increase in gelatinization temperature. Ultrasonic treat-
ment requires a shorter time and provides better yield com-
pared to traditional food processing techniques. According
to Jambrak et al. (2010), ultrasonicated corn starch did not
show a statistical increase in the gelatinization temperature
compared to native corn starch (74.99 °C). Lower T, and less
AH (8.733 kJ/kg) for corn starch suspensions were sonicated
for 15 min and was observed compared to the untreated corn
starch (Jambrak et al., 2010). Ultrasonicated starch is shown
to increase the pore size of starch granules, easing the release
of flavoring agents and spices (Sujka, 2017). Figure 2H
shows the gelatinization parameters of ultrasonicated starch.
A study was conducted to investigate rice starch modified
by a combined ultrasonic-microwave technique. The treat-
ment exhibited substantial changes in important functional
properties including gel firmness, degree of hydrolysis, and
retrogradation of starch (Brasoveanu & Nemtanu, 2014).
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Dual Modification

Dual modification of starch combines two methods—either
chemical and physical modifications or chemical and enzy-
matic methods. A combination of two chemical modifications
is the most common. There are two classes of dual modifica-
tion, namely, homogeneous and heterogeneous dual modifica-
tions. The homogeneous dual modification consists of either
physical/physical or chemical/chemical dual modification.
Heterogeneous dual modifications include a combination of
physical and chemical dual modifications (Ashogbon, 2021).
Frequently applied dual chemical modifications include
acetylation/oxidation or cross-linking/acetylation (Zia-ud-
Din et al., 2017). Heterogeneous dual modification of starch
(succinylation—annealing) increases swelling power, water
binding capacity, gelatinization temperature, and enthalpy
gelatinization. This is highly desirable for food products like
sauces, pasta, and noodles that require starch to be heated
and shear-stress resistant during processing (Lin et al., 2019).
A previous study has suggested that DSC analysis exhibited
improved thermal stability and peak gelatinization tempera-
ture after dual modification. (Ashogbon, 2021). For example,
the Kithul starch was subjected to dual chemical modifica-
tion (oxidation and acetylation), and physical modification
like annealing. DSC analysis showed that modified forms
of Kithul starch exhibited an increase in gelatinization tem-
peratures compared to native starch. This change depends on
crystalline perfection, and the interaction between new func-
tional groups presenting hydroxyl groups in starch granules
(Sudheesh et al., 2019a, b). In another recent study, taro starch
was subjected to dual modification by HMT and ultrasonica-
tion. The dual-modified samples exhibited reduced AH and
increased T),. This was accredited to the fact that HMT causes
reorganization of starch chains in a more ordered structure
which was disturbed by the application of ultrasound. This
resulted in easy penetration of water and resulted in less
energy for gelatinization (Thomaz et al., 2020). In yet another
study conducted, the effect of the dual modification, acid thin-
ning, and succinylation is studied, for possible applications
in the food industry. It was observed that there was no exten-
sive difference in the thermal properties of native and modi-
fied starch since the treatments only affected the amorphous
regions of the starch granules. The 7), of native starch was
66.51 °C whereas the dual modified starch exhibited 7, at
65.87 °C. AH for native starch was 13.67 J/g whereas modi-
fied starch had AH of 13.80 J/g (Cabrera-Canales et al., 2021).
A corn starch was exposed to hydrothermal treatments in vari-
ous orders. The native acorn starch exhibited 7, Tp, T, and
AH at 59.9,71.3, 80.6 °C, and 14.9 mJ/mg, respectively. The
T, of HMT-annealed and HMT starches were comparable but
higher than that of annealed starch. It shows that HMT had
a greater effect on the crystalline region of starch compared
to annealing. However, the T, of annealed-HMT starch and
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the 7, and 7, of both dual modified starches were lower than
HMT starch but higher than annealed starch. This revealed
that the second treatment in each case counteracts the effects
of the first treatment (Molavi et al., 2018). In the baking indus-
try, cross-linked starch decreased the crumb firmness of bread.
This undesirable property was improved by subjecting the
starch to dual modification (cross-linking and acetylation)
leading to an increase in bread volume and crumb structure
(Lakshmi, 2005). Table 1 compares the gelatinization proper-
ties of native and modified starch from recent studies.

Other Techniques for Physicochemical
Characterization

The thermal gelatinization properties of starches may vary
depending on various factors including botanical source,
amylose to amylopectin ratio, type crystallinity, and condi-
tions of chemical, physical, or dual modification (Table 1).
Although DSC is an indispensable tool in understanding the
thermal characteristics, it alone cannot represent the over-
all thermal properties of starch. Often other techniques like
thermogravimetric analysis (TGA) and differential thermal
analysis (DTA) are inevitable and critical in predicting the
overall thermal events of any material including starch. Fur-
ther, DSC shows other drawbacks including its destructive
nature and the dynamic nature of the technique. In addition,
it is hard to differentiate the individual changes in gelatini-
zation properties of starch which has undergone overlap-
ping dual modification. Since the pursuit of producing bet-
ter, cheaper, and healthier starch-based food products never
stops, further research and multidisciplinary approaches
using various techniques including viscometry, microscopy,
spectroscopy, X-ray diffraction, and other methods of ther-
mal analysis are used to investigate the altered physicochem-
ical properties of modified starch used in the food industry
which can extend more efficient services to the consumers.
Microscopy techniques such as scanning electron micros-
copy are used to investigate the morphology of modified
starch granules. X-ray diffraction measurements are used to
analyze if the modifications alter the crystalline structure of
starch. Fourier transform infrared spectroscopy is the most
widely used technique to study characteristic functional
groups. Further, Raman spectroscopy is also applied exten-
sively to study the chemical and structural characteristics
of modified starch (Pineda-Gomez et al., 2021). To select
modified starch for a particular application, especially the
food industry, properties such as structure, chemical com-
position, organoleptic characteristics, viscosity, shelf stabil-
ity, and resistance to heat, and low pH must be considered.
Therefore, detailed characterization of modified starch using
the techniques is necessary.
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Conclusion

Since starch forms a major part of our daily diet, gelatini-
zation properties have become an important parameter to
be considered while processing or cooking food. Modified
starch can be used in all sectors of the food industry includ-
ing the beverage, canned food, baby food, and sweet indus-
tries. Starch modification influences the functional quality,
selectivity, and suitability of the modified starch for various
nutritional, pharmaceutical, and food industrial formula-
tions. Further, starch modification alters the gelatinization
properties to improve and tailor its functional characteristics
to specific food applications. DSC analysis is important for
elucidating the complicated gelatinization characteristics of
starch subjected to various types of modifications used in
food industries. Thus, it is important to choose the correct
form of modification based on gelatinization properties for
the processing of starch in the food industry.

This review suggests that generally physically modified
starches including partial/pre-gelatinization, HMT, anneal-
ing, and high hydrostatic pressure treatment are widely used
in pre-cooked/ready-to-eat meals like soups and sauces since
they provide high gelatinization temperatures and better solu-
bility of starch. Similarly, cross-linked and oxidized starches
also require a short duration and higher temperature to gelati-
nize and improve the texture as well as the shelf life of starch-
based food products. Other modification methods including
acid hydrolysis, acetylation, and ultrasonication reduce the
gelatinization temperature of starch, making them appropri-
ate for the manufacture of gelled sweets, sauces, and soups
owing to lowered Tp. However, these modifications also
exhibit some disadvantages including lowering firmness of
starch gels, reduction in swelling capacity, or viscosity. These
disadvantages can be overcome by dual modification. A com-
bination of cross-linked and acetylated starch is useful for
the packaged and frozen food industry. While cross-linking
increases the gelatinization temperature, cross-linked starch
improves the texture and resistance of starch to extremely
cold and high temperatures. A wide array of modified starch
is yet to be tested for increased thermal stability.
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