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Abstract
Climate variability and climate change influence human migration both directly 
and indirectly through a variety of channels that are controlled by individual and 
household socioeconomic, cultural, and psychological processes as well as pub-
lic policies and network effects. Characterizing and predicting migration flows are 
thus extremely complex and challenging. Among the quantitative methods available 
for predicting such flows is the widely used gravity model that ignores the network 
autocorrelation among flows and thus may lead to biased estimation of the climate 
effects of interest. In this study, we use a network model, the additive and multipli-
cative effects model for network (AMEN), to investigate the effects of climate vari-
ability, migrant networks, and their interactions on South African internal migra-
tion. Our results indicate that prior migrant networks have a significant influence on 
migration and can modify the association between climate variability and migration 
flows. We also reveal an otherwise obscure difference in responses to these effects 
between migrants moving to urban and non-urban destinations. With different met-
rics, we discover diverse drought effects on these migrants; for example, the nega-
tive standardized precipitation index (SPI) with a timescale of 12 months affects the 
non-urban-oriented migrants’ destination choices more than the rainy season rainfall 
deficit or soil moisture do. Moreover, we find that socioeconomic factors such as 
the unemployment rate are more significant to urban-oriented migrants, while some 
unobserved factors, possibly including the abolition of apartheid policies, appear to 
be more important to non-urban-oriented migrants.
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Introduction

Studies using diverse methods have established that environmental factors, 
including climate variability and change, affect patterns of human migration both 
directly and indirectly (McLeman & Gemenne, 2018). Projected twenty-first-
century climate change includes increased frequency and intensity of tempera-
ture extremes, increases in both wet and dry regional extremes of the hydrologi-
cal cycle, increased tropical cyclone intensity, and sea level rise (IPCC, 2014, 
2019a, b), each of which would trigger or enhance natural hazards that may lead 
to population displacement and migration (Bohra-Mishra et al., 2014, 2017; Cai 
et al., 2016; Feng et al., 2010; Gray & Mueller, 2012; Hauer, 2017; IPCC, 2019b; 
Mueller et al., 2014). In addition to episodic and often temporary responses, peo-
ple migrate as a planned adaptation strategy against environmental risks (Black 
et  al., 2011; Hunter et  al., 2015). Human migration and other forms of mobil-
ity can influence the environment, economics, and epidemiology of sending and 
receiving locations. Understanding dynamic interactions of natural and societal 
systems that affect mobility is critical to estimating a range of measures of future 
migration.

Internal migration is the more likely choice compared to international migra-
tion in response to climate variation, according to one study, and total internal 
migration due to climate variability and change is projected to exceed 86 million 
by 2050 for sub-Saharan Africa (Rigaud et al., 2018). As previous studies found 
that the effects of climate variability on human migration are not easily gener-
alized (Beine & Jeusette, 2018), even if only in sub-Saharan African countries 
(Gray & Wise, 2016; Mueller et  al., 2020), in this study, we only focus on one 
country, South Africa, to investigate in detail the mechanisms through which the 
climate influence is exerted in a particular set of circumstances. South Africa is 
predicted to experience increases in temperature extremes and shifts in precipita-
tion patterns, as well as the exacerbation of its already severe water scarcity (Liu 
et al., 2017; Mekonnen & Hoekstra, 2016). Coupled with population growth, its 
population exposure to drought is predicted to increase drastically under climate 
change (Supplementary Tables  9–12 in (Smirnov et  al., 2016)). Besides, South 
Africa has a high rate of internal migration, with 12% (13.5%) of its population 
having moved internally during 1996–2001 (2006–2011), about 77.8% (83.5%) 
of which had an urban destination. The high migration rate and increasing inflow 
to urban areas greatly influence the population growth, resource distribution, and 
public health for individual districts and pose challenges for planning, especially 
under future climate change.

To analyze mechanisms controlling inter-district migration flows in South 
Africa and predict migration flows with higher accuracy, our study introduces a 
Bayesian model for networks that resolves a major limitation of the widely used 
gravity models—the assumption that network flows (e.g., human migration flows) 
are mutually independent (Tiefelsdorf, 2003). Assuming network independence 
may lead to estimation biases in both origin and destination effects. Common 
interdependent migration flow patterns include established bilateral migration 
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corridors between two places (Fig. 1a), like between Mexico and the USA; transit 
migration corridors where some people make an intermediate stop before arriving 
at their desired destination (Fig. 1b), for instance, migrating from African coun-
tries to European countries and taking a third country (e.g., Libya) as an interme-
diate destination; and circular migration corridors where some transit migrants 
return home (Fig. 1c). These common migration patterns correspond to second-
order network dependencies of reciprocity and third-order network dependencies 
of transitivity and cyclicality (see Appendix B for more details).

Moreover, migration, which is often modeled as a spatial problem, has both geo-
graphic and social network characteristics (Barbosa et al., 2018; Rozenblat & Melançon, 
2013). For example, the social closeness between locations imbedded in their historical 
activities such as prior migration and trade, or in their similarities in social characteristics 
such as culture and ideology, may influence migration decisions like whether and where 
to move. Such closeness or distance is not defined in physical space but in an unobserved 
conceptual space, i.e., latent space (Barnett, 2012; Hoff et al., 2002). The gravity models 
and other spatial interaction models used in previous migration flow research only define 
the distance on physical space, though some included socioeconomic drivers (Garcia 
et al., 2015). Other studies included limited measurements, such as linguistic proxim-
ity, migration agreements, and previous colonial ties between nations (primarily using 
dummy variables) that can approximate social closeness (Beine et al., 2011; Coniglio & 
Pesce, 2015). Nevertheless, factors contributing to the latent distance between locations 
are difficult, if not impossible, to represent adequately for migration analysis.

However, conceptualizing migration as a network problem, we can apply social 
network analysis techniques, for which modeling of social structures and net-
work dependencies are major objectives. As quoted from a comprehensive review 
of human mobility modeling (Barbosa et al., 2018), “The field of Social Network 
research is a huge enterprise in its own right and elucidating the connection between 
social networks and human movement is a nascent effort that should be explored 

Fig. 1  Common migration patterns and corresponding network autocorrelations. a Second-order network 
autocorrelation (reciprocity)—bilateral migration; b third-order network autocorrelation (transitivity)—
transit migration; c third-order network autocorrelation (cyclicality)—circular migration
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in more depth.” Nevertheless, social network analysis techniques are not often used 
in migration flow modeling, even less in those that involve any climate variables 
(Desmarais & Cranmer, 2012), though the influence of social networks on human 
migration decision-making is well recognized and documented (Beine et al., 2011; 
Carrico & Donato, 2019; Coniglio & Pesce, 2015; Curran & Rivero-Fuentes, 2003; 
Fussell & Massey, 2004; Fussell et  al., 2014; Mahajan & Yang, 2020; Massey 
et al., 1993; Nawrotzki et al., 2015). Most of these previous studies consider a prior 
migrant network as an influence on subsequent migration. However, a preexisting 
migrant network is only one type of network that can impact migration, and omitted 
variable biases may arise if we cannot include a range of potentially influential net-
works (e.g., family ties and trade networks) in the model.

Numerous studies use agent-based models (ABMs) to investigate simultaneous 
environmental and social network impacts on, or interactions with, human migra-
tion (Bell et  al., 2019, 2021; Entwisle et  al., 2016; Klabunde & Willekens, 2016; 
McAlpine et al., 2021; Thober et al., 2018). ABMs use knowledge specific to agents 
in a particular society to reconstruct at the micro-level how these agents behave, 
interact with each other (e.g., by forming social networks), and interact with the 
environment. Such models then simulate an artificial society, subjecting it to social 
experiments that we cannot do in the real world, and dynamically derive collective 
behavioral outcomes at the macro-level. These are essentially mechanistic models 
where many of the mechanisms are not well known a priori. A major limitation to 
building useful ABMs is the lack of data on the actual behavior of the agents, which 
renders assigning rules of the behavior (i.e., mechanisms) for the agents in the mod-
els difficult.

Here we introduce an additive and multiplicative effects network model (AMEN; 
Hoff, 2021), an empirical model that can reveal the macro-level relationship between 
variables and network properties from the data. AMEN is suitable for both mecha-
nisms analysis and prediction of migration. It illustrates the advantage of control-
ling for network effects in that we obtain unbiased estimations of the climate effect 
without the need to explicitly specify a potentially inexhaustible number of network 
properties (model details in the “The network model” section). The AMEN model 
can relax the strong assumption of flow independence by allowing up to third-order 
dependencies (e.g., transitivity) in a network using a set of latent factors. The latent 
factors allow us to control for unobserved variables and the effects that are difficult 
to quantify in the model, such as policy effects, like the impacts of the abolition of 
apartheid (Migrant network effects and their interactions with climate variability). 
As a result, a model trained with historical data should better simulate and predict 
future migration flows with limited information. Furthermore, we compare AMEN 
with a traditional gravity model as well as with a gravity model adding the Moran 
eigenvector spatial filter (MESF) (Chun, 2008; Chun & Griffith, 2011, 2013; Chun 
et  al., 2016), which also addresses the network autocorrelation issue, and found 
AMEN outperforms both of them in migration flow prediction (MESF details in 
Appendix D; model comparison in the “Model comparison” section and Appendix 
E). In Appendix C, we also discuss other applicable network analysis approaches, 
such as a dynamic latent space model (Ward et al., 2013) and the weighted exponen-
tial random graph models (ERGMs) (Desmarais & Cranmer, 2012; Krivitsky, 2012; 
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Wilson et al., 2017), to model migration flows and provide our reasons for choosing 
AMEN.

Having established the modeling framework, we investigate how South African 
internal migration responds to climate variability, measured by temperature anom-
aly and water availability conditions. A subset of our results can be compared to 
a previous study using gravity modeling to examine climate variability impacts on 
South African internal migration (Mastrorillo et al., 2016). This previous analysis 
centered largely on “push effects,” factors that drive people to move away from a 
location, with “pull effects,” factors that attract potential migrants, receiving less 
attention. However, in our study, we include both the push and pull effects and inter-
pret them as origin and destination effects, as the characteristics of sending nodes 
can drive away or retain residents, while those of receiving nodes can attract or dis-
courage migrants. Furthermore, we also hypothesize that different metrics of a gen-
eral physical factor, such as drought, may have distinct effects on human migration 
and thus include several drought measurements. We separately characterize migra-
tion destinations as urban or non-urban to answer whether people moving into urban 
areas respond to climate variables differently from migrants moving to non-urban 
locations.

We also examine migrant network effects and their interaction with climate vari-
ables to connect this study to the body of scholarship that investigates the effect of 
prior migrant networks on migration (Beine et al., 2011; Coniglio & Pesce, 2015; 
Mahajan & Yang, 2020). Prior migration can sustain future migration by helping 
lower moving costs and risks (Massey et al., 1993), but this cumulative causation 
effect is not universal (Fussell & Massey, 2004). Interacting with the environmental 
variables, Nawrotzki et al. (2015) use household- and community-level data in rural 
Mexico with multi-level discrete-time event-history models and reveal a “suppres-
sion” mechanism where social networks can enhance climate adaptation at origin 
locations by sharing information and financial resources and thus suppressing the 
climate migration association. Applying a similar type of analysis in Bangladesh, 
Carrico and Donato (2019) find little evidence of social network impact on migra-
tion after extreme weather events. On the other hand, Mahajan and Yang (2020) use 
country-level data and find that a larger preexisting United States immigrant stocks 
from a country amplify the push effect of hurricanes in these countries in send-
ing immigrants to the USA. We test these effects in South Africa by investigating 
whether prior migrant networks affect the migration flows at the district-dyad level 
and whether they amplify or suppress the climate effects on the migration flows. 
At an aggregated population level, previous studies usually use the past migration 
flow (or migrant stocks) to proxy the migrant network. To demonstrate that prior 
migration flows from origin to destination in these studies are not complete repre-
sentations of migrant networks, we also examine the corresponding effects of prior 
migration counterflows from destination to origin. Moreover, our results indicate 
that there are still other unobserved contributing variables besides migrant networks, 
which emphasizes the advantage of the AMEN model in controlling unknown vari-
ables even when we have data to represent some of the network factors.
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Materials and methods

Data

Migration flows and socioeconomic variables

We generate the migration flows and socioeconomic variables from 1996, 2001, 
and 2011 census and 2007 community surveys of South Africa, provided by Sta-
tistics South Africa (http:// www. stats sa. gov. za/) and distributed by DataFirst 
(https:// www. datafi rst. uct. ac. za/). The original data are on the individual level. As 
the district boundaries change over time, to deal with the modifiable areal unit 
problem (MAUP), we assign each individual in each of the census and commu-
nity surveys to a district based on the 2011 census map and then aggregate the 
socioeconomic variables at the district level and migration flows at the district-
dyad level for each time interval. We also combine the Buffalo City Metropoli-
tan Municipality (BUF) into the Amathole District Municipality (DC12) because 
BUF is only demarcated from DC12 in the 2011 map. Therefore, our data are 
unified on the 2011 census district boundaries for 51 districts in total (Fig. A.1).

Definitions of migration flows and socioeconomic variables are similar to 
those from the previous study (Mastrorillo et al., 2016), but we improve some of 
the variable definitions and add new variables in this study. Specifically, the defi-
nition of the migration flow, the dependent variable, is the number of adults (age 
15–64) moving from one district to another during the past five years, includ-
ing the census year. Here we use 2001 and 2011 census data to calculate two 
migration episodes: 1997–2001 and 2007–2011. In addition, we break down the 
migrants into two subgroups by land-use types of the receiving locations. The 
“urban” group includes the migrants whose current usual residence areas are 
classified as urban, and the “non-urban” group includes the rest of the migrants 
whose current residence areas are classified as rural, tribal, or other types. The 
descriptive statistics of the migration flow data and covariates are shown in 
Table 1.

All socioeconomic nodal control variables are measured at the previous census  
or community survey and thus are lagged covariates. In the following  tables,  
the variable “population” is the natural logarithm of the total population of  
each district; “unemployed” is the unemployment rate of each district (popu-
lation ratio of unemployed people among all working-age people, in 15–64  
age range); “primary” is the population ratio of those who have finished pri-
mary school (7th grade based on South Africa education system) at most,  
among all people who are 25 or older; “White” is the population ratio of peo-
ple whose self-identified race is White. The dyadic control variables used  
in the models include “distance” and “contiguity.” The “distance” is the natu-
ral logarithm of geographical distance between the sending and receiving dis-
tricts of the migration flow dyads, and “contiguity” is a binary variable that  
indicates whether the origin and destination districts share a common border 
or not (equal to 1 if they share a common border, 0 if not). The two variables 
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approximating preexisting migrant networks, past migration flow (mij.past) and 
counterflow (mji.past), are also dyadic. Using 1996 census data, “mij.past” is 
defined as the logarithm of the number of migrants who moved from district i to 
j during 1900–1996 and reside in district j at the time of the census (1996); simi-
larly, “mji.past” is defined as the logarithm of the number of migrants who moved 
from district j to i during 1900–1996 and reside in district i in 1996.

Climate variables

As for the climate variables, we calculate a 12-month standardized precipitation 
index (SPI) (Mckee et al., 1993), in addition to the positive maximum temperature 
anomaly, negative precipitation anomaly, and soil moisture percentile that were 
also used in (Mastrorillo et  al., 2016). The negative SPI describes meteorological 
drought, which may influence the level of reservoirs and streamflow at the time-
scale of 12 months. To calculate the 12-month SPI, we first fit the 12-month cumu-
lative precipitation with a Gamma distribution at each grid cell (0.25 deg) based on 
the monthly precipitation data obtained from the most updated version of Prince-
ton Global Forcing data (PGF) (He et  al., 2020; Sheffield et  al., 2006). Then, we 
transform the cumulative probability of the fitted gamma distribution to a standard 
normal distribution. With such transformation, positive/negative SPI reflects precip-
itation surplus/deficit compared to the long-term climatology (1950–2016). Thus, 
we input the positive SPI (“pos SPI”) and the negative SPI (“neg SPI”) into the 
models with dummy variables to evaluate the effect of rainfall surplus and deficit, 
respectively.

To obtain the positive maximum temperature anomalies (“pos Tmax anom”), we 
first calculate the mean maximum temperature over the 5-year periods before the 
time of the census (i.e., 1996–2000, 2006–2010), then subtract the long-run average 
and divide by long-run standard deviation of maximum temperature (long-run refer-
ence period 1950–2011), and last replace the negative values with zeros to enable 
the evaluation of the effect of heat excesses. The negative precipitation anomalies 
(“neg Precip anom”) are calculated similarly: the 5-year average of precipitation in 
the rainy season of the district is calculated first, then the anomalies are calculated 
by subtracting the long-run average and dividing by the long-run standard devia-
tion, and, finally, positive values are replaced by zeros. Note that this is different 
from (Mastrorillo et al., 2016), in which the negative values are then replaced with 
their absolute values for the negative precipitation anomalies. The soil moisture per-
centile (“soil moisture”), which is measured in percentage on a 0–100 scale, is the 
5-year average of relative soil moisture of the top layer (0–10 cm) computed dynam-
ically in the land surface model (Sheffield et al., 2004).

The time intervals and temporal configuration of the migration flows, climate 
variables, and lagged demographic and socioeconomic variables are illustrated in 
Appendix Fig.  F.1. The data are deposited in the Harvard Dataverse repository, 
along with the code used to generate the results in this study (Xiao et  al., 2021) 
(link: https:// doi. org/ 10. 7910/ DVN/ NSKZ45).
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Methods

Migration flow data as a network

The dependent variable we model is the 5-year aggregated migration flow of adults 
between South Africa districts for two time intervals: 1997–2001 and 2007–2011 
(Fig. 2). In this study, we take the migration flow data as a dynamic, weighted, and 
directed network, in which the nodes are the districts in South Africa and the edges are 
the dyadic migration flows directed from origin to destination, weighted by the num-
ber of migrants, and changing over time (network analysis terminology in Appendix 
B.1). There are flow interdependencies in the migration data used in this study (details 
see Appendix B.2), which confirms the need to account for network autocorrelation 
in the model. The weights of the network (number of migrants) are count data (non-
negative integers) that usually follow a Poisson distribution with overdispersion.

The network model

We construct dynamic overdispersed Poisson AMEN models for migration flow 
networks considering the network autocorrelation and migration flow network 
properties mentioned above. To build and enable the estimation of the model, 
we consult the package website (https:// pdhoff. github. io/ amen/) and modify the 
source code of the AMEN R package (Hoff et al., 2018). The model is constructed 
as follows,

where mi,j,t is the migration flow from district i to j during time interval t. zi,j,t is the 
(i, j) th element of the unobserved latent sociomatrix ( Zt ). yt is the time fixed effect. 
xdyad,i,j,t is a vector of dyadic covariates representing the characteristics on the dyad 
{i,j}, including distance, contiguity, the proxies for preexisting migrant networks, 
and the interaction terms; xo,i,t ( xd,j,t ) is a vector of origin (destination) nodal covari-
ates representing the characteristics of origin (destination) district i (j). The origin 
and destination nodal covariates correspond to push and pull factors in the gravity 
model, respectively. They include lagged demographic and socioeconomic control 
variables, as well as measurements of climate variability.

The additive effect terms ai, bj in Eq. (1) are the random effects demonstrating 
the heterogeneity of the latent sociomatrix of the origin and destination node, 
respectively. In the multiplicative effect terms, uT

i
vj , ui , and vj are vectors of 

unobserved latent factors describing district i and j’s characteristics as an origin 
and a destination, respectively; �i,j is the error term.

The covariance expressions are as follows:

(1)zi,j,t = yt + �T
dyad

xdyad,i,j,t + �T
o
xo,i,t + �T

d
xd,j,t + ai + bj + uT

i
vj + �i,j

(2)
(
mi,j,t|zi,j,t

)
∼ Poisson(ezi,j,t )
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where � is the dyadic correlation and �2 is an overdispersion parameter. 
If �2 = 0 , mi,j,t would follow a Poisson distribution with the expectation: 
e
yt+�

T
dyad

xdyad,i,j,t+�
T
o
xo,i,t+�

T
d
xd,j,t+ai+bj+u

T
i
vj ; if 𝜎2 > 0 , the variance of yi,j,t will be larger than 

this expectation.
The AMEN models are Bayesian models and use a Gibbs sampler to approxi-

mate the joint posterior distribution of the unknown quantities, including the 
parameters ( �d, �r, �c,Σab,Σuv, �

2, � ), the latent nodal effects ( ai, bj, ui, vj ), and the 
latent dyadic variables ( zi,j,t).

The AMEN models can capture the first-, second-, and third-order net-
work autocorrelations. The latent effects ai, bj in Eq.  (1) describe the sender 
and receiver heterogeneity, respectively, which corresponds to the first-order 
dependencies. The sender and receiver dyadic correlation � in Eq. (3) describes 
the second-order dependencies of reciprocity. The multiplicative effect term uT

i
vj 

in Eq.  (1) constructed from latent factors captures the third-order dependen-
cies like transitivity and cyclicality in the network by allowing non-zero val-
ues of them (Eq. B.2 and B.3; network statistics are formulated and calculated 
in Appendix B.2.2, model diagnostics of these network statistics are shown in 
Appendix B.2.3).

Results

Climate effects

The climate variability effects are the central concern discussed here. First, we 
examine the effects of excessive heat and rainfall deficit, both of which contrib-
ute to drought (Table 2, model 1). As seen in column “All,” the positive maxi-
mum temperature anomalies have significant origin effects; people tend to leave 
districts with excessive heat. Here we give an example that indicates the magni-
tude of these effects. As this is a Poisson model, the coefficient (0.29) means that 
when positive maximum temperature anomalies increase by one unit, the migra-
tion flows will increase by 1.336 (exponential of 0.29) times. The negative pre-
cipitation anomalies in the rainy season have significant origin and destination 
effects. The negative coefficient of the origin effect indicates that the increase of 

(3)Var

(
ai
bj

)
= Σab; Var

(
ui
vj

)
= Σuv; Var

(
�i,j
�j.i

)
= Σ� = �2

(
1 �

� 1

)

Fig. 2  South Africa internal migration between districts during the 5  years before (left) 2001 and 
(right) 2011. The abbreviations of district names outside the circles are also displayed geographically in 
Fig. A.1, and their corresponding full names are shown in Table A.1. We distinguish the districts by their 
distinct colors on the circle. Each hyperbolic line linking two districts represents a dyadic migration flow, 
colored the same as the origin district. The width of a line is weighted by the number of migrants. The 
values displayed on the circles show the sum of out-migrants and in-migrants of each district, and only 
the districts with the largest values are included for clarity and esthetics. The figure shows sender and 
receiver heterogeneity and temporal evolution of migration flows

▸
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the covariate corresponds to migration flow reduction, as the exponential of nega-
tive values is smaller than 1. As this variable only has negative values, the coeffi-
cients mean that people are more likely to move out from the origins with a more 
severe rainfall deficit (decrease of this covariate) and less likely to move into the 
destinations with such a condition. The origin effects of the temperature and pre-
cipitation anomalies are qualitatively consistent with the push effects reported in 
(Mastrorillo et al., 2016) (their signs appear to be opposite ours for the negative 
precipitation anomalies because they take absolute values of this all-negative var-
iable). In column “Urban,” we can see that the origin effect of the positive maxi-
mum temperature anomalies is not significant for migrants who moved to urban 
areas (we call them the “urban-oriented migrants”), and the destination effect 
of it is significant but weak for them. As for the migrants who moved to non-
urban areas (“non-urban-oriented migrants”), shown in column “Non-urban,” the 
anomalously high temperature tends to push them away from their origins, and 
destinations with lower maximum temperature anomalies are more attractive to 
them. The results imply that the non-urban-oriented migrants are more sensitive 
to excessive heat than the urban-oriented ones. The origin and destination effects 
of negative precipitation anomalies are similar for both the subgroups as for all 
migrants, though less significant for the non-urban-oriented ones.

To investigate the impacts of different types of drought on migration, we include 
two measurements of drought. One is the soil moisture percentile (Sheffield et  al., 
2004) that can capture agricultural drought, which may directly influence the liveli-
hood of agro-economic dependent populations (Table 2, model 2). Results in column 
“All” show that anomalously low soil moisture tends to drive people away from their 
origins, which is qualitatively consistent with its push effect in (Mastrorillo et  al., 
2016). These effects are similar in magnitude and significance for the two subgroups 
(columns “Urban” and “Non-urban”). The other measurement is the 12-month stand-
ardized precipitation index (SPI) (Mckee et al., 1993), which can capture long-term 
meteorological droughts that may influence streamflow and reservoir levels (Table 2 
model 3). Positive SPI has significant origin and destination effects on all migration 
(column “All”), indicating that people tend to leave an origin with a long-term rainfall 
surplus and avoid moving to such a destination. These effects are especially evident 
for urban-oriented migrants (column “Urban”), which is consistent with a tendency 
to leave urban areas with repeated urban flooding or agricultural areas experiencing 
destructive effects of flooding on crop yields, for other job opportunities in an urban 
location and aversion to destinations subject to urban flooding. Origin effects of nega-
tive SPI are also significant for urban-oriented migrants, which indicates that peo-
ple tend to leave an origin with long-term meteorological drought and move to urban 
areas. Together with soil moisture percentile and rainy season rainfall anomaly effects 
for urban-oriented migrants, it suggests that this subgroup is sensitive to water deficit 
at the origin based on various measures. Also, neither the soil moisture anomalies nor 
negative SPI has a significant destination effect on urban-oriented migrants, imply-
ing that these types of drought are not affecting their destination choices either. On 
the other hand, non-urban-oriented migrants tend to avoid moving into locations with 
long-term meteorological drought (column “Non-urban”).
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Model comparison

We compare the results from the network model, AMEN, to the gravity model with 
and without the Moran Eigenvector Spatial Filter (MESF, see Appendix D) to show 
the improvement of model performance in terms of goodness of fit, the robustness 
of the consistent effects across models, and to discuss the possible reasons for the 
discrepant ones. In Tables 3, 4, and 5, the columns named “AMEN” show the results 
for the AMEN models using Eq. (1), and the columns named “MESF” display the 
results for the gravity models with MESF components using Eq. D.12. The models 
used for the columns named “gravity” are the gravity models without MESF com-
ponents using Eq. D.11. As the AMEN model is a Bayesian model and the other 
two are a frequentist, we only present one goodness of fit metric, R-squared of the 
logarithm of the migration flows ( R2(log)), for model performance comparison. The 
R2(log) is used instead of  R2 considering the expectation-variance relationship of the 
Poisson distribution.

We find that the model performance measured by R2(log) is improved using both 
models with network autocorrelation components (AMEN and gravity model with 
MESF) (Tables  3, 4, and 5). In Fig.  3, we visualize the comparison of the good-
ness of fit via plotting the observed migration flows against the fitted ones using the 
model for all migrants in Table 3 (first three columns). The AMEN model generally 

Table 3  The same as model 1 of Table 2, except fitted by three models, denoted by “AMEN,” “MESF” 
(gravity model with MESF components), and “Gravity” (gravity model without MESF components)

All Urban Non-urban

AMEN MESF Gravity AMEN MESF Gravity AMEN MESF Gravity

(O) population 0.83** 0.59** 0.62** 0.92** 0.63** 0.69** 1.26** 0.04 0.14
(O) unemployed  −0.94**  −0.06 0.03  −1.48**  −0.17  −0.04  −0.22  −0.11  −0.1
(O) primary  −1.23 2.8** 2.41**  −1.56† 2.66** 2.22* 1.89 1.37 1.79
(O) White 1.06 3.03** 3.5* 0.66 4.41** 5.15** 4.59†  −2.36  −1.99
(O) pos Tmax 

anom
0.29** 0.47** 0.48** 0.18 0.5** 0.52** 0.69** 0.41** 0.42**

(O) neg Precip 
anom

 −0.44**  −0.42**  −0.35**  −0.56**  −0.33**  −0.26*  −0.46†  −0.64**  −0.56**

(D) population 0.76** 0.45** 0.39 0.81** 0.5** 0.44† 0.04  − 0.22  − 0.19
(D) unemployed  −1.07**  −0.91**  −0.93*  −1.64**  −1.81**  −1.85**  −1.39*  −0.63*  −0.61
(D) primary  −2.58**  −2.49**  −2.49*  −3.72**  −3.95**  −4.03**  −2.96†  −0.62  −0.69
(D) White 5.83** 3.03** 2.88 8.39** 4.66** 4.45**  − 0.3 3.82* 3.73
(D) pos Tmax 

anom
0.08 0.08 0.06 0.19† 0.11* 0.1  −0.85**  −0.52**  −0.57**

(D) neg Precip 
anom

0.63** 0.67** 0.6** 0.64** 0.74** 0.68** 0.47† 0.41** 0.32†

(Dyad) distance  −1.45**  −1.04**  −0.94**  −1.4**  −1.1**  −0.95**  −1.67**  −0.85**  −1.18**
(Dyad) contiguity 0.65** 0.36** 0.54** 0.62** 0.32** 0.48** 0.97** 0.57** 0.62**
R2(log) 0.8337 0.7254 0.5203 0.8249 0.7073 0.5292 0.7023 0.5147 0.271
† p < 0.10
* p < 0.05
** p < 0.01
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yields a better fit, especially for zeros and smaller values (Fig. 3). We also compare 
their model performance in the out-of-sample predictions using a test dataset and 
find that the AMEN model also predicts the future migration flows better (Fig. E.2). 

Table 4  The same as model 2 of Table 2, except fitted by three models, denoted by “AMEN”, “MESF” 
(gravity model with MESF components), and “Gravity” (gravity model without MESF components)

† p < 0.10
* p < 0.05
** p < 0.01

All Urban Non-urban

AMEN MESF Gravity AMEN MESF Gravity AMEN MESF Gravity

(O) population 0.85** 0.73** 0.73** 0.94** 0.8** 0.83** 1.24** 0.43* 0.41

(O) unemployed  −1.25**  −0.48**  −0.48†  −1.83**  −0.53**  −0.51*  −0.66  −0.68**  −0.63†

(O) primary  −1.58* 2.83** 2.75**  −1.84† 3.16** 3.13** 1.44 0.36 0.62

(O) White 0.36 1.45 1.44 0.23 2.93** 3.02† 3.71  −2.91†  −2.71

(O) soil moisture  −0.03**  −0.13**  −0.13**  −0.03**  −0.15**  −0.15**  −0.03*  −0.1**  −0.08**

(D) population 0.77** 0.22 0.22 0.78** 0.22 0.24 0.08  −0.31  −0.33

(D) unemployed  −0.54†  −0.97**  −0.99*  −1.23**  −2.22**  −2.24**  −0.73  −0.17  −0.21

(D) primary  −2.21**  −1.87**  −1.73†  −3.52**  −3.03**  −2.99 **  −1.48  −1.23  −1.19

(D) White 6.61**  −0.19  −0.07 8.79** 0.56 0.55 3.69 7.8** 7.89**

(D) soil moisture  −0.01 0.08** 0.06* 0 0.03 0.02  −0.01 0.18** 0.16**

(Dyad) distance  −1.47**  −1.07**  −0.94**  −1.43**  −1.11**  −0.95**  −1.72**  −0.85**  −1.18**

(Dyad) contiguity 0.64** 0.36** 0.54** 0.61** 0.33** 0.48** 0.95** 0.58** 0.62**

R2(log) 0.8321 0.7268 0.5201 0.8236 0.7046 0.5304 0.6999 0.5157 0.2713

Table 5  The same as model 3 of Table 2, except fitted by three models, denoted by “AMEN,” “MESF” 
(gravity model with MESF components), and “Gravity” (gravity model without MESF components)

† p < 0.10
* p < 0.05
** p < 0.01

All Urban Non-urban

AMEN MESF Gravity AMEN MESF Gravity AMEN MESF Gravity

(O) population 0.75** 0.35* 0.43† 0.82** 0.38** 0.46* 1.2** 0.13 0.26
(O) unemployed  −1.57**  −0.63**  −0.53*  −2.32**  −0.69**  −0.54*  −0.68  −0.8**  −0.77*
(O) primary  −2.53**  −0.22  −0.38  −3.19**  −0.08  −0.29 1.1  −2.26*  −1.82
(O) White  −1.44  −1.52  −0.89  −2.23  −0.22 0.65 3.08  −5.9**  −5.58*
(O) pos SPI 0.13† 0.18** 0.12† 0.19* 0.15** 0.08  −0.04 0.28** 0.29**
(O) neg SPI  −0.13  −0.42**  −0.4*  −0.33†  −0.42**  −0.43** 0.21  −0.37*  −0.37
(D) population 0.75** 0.14 0.08 0.84** 0.13 0.08 0.25  −0.5*  −0.6
(D) unemployed  −0.43  −0.59*  −0.67  −0.92*  −1.63**  −1.68**  −0.23  −0.24  −0.34
(D) primary  −2.14**  −0.81  −0.8  −2.78**  −2.19 **  −2.21* 0.43 0.73 0.47
(D) White 6.89** 0.86 1.27 10.17** 1.99† 2.33 6.63* 6.11** 6.27*
(D) pos SPI  −0.15*  −0.38**  −0.33 **  −0.28**  −0.45**  −0.4**  −0.2  −0.15*  −0.14
(D) neg SPI 0.01  −0.07  −0.09 0.04 0.02 0 0.79 *  −0.26  −0.23
(Dyad) distance  −1.45**  −1.05**  −0.94**  −1.4**  −1.09**  −0.95**  −1.64**  −0.85**  −1.18 **
(Dyad)  

contiguity
0.65** 0.36** 0.54** 0.62** 0.32** 0.47** 0.99** 0.57** 0.62**

R2(log) 0.8326 0.7253 0.5197 0.8248 0.708 0.5299 0.6996 0.5102 0.2673
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However, the migration observation data they are compared to has an underestima-
tion problem. Therefore, we should treat this comparison with caution (see details in 
Appendix E). Moreover, most coefficients for the climate variables for the “urban” 
subgroup are robust in terms of being significant and obtaining the same signs using 
these two models (Tables 3, 4, and 5). The larger discrepancies between these two 
models for the “non-urban” subgroup could result from worse model performances 
dealing with data with excessive zero entries (zero-inflation, see Appendix E) 
because many fewer people moved to non-urban areas than to urban areas (Table 1). 
We choose to trust the AMEN model results for four reasons: better model perfor-
mance, especially for the smaller values; accounting for a higher order of network 
autocorrelation; controlling for unknown influential variables; estimating the coef-
ficients for the demographic and socioeconomic control variables more consistently 
across the three models using different climate variables for all migrants and each 
subgroup, respectively (see more details in Appendix E).

Socioeconomic and latent factor effects

In addition to climate variable impacts, here we discuss the effects of the demo-
graphic and socioeconomic control variables (“population,” “unemployed,” “pri-
mary,” and “White” in Table  2). Firstly, we find that these variables’ effects are 
generally more critical to urban-oriented migrants than non-urban-oriented ones. 
For the non-urban-oriented migrants, the only consistently significant effect across 
models 1–3 is the origin effect of population, suggesting their inclination to leave 
districts with a large population. Secondly, the destination effects of education level 
and race (“primary” and “White”) for all migrants are consistently significant across 
model settings. However, this pattern only shows up for the urban-oriented migrants, 

Fig. 3  Fitted (y-axis) using a AMEN, b gravity model with MESF components (“MESF”), and c gravity 
model without MESF (“gravity”) vs. observed (x-axis) migration flows (both in log10 axis). Using mod-
els for all migrants in Table 3 (first 3 columns). Each dot in the plots represents one dyad during one time 
interval. The solid black line represents a perfect fit (1:1 line)
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implying that districts with higher education levels or higher White population 
ratio are attractive to them (for “primary” variable, larger values mean lower popu-
lation ratio of those who have education beyond primary school). Thirdly, signifi-
cant origin and destination effects of the unemployment rate (“unemployed”) have 
the same signs, just as in population effects. This phenomenon is analogous to the 

Fig. 4  Heat map of the total multiplicative effects ( uT
i
vj ) in the AMEN model, Eq. (1) for a all migrants, 

b migrants moving to urban areas, and c migrants moving to non-urban areas. The values on the heat 
map show where the migration flows are underestimated (positive values) or overestimated (negative val-
ues) by other terms on the right-hand side of the equation and adjusted by the multiplicative effects term 
(model same as model 1 in Table 2, the sender and receiver codes are in the format province.district; see 
Table A.1 for the corresponding district and province names and Fig. A.1 for the geographic map)
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gravitational attraction between populous locations; a pair of districts where each 
member is characterized by a relatively low unemployment rate may undergo higher 
reciprocal migration.

Moreover, by analyzing the latent factors in the AMEN model, we can gain 
insights into the unknown influential variables and seek plausible, relevant mecha-
nisms. Based on the singular value decomposition theorem, the multiplicative effects 
term in AMEN ( uT

i
vj in Eq. (1) can represent a (first order) matrix of residuals that 

are not explained by the observed regressors in the model (Hoff,  2015). There-
fore, wherever the uT

i
vj values are positive, the observed regressors underestimated 

the migration flows there ( mi,j,t ), and vice versa. Thus, we can see where the term 
adjusts the prediction biases in Fig. 4. For example, the cluster of positive values 
in the middle of Fig. 4a indicates that the migration flows among districts in prov-
ince KwaZulu-Natal (KZN) were underestimated. In contrast, the negative values 
extending horizontally and vertically from this cluster suggest that migration flows 
between this province and other districts were generally overestimated. This means 
that after controlling for all the variables included in this model, we find that people 
are more likely to move within this province due to the latent factors and less likely 
to migrate to or from districts out of the province. By analyzing the latent positions 
of the first two pairs of latent factors ( ui, vj in Eq. (1) that make the largest contribu-
tion to the multiplicative term, we find that the first pair contributes to the clustering 
of districts of KwaZulu-Natal (Appendix G). However, not every province exhib-
its such a clustering pattern. On the contrary, a cluster of negative values for Gaut-
eng province (GT) indicates that people here are less likely to move among districts 
inside the province, holding all the variables included in this model constant. The 
latent position analysis in Appendix G shows that the second pair of latent factors 
contribute to this separation. We further deduce these latent factors in the follow-
ing section. By comparing Fig. 4c to Fig. 4b, we can see that the abovementioned 
cluster of KwaZulu-Natal districts is much more evident for non-urban-oriented 
migrants than urban-oriented ones. The larger magnitude of both positive and nega-
tive values in Fig. 4c reflects the extra importance of these unknown variables for 
non-urban-oriented migration, while urban-oriented migrants are more sensitive to 
the demographic and socioeconomic origin and destination effects already included 
in the model as discussed above.

Migrant network effects and their interactions with climate variability

Although the AMEN model can control for the unknown variables, here, we 
explicitly include proxies of the migrant networks to evaluate their effects and 
demonstrate the connection and distinction between our work and previous stud-
ies involving migrant network effects. We assume that prior migrants may form 
networks connecting their origins and destinations, no matter why and when they 
moved. Therefore, we use the past migration flow and the counterflow during 
1900–1996 as proxies of the preexisting migrant networks at the beginning of the 
period we are targeting (1996–2011) (data described in the “Migration flows and 
socioeconomic variables” section). The 1900–1996 migration flows are basically 
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1996 bilateral migration stocks between districts because earlier movers who 
were still alive in 1996 were very rare as the migration flows are mostly zeros 
before 1950 (Fig. I.1). However, we still frame them as migration flows to intro-
duce migration counterflows directed from destination to origin.

In Table 6, we compare the results of several models that estimate the migrant net-
work effects. Results of the models that include these past migration terms (models 
3–5) demonstrate that both prior migration flows (mij.past, from origin i to destination 
j) and counterflows (mji.past, from j to i) have significant positive effects on migra-
tion flows (from i to j), indicating that a more connected preexisting migrant network 
is associated with more future migration. Our results underscore not only that previous 
migrants flowing from origin to destination can facilitate future migration in the same 
direction but that prior migration counterflow from destination to origin has a similar 
effect on the same order, though in a slightly smaller magnitude.

Comparing model 3 to model 1 or model 4 to model 2, the R2(log) does not change 
much, even though model 1 and model 2 do not include migrant network variables. 
This phenomenon demonstrates the bias adjustment ability of the multiplicative effects 
term. Adding the past migration flow variables reduces biases that need to be adjusted 
by multiplicative effects, especially for the ones involving the Gauteng province, 
implying that these migrant network proxies may be associated with the second pair 
of the latent factors that we discussed in the previous section (details see Appendix 
H). However, adding these variables does not weaken much of the clustering in the 
KwaZulu-Natal province, especially for the non-urban-oriented migration (Fig. H.1f). 
As apartheid-era (from 1948 to early 1990s) policies should have affected prior migra-
tion and thus be picked up to some degree by these variables, the unchanged clustering 
leads us to hypothesize that the cluster may be attributable to the 1994 abolition of the 
homeland (aka Bantustan) of KwaZulu and its merge with the Natal province, form-
ing the current KwaZulu-Natal province. After the end of involuntary allocation of the 
black population to the homelands and the apartheid migration restrictions, migration 
may start to freely respond to family-based ties or the homophily among people who 
share characteristics like ethnicity and culture (e.g., Zulu, the majority population of 
KwaZulu-Natal), reflected in the social closeness of the districts within this province 
and thus the clustering. In any case, the essentially unchanged multiplicative effects 
indicate that other factors like policy effects still contribute to migration, which under-
scores the advantage of this model in controlling unknown variables.

In Table 6’s model 4, we can see that the effects of the positive maximum tem-
perature anomalies and the negative precipitation anomalies are consistent with the 
above results before adding the migrant network effects (also in Table 6, model 2). 
Using model 5, we examine the impacts of the migrant network on climate effects 
and find that a prior migration flow reduces the origin effects of the excessive heat, 
as the coefficient for the interaction term “(Dyad) posTmax.i x mij.past” and “(O) 
posTmax” have opposite signs. This result is consistent with the “suppression” 
mechanism in (Nawrotzki et al., 2015). In analogy to their results, prior out-migrants 
may send remittances to their families remaining at the origin and share informa-
tion about adaptation strategies to excessive heat, thus increasing their resilience 
and suppressing the push effect of this climate variable at the origin district. This 
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hypothesis can be tested in a future study by including the remittance variable in the 
model.

From model 5 of Table  7, we can see that prior migration flows suppress the 
excessive heat impacts in the origin location for both urban-oriented and non-urban-
oriented migrants, though the origin effect of this climate variable is not significant 

Table 6  AMEN estimation of the network effects and their interaction with climate variables

† p < 0.10
* p < 0.05
** p < 0.01
Note: Estimated β coefficients of the covariates on all migrants (“All”), adding dyadic effects of 1900–
1996 migration flow (mij.past) and counterflow (mji.past) in models 3–5, and adding the interaction 
terms of the positive maximum temperature anomaly and the negative precipitation anomaly with these 
flows at origin (posTmax.i, negPrec.i) and destination (posTmax.j, negPrec.j), respectively, in model 5
− mij.past: logarithm of the number of migrants who moved from district i to j during 1900–1996 and 
reside in district j in 1996
− mji.past: logarithm of the number of migrants who moved from district j to i during 1900–1996 and 
reside in district i in 1996

Model 1 Model 2 Model 3 Model 4 Model 5

(O) population 0.819** 0.831** 0.652** 0.654** 0.69**
(O) unemployed  −1.345 **  −0.936 **  −1.434 **  −0.984**  −0.847**
(O) primary  −1.875 *  −1.229  −1.181  −0.682  −0.345
(O) White  −0.243 1.063  −2.232  −1.231  −1.272
(O) posTmax 0.286** 0.229* 0.209
(O) negPrec  −0.438**  −0.499**  −0.885**
(D) population 0.744** 0.764** 0.578** 0.586** 0.593**
(D) unemployed  −0.589 *  −1.068 **  −0.681*  −1.135**  −1.029**
(D) primary  −2.375**  −2.581**  −1.63*  −1.89**  −1.619*
(D) White 6.405** 5.83** 4.108** 3.425** 3.499**
(D) posTmax 0.078 0.009  −0.256†
(D) negPrec 0.634** 0.571** 0.08
(Dyad) mij.past 0.17** 0.167** 0.179**
(Dyad) mji.past 0.115** 0.114** 0.132**
(Dyad) posTmax.i × mij.past  −0.052†
(Dyad) posTmax.i × mji.past 0.05
(Dyad) posTmax.j × mij.past 0.08*
(Dyad) posTmax.j × mji.past  −0.029
(Dyad) negPrec.i × mij.past 0.054
(Dyad) negPrec.i × mji.past 0.03
(Dyad) negPrec.j × mij.past 0.029
(Dyad) negPrec.j × mji.past 0.075*
(Dyad) distance  −1.433**  −1.447**  −0.605**  −0.618**  −0.615**
(Dyad) contiguity 0.657** 0.649** 0.453** 0.452** 0.446**
R2(log) 0.8321 0.8337 0.8331 0.8348 0.8368
DIC 2.19e+10 1.89e+10 1.6e+10 1.48e+10 1.67e+10
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for urban-oriented migration (see model 4). On the other hand, prior counterflows 
of migration amplify this origin effect of maximum temperature for both the urban- 
oriented and non-urban-oriented migration. The mechanism for amplification still 
needs theoretical support. Moreover, preexisting migrant networks have different inter-
action effects for urban-oriented and non-urban-oriented migration associated with 
negative precipitation anomalies at the origin location, and the migrant network inter-
action effects are also different for the two climate variables we investigate. Due to the 
limitation of data availability, we cannot reach conclusions about the mechanism caus-
ing the differences. However, this study underscores that social network modification 
of climate effects on migration is context-sensitive and should not be generalized.

Previous studies using the prior migration flows/stocks as predictors often dis-
cuss potential endogeneity, meaning that some unobserved omitted variables may 
affect both prior migration flows/stocks (the independent variables) and migration 
flows (the dependent variable) (Beine et al., 2011; Coniglio & Pesce, 2015; Mahajan 
& Yang, 2020). In our model, however, we are less concerned about omitted vari-
ables as the multiplicative effect uT

i
vj can be interpreted as representing omitted vari-

ables and the error terms should be random (Hoff, 2021). Nevertheless, we test the 
sensitivity of our modeling by substituting migration flows during different inter-
vals within the 1900–1996 period in place of our original proxy for prior migrant 
networks. The comparison confirms the robustness of the results as it shows that 
the coefficients are qualitatively consistent using different intervals (comparison see 
Appendix I).

Conclusion and discussion

This study uses a network model, which can allow network autocorrelation, con-
trol unobserved covariates, and improve prediction performance (Fig. 3), to inves-
tigate the impacts of climate variability, migrant networks, and their interaction on 
South African internal migration. By including both the origin and destination fac-
tors in the network model, we find that origin effects of the same climate variables 
as included in (Mastrorillo et  al., 2016) are qualitatively consistent with the push 
effects reported therein, while our results show that some climate variables also have 
significant destination effects on migration. In addition, we find that migrants mov-
ing to an urban versus a non-urban destination do not always respond to climate 
variabilities in the same manner. Nuance in climate variables, such as different types 
of drought, also may evoke different migration responses. Moreover, both prior 
migration flows and counterflows, which could be taken as proxies of preexisting 
migrant networks, have significant positive effects on subsequent migration. Finally, 
preexisting migrant networks could modify the association of climate variability and 
migration in distinctive ways for different climate variables.

Specifically, we find that a higher maximum temperature anomaly tends to push peo-
ple away from origins, and this origin effect is only significant for non-urban-oriented 
migrants. Non-urban-oriented migrants also avoid moving into destinations with exces-
sive heat. Both effects may reflect the higher dependencies on the temperature-sensitive 
livelihood of these migrants. Differently, all migrants, urban or non-urban-oriented, are 
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inclined to leave districts with rainy season rainfall deficits and avoid moving into dis-
tricts with such conditions. The soil moisture percentile that can capture agricultural 
drought conditions has significant origin effects on all migrants and both subgroups, 
reflecting that people are more likely to leave a district with agricultural drought.

Using the 12-month SPI, we investigate the effect of long-term water surplus and 
deficit at a much longer timescale. The long-term water surplus measured by posi-
tive 12-month SPI has significant origin and destination effects. People tend to leave 
a district with long, excessively wet episodes and avoid moving into such a district. 
These effects are only significant for urban-oriented migrants, which would be con-
sistent with the behavior of fleeing from places with repeated flooding and avoid-
ing destinations prone to urban flooding. Meanwhile, the long-term meteorological 
drought measured by negative 12-month SPI has significant deterrent effects on the 
urban-oriented subgroup at origins and the non-urban-oriented subgroup at destina-
tions. As rainfall in South Africa is highly variable, agriculture there may be largely 
irrigation dependent. Thus, long-term meteorological drought, perhaps indicative of 
streamflow and reservoir levels, could be a superior variable for representing the 
type and timescale of drought that influences agriculturally dependent migrants’ 
destination choices.

Not surprisingly, socioeconomic variables like the unemployment rate have sig-
nificant origin and destination effects on migration. However, we find that socioeco-
nomic effects are especially significant to urban-oriented migrants and less critical 
to non-urban-oriented ones. As for the non-urban-oriented migrants, some unknown 
factors may be more important. For example, after the abolition of apartheid-era 
black homelands (Bantustans) in 1994, migrants within the KwaZulu-Natal prov-
ince, especially the non-urban-oriented ones, may have begun to move more freely 
to locations where their families were or where people ethnically and culturally sim-
ilar to them were located. To explore the nature of these factors, the model could be 
expanded to include additional variables, such as family-based ties and ones describ-
ing similarity in ethnicity. Modeling with data collected during the apartheid could 
reveal whether these effects differed before the abolition of apartheid to see if this 
policy change played a role.

To situate this study in the literature concerning migrant network effects in envi-
ronmental migration, we also include prior migration flows and counterflows as 
proxies of preexisting migrant networks, which are one type of previously unob-
served network variables. The results show that both prior migration flows and coun-
terflows have significant positive effects on internal migration in South Africa. Prior 
migrant networks can also modify relationships between climate variability and 
migration flows. However, the modification effects are different for the two climate 
variables we investigate here and, in some instances, different for urban-oriented and 
non-urban-oriented migration. Thus, we find that network effects on environmental 
migration are context-sensitive and should not be generalized.

In summary, we extend the understanding of climate variability origin and des-
tination effects on South African internal migration using a network model. By 
comparing results using various measurements of water surplus and deficits, we 
discover that migrants respond to different types of drought differently, indicating 
the importance of deploying multiple climate variables. Moreover, we find that 
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climate variations have different origin and destination effects on urban-oriented 
and non-urban-oriented migration flows. We also demonstrate that prior migrant 
networks can influence migration and impact the association between climate 
variability and migration. Due to the intrinsic network character of migration 
data and the model advantages demonstrated in this study, we consider AMEN a 
promising method for conceptualizing and analyzing migration flow problems. It 
can be applied in other migration case studies, modeling other network flows, and 
analyzing various problems, including transportation, trade, and conflicts. With 
the AMEN model, we establish multiple relationships that are not significant or 
not consistent when using gravity models (with or without MESF) (Tables 3, 4, 
and 5), for example, the pull effect of a large population. By visioning migra-
tion as a network problem, we can apply various network analysis techniques that 
expand the toolbox of migration studies and may reveal previously obscure mech-
anisms and relationships.
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