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Abstract Low-power devices used in Internet-of-
things networks have been short of security due to
the high power consumption of random number gen-
erators. This paper presents a low-power hyperchaos-
based true random number generator, which is highly
recommended for secure communications. The pro-
posed system, which is based on a four-dimensional
chaotic system with hidden attractors and oscillators,
exhibits rich dynamics. Numerical analysis is provided
to verify the dynamic characteristics of the proposed
system. A fully customized circuit is deployed using
130nm CMOS technology to enable integration into
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low-power devices. Four output signals are used to
seed a SHIFT-XOR-based chaotic data post-processing
to generate random bit output. The chip prototype
was simulated and tested at 100MHz sampling fre-
quency.Thehyperchaotic circuit consumes amaximum
of 980µW in generating chaotic signals while dissi-
pates a static current of 623µA. Moreover, the pro-
posed system provides ready-to-use binary random bit
sequenceswhichhavepassed thewell-known statistical
randomness test suite NIST SP800-22. The proposed
novel system design and its circuit implementation pro-
vide a best energy efficiency of 4.37pJ/b at a maximum
sampling frequency of 100MHz.

Keywords True random number generator · Chaos ·
Hyper-chaos · CMOS · Security

1 Introduction

The security of cryptographyalgorithmshighlydepends
on the randomness of the keys generated from random
number generators (RNGs).Most random number gen-
erators available today are software-based, which are
commonly referred to as pseudo-random number gen-
erators (PRNGs). The term “pseudo-random” refers to
the random bits generated from a deterministic algo-
rithm in digital computing software. In this context, the
generator knows exactly the next state/the next number,
while these numbers appear random to the other side. In
a true random number generator (TRNG), conversely,
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the computation of the next state/the next number relies
typically on a physical process (entropy source) and
is unknown until it is revealed. Therefore, these num-
bers are “random” for both generator and observer.
Some TRNG commercial chips have been utilized
in high-performance microprocessors [42] where an
unpredictable entropy source generates a random seed
to a pseudo-random generator. Examples of entropy
sources used in these architecture include thermal
noise, jitter noise, and metastability. However, all these
methods have a critical drawback, as they are inherited
from entropy sources whose statistics are known only
with a very limited precision. Furthermore, the limited
dynamic range of the entropy sources (as in the case,
for example, of the thermal noise) makes the entire sys-
tem extremely sensitive to deterministic system noise
sources, such as power variations, bias voltage varia-
tions, and device mismatches [1,6,7,16,25,44,45].

In this paper, we deal with chaos as an entropy
source. A nonlinear system exhibits chaotic behavior
if it features inherent characteristics including (i) high
sensitivity to initial conditions—a slight change in ini-
tial conditions yields significantly different future tra-
jectories, and (ii) irregular motion in the phase space—
phase space trajectories do not converge to a point
or a periodic orbit [32]. Thanks to these properties,
and despite the deterministic evolution, even a small
unavoidable uncertainty on the system’s initial condi-
tion will make a chaotic system, at a certain point of
observation, an actual unpredictable random-like pro-
cess. The advantage with respect to the previously con-
sidered architectures is that, by using chaos as entropy
source, it is possible to have a precise knowledge of the
process statistics, that are set by the chaotic circuit.

Chaotic systems can be classified into discrete-time
and continuous-time where both approaches can be
effectively used to produce random numbers. In dis-
crete chaotic systems, the iterated functions are used in
the form of xk+1 = F(xk). Examples of such systems
include the logistic map, the Renyi map, and piecewise
affine Markov maps [17,19,21,22,39,41]. As demon-
strated in [12], many researchers have been improving
the complexity of chaotic maps, where higher dimen-
sional chaotic maps, such as Logistic 2D map, Chen
hyperchaotic map, and Rossler hyperchaotic map, have
been used. Conversely, continuous chaotic systems are
presented by differential equations X ′ = F(X) [20].
Nowadays, continuous chaotic systems achieve higher
complexity by conveying integer-order systems into

the fractional-order domain [34]. However, fractional-
order systems are complicated to implement in hard-
ware design due to their memory dependency. The
hardware implementation of fractional-order differen-
tiators and integrators requires careful considerations
[35]. Here, we focus on high-order continuous chaotic
systems—chaotic systemswith at least four dimensions
and two positive Lyapunov exponents (LE) which are
implemented in analog integrated circuit design. In a
chaotic system, Lyapunov exponents are important cri-
teria to evaluate the system’s dynamics. Sensitivity to
initial conditions of a dynamic system is represented
by a positive LE. An n-dimensional dynamical system
has a spectrum of n-Lyapunov exponents. In order to
exhibit chaos, a system requires to be at least three
dimensional (3D) with a positive LE. A hyperchaotic
system exhibits rich dynamics since system states are
expanded exponentially in several directions simulta-
neously. Due to this property, the hyperchaotic system
is an interesting candidate for the generation of random
keys used in miscellaneous applications in engineer-
ing such as secure communications, cryptosystems,
and encryptions [33]. Moreover, continuous chaotic
systems are further classified into two sub-categories
according to their dynamic characteristics: self-excited
and hidden attractors [34]. A nonlinear chaotic sys-
tem is considered as self-excited if it has a basin of an
attractor from an unstable equilibrium point. Lorenz,
Rössler, Chen, Lü, or Sprott systems are well-known
self-excited systems.Recently, the secondgroup of hid-
den attractors, which has been developed theoretically
and practically, is attracting great attention. The aim
of this paper is to introduce a novel hyperchaotic sys-
tem with hidden attractors suitable for the generation
of high-quality random numbers.

1.1 Motivations and contributions

As far as continuous chaotic circuits implementation is
concerned, numerous contributions have been reported
in the literature, all unfortunately presenting drawbacks
and limitation, such as high power consumption, low
operation frequency, and inability to operate at low
voltage levels, which hinders their capabilities to be
adopted in practical engineering applications. As an
example, Chua’s circuit, the first continuous chaotic
system implemented in integrated form, requires the
use of complicated nonlinear functions [10,43]. Limit-
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ing ourselves to more recent works, in [37] the authors
introduced the first integrated versions of a multi-scroll
continuous chaotic oscillator showing 3- and 5-scroll
attractors in a 0.5µmCMOS technology. They include
a very interesting process, voltage, and temperature
(PVT) analysis, showing that the desired chaotic behav-
ior is maintained even in the presence of consistent
parameters variation; unfortunately, the circuit topol-
ogy is still rather complex and the overall circuit is not
low-power. In [36], authors compare various integrated
circuit design techniques for chaotic oscillators based
on with various nonlinear functions (i.e., piecewise lin-
ear (PWL), sinusoidal, sawtooth, hysteresis, complex,
and tanh(·) functions). In all these implementations,
complexity of the circuit implementing the nonlinear-
ity in a issue, as it is the overall characteristic operating
frequency of the 5 chaotic oscillators, which is quite
low, since one of them works at a 7MHz frequency
using switching currents floating-gate FGMOS tran-
sistors, while the others operate between 118KHZ and
3.5MHz. The contribution in [5] is interesting since
presents guidelines for the CMOS circuit design of
basic building blocks (such as current follower, cur-
rent mirror, and voltage follower) which are used for
obtaining particularly simple saturated nonlinear func-
tions (SNLFs). Finally, in [20], some of the authors of
thismanuscript presented the design of a 3Dcontinuous
chaotic system in CMOS technology, and its engineer-
ing application in image encryption. The main point in
common between the design in [20] and the chaotic
system implementation presented in this manuscript
is that they both rely on the analog realization of a
tanh(·) nonlinear function.Yet, thework presented here
offers several improvements. First, the chaotic circuit
is now four-dimensional, which is a fundamental fact
for implementing a TRNG: in fact, a 3D autonomous
chaotic system only possess a self-excited attractor
whose basin can be revealed by a computational tool
[15], and this may spoil its capability to work effec-
tively as an entropy source. Furthermore, with respect
to [20], we provide a thorough characterization in terms
of robustness with respect to PVT variations, and of
the performances of the system as TRNG by includ-
ing tests on the entropy of raw (i.e., unaltered by the
prost-processing stage) generated data.

Although chaotic systems are unpredictable and
have random-like state trajectories, they can be stud-
ied and recovered by using computational tools. How-
ever, this approach showed very limited success with
regards to hidden attractor chaotic systems [15]. The

hyperchaotic systems with hidden attractors in [2,26,
27]were proposed to overcome these attacks.However,
they are deployed using off-the-shelf analog electronic
devices that consume high power and require high
voltage operation. Therefore, their implementation is
inappropriate in highly integrated circuit designs. In
conclusion, based on our investigation, hyperchaotic
systems with hidden attractors have many advantages
when used in generating random bits for highly secure
applications. However, the hardware implementation
of these systems still has many limitations that need
to be addressed. Therefore, our research targets the
shortcomings of practical circuit realizations of hyper-
chaotic systems. We propose a novel hyperchaotic sys-
tem with four dimensions and hidden attractors which
provides high dynamic characteristics. The proposed
hyperchaotic system is presented and analyzed in terms
of Lyapunov exponents and stability analysis. Compar-
ison against the state-of-the-arts establishes the advan-
tages of the proposed system. Moreover, the proposed
system is implemented in a low-power integrated cir-
cuit using 130nm CMOS technology. To generate the
ready-to-use binary bitstreams, the proposed chaotic
signals are utilized to feed a SHIFT-XOR-based post-
processing circuit. Multiple configurations are evalu-
ated to find the best frequency operation, while the
randomness is guaranteed. Statistical tests prove the
reliability of using the proposed random number gen-
erator in information security. The paper contribution
can be summarized as follow: (i) design of a novel
hyperchaotic system with hidden attractors, which is
highly recommended in security and (ii) circuit imple-
mentation of the proposed system using 130nmCMOS
technology.

The rest of this paper is organized as follows. Sec-
tion 2 presents the mathematical model of the proposed
hyperchaotic system with numerical analysis to verify
the robustness of the system. The circuit implementa-
tion using 130nm CMOS technology is elaborated in
Sect. 3. The system performances such as randomness
measurement, signal entropy and correlations, power
consumption, and throughput are evaluated in Sect. 4.
Finally, Sect. 5 concludes this paper.

2 System design and mathematical analysis

This section presents the proposed hidden attractor
hyperchaotic system, which is expressed by four differ-
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ential equations, depicted in (1). The theoretical analy-
sis is divided into two parts. The first part presents the
proposed chaotic system and the theoretical study of its
chaotic characteristics, while the second part addresses
the stability of its equilibrium points.

2.1 The proposed hyper-chaotic system

The hyperchaotic system is presented in the canon-
ical form X ′ = F(X), in which the vector X =
[x1, x2, x3, x4] ∈ R

4, with

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′
1 = x2,

x ′
2 = x3,

x ′
3 = x4,

x ′
4 = −a1x3 − a2x4 + b1 tanh(b2x1 − b3)x2,

(1)

where tanh(·) is the standard hyperbolic tangent func-
tion. The above system can be described as a hyperjerk
system which sastifies

x ′′′′ = −a1x
′′ − a2x

′′′ + b1 tanh(b2x − b3)x
′. (2)

The proposed 4D chaotic system is inspired by a Jerk
3D chaotic system, which is extended to be four-
dimensional. By simulating and observing output sig-
nals, the system’s parameters are tuned precisely in
the range in which the divergent conditions are met.
In Sect. 3, we discuss the analog implementation of
this system. Here, we propose its analysis by means
of MATLAB numerical integration with the aim of
highlighting many properties. As summarized in [34],
there are many numerical methods that have been
applied to solve differential equations such as Forward-
Euler, fourth-order Runge–Kutta algorithm, Adams–
Bashfort2, andAdams–Bashfort3. As indicated in [34],
the fourth-order Runge–Kutta algorithm provides the
lowest error. Therefore, the fourth-order Runge–Kutta
algorithm is utilized to simulate the proposed design
in MATLAB with a step size of 10−4. The proposed
system has equilibrium points only located on the line
E = [x1, 0, 0, 0]. Therefore, the proposed system is a
dynamical system with hidden attractors. According to
[3,26], it is impossible to locate the chaotic attractor by
choosing an arbitrary initial condition. In other words,
from a computational point of view, these attractors are

hidden and knowledge about equilibria does not help
in their localization. To study the dynamical behavior
of the proposed system, we resort to numerical mathe-
matics such as the Lyapunov exponents and bifurcation
diagram. The Lyapunov exponents of the system are
defined as

Li = lim
t→∞

1

t
log

‖∂xi (t)‖
‖∂xi (0)‖ . (3)

For a1 = 1, a2 = 0.5, b1 = 2, b2 = 2.5, and
b3 = 0.62, the Lyapunov exponents of the novel 4D
chaotic system are: L1 = 0.088, L2 = 0.01, L3 = 0,
and L4 = −0.598, respectively. The initial condi-
tions of the proposed chaotic system are chosen as
x1(0) = 0.02, x2(0) = 0.005, x3(0) = 0, and x4(0) =
0. There are two criteria to evaluate the divergence of
the dynamic system presented in (1) as follow:

4∑

i=1

∂x ′
i

∂xi
= −a2 < 0,

L = L1 + L2 + L3 + L4 < 0.

(4)

where the first equality holds since, according to (1),
∂x ′

1/∂x1 = ∂x ′
2/∂x2 = ∂x ′

3/∂x3 = 0, and ∂x ′
4/∂x4 =

−a2. Moreover, the Kaplan–York dimension, an effec-
tivemetric to evaluate the complexity of a chaotic oscil-
lator, is calculated as:

DKY = j + 1

|L j+1|
j∑

i=1

Li , (5)

where j is the largest index of the positive Lyapunov
exponent. In the proposed system, j = 3, and the
Kaplan–York dimension is therefore:

DKY = 3 + L1 + L2 + L3

|L4| = 3.164. (6)

Table 1 compares the Lyapunov exponents of the pro-
posed 4Dhyperchaotic systemwith hidden attractors to
previous studies. Moreover, the proposed hyperchaotic
system obtains a higher Kaplan–York dimension than
previous systems. The dynamic characteristics of a
chaotic system highly depend on the complexity of
the nonlinear function. The nonlinear functions in cur-
rent state-of-the-art chaotic systems based on a single
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Table 1 Lyapunov exponents comparison

Chaos L1 L2 L3 L4 DKY

[18] 2.1990 0.071 0 −14.362 3.160

[26] 0.0730 0.0018 0 −0.5755 3.130

[27] 0.0895 0 0 −0.8997 3.099

[46] 1.416 0.5318 0 −39.101 3.0498

[2] 0.0397 0.0001 0 −0.6395 3.0622

This work 0.1528 0.0661 −0.1723 −0.5465 3.164

Table 2 Stability of
equilibria with different
initial conditions

c λ1 λ2,3 Description

−0.1 − 1.3546 0.1773 ± 0.9741i Unstable state

0 − 1.2455 0.1223 ± 0.8884i Unstable state

0.05 − 1.1631 0.0815 ± 0.8265i Unstable state

0.1 − 1.0514 0.0257 ± 0.7439i Unstable state

0.2 − 0.3768 − 0.3116 ± 0.4099i Stable state

0.24 0.1489 − 0.5744 ± 0.5840i Unstable state

common function such as multiplication, sign, piece-
wise linear function, and tanh function.However, in our
proposed hyperchaotic system, the nonlinear function
includes both multiplication and tanh functions.

2.2 Stability analysis of line equilibria

Stability analysis of the equilibrium points helps evalu-
ate the practical design of the system such as the circuit
stability and linearity. To evaluate the stability of equi-
libria, the Jacobianmatrix of the proposed hyperchaotic
system is calculated as

J =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
A B −a1 −a2

⎤

⎥
⎥
⎦, (7)

where A = b1b2x2(1 − tanh2(b2x1 − b3)), and B =
b1 tanh(b2x1 − b3). The eigenvalues of the Jacobian
matrix satisfy the condition

J − λI = 0 ↔ λ4 + a2λ
3 + a1λ

2 − Bλ + A = 0. (8)

The proposed system has equilibrium points only
located on the line E = [x1, 0, 0, 0]where the Jacobian
matrix at these equilibria is obtained as

J =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 b1 tanh(b2x1 − b3) −a1 −a2

⎤

⎥
⎥
⎦ . (9)

Let X0 = [x1(0), 0, 0, 0] be a fixed point, and ΔX
be a small perturbation such that X = X0 + ΔX . If
Δx ≈ eλt , the characteristic polynomial equation is
derived as

λ(λ3 + a2λ
2 + a1λ − B) = 0. (10)

Thus, the Jacobian matrix has four eigenvalues where
one of them is zero. Let g(λ) = λ3 + a2λ2 + a1λ − B
be a polynomial function of three nonzero eigenvalues,
the real parts of the roots of g(λ) = 0 are negative if and
only if a2 > 0, B < 0, a1a2 + B > 0. For the typical
parameter set (a1 = 1, a2 = 0.52, b1 = 2, b2 = 2.5,
and b3 = 0.55), to make the equilibrium set E unsta-
ble, thereby enabling the possibility of chaos occur-
rence, the initial condition x1(0) = c must satisfy
c < 0.117834 or c > 0.22. The three nonzero eigen-
values λi (i = 1, 2, 3) of the equilibrium set E for sev-
eral typical values of c are listed in Table 2. Depend-
ing on the initial value, the proposed system has sta-
ble or unstable saddle-focus points. Thus, the dynam-
ical behavior of the equilibrium line chaotic system
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Fig. 1 Bifurcation diagram and Lyapunov spectrum of system
state with initial condition x(0) = c

is heavily dependent on the initial state of the vari-
able x1, in addition to the system parameters. When
a1 = 1, a2 = 0.52, b1 = 2, b2 = 2.5, b3 = 0.6
are kept constant, the parameter c in the initial con-
ditions [x1(0) = c, x2(0), x3(0), x4(0)] varies in the
range [0, 0.26]. The bifurcation diagram of the state
variable x1(t) of the proposed system is shown in
Fig. 1, where it is indicated that the characteristics of
the system vary with c. Moreover, the stable region
is clearly observed for 0.1178 < c < 0.22; while
for c > 0.22, the system is unstable, diverged, and
unfolded; therefore, these regions are not interesting.
Meanwhile, 0.05 < c < 0.1178 is a chaotic regionwith
a limited number of periods, and the data space in this
region is small. Finally, in the range 0.01 < c < 0.05,
the system exhibits rich dynamic characteristics.

The robustness of the system is illustrated by the
choice of system parameters. By evaluating the param-
eter bifurcations and the correspondingLyapunov spec-
trum, we choose the parameter ranges in which the
characteristics of the proposed system are preserved.
Fig. 2 shows the bifurcation diagrams of state variable
x1 according to the system parameters a1, and a2. The
variations of b1, b2, and b3 affect the chaotic charac-
teristics of the proposed system as depicted in Fig. 3.
Therefore, we select the parameter set as a1 = 1, a2 =

Fig. 2 Bifurcation diagram and Lyapunov spectrum of signal x1
according to parameters a a1 and b a2

0.52, b1 = 2, b2 = 2.5, and b3 = 0.6 to determine the
chaotic characteristics of the proposed system. The cir-
cuit design imperfection and device mismatches con-
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Fig. 3 Bifurcation diagram and Lyapunov spectrum of the signal x1 according to parameters a b1, b b2, and c b3

tributing to the parameter variations will be evaluated
in the next section.

2.3 Periodicity analysis

Wavelet is an effective method for analyzing the peri-
odicity of a dynamic system. Therefore, the scale index
iscale is calculated based on the inner scalogram of the
continuous chaotic signals [4]. The scale index, which
is in the range [0, 1], is used to measure the degree
of non-periodicity of the chaotic signal. The value of
the scale index is close to zero when the chaotic sig-
nal is periodic, and close to one if the observed sig-
nal is highly non-periodic. The scale index of the pro-
posed chaotic system with parameters a1 = 1, a2 =
0.52, b1 = 2, b2 = 2.5, and b3 = 0.6 is 0.8289,
which indicates the highly non-periodic characteristic
of the chaotic system. The spectrum of the scale index
in Fig. 4 and the bifurcation diagram in Fig. 3c accord-
ing to the parameter b3 determine the non-periodicity
of the chaotic system at chosen parameters.

3 Circuit implementation

3.1 Hyperchaotic circuit design

In circuit realization, the proposed system is formulated
usingKirchhoff’s law, and the results reveal the follow-

ing system of ordinary differential equations (ODEs):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

v′
1 = gm1

C1
v2

v′
2 = gm2

C2
v3

v′
3 = gm3

C3
v4

v′
4 = −gm4

C4
v3 − gm5

C4
v4 + iout

C4

, (11)

in which, gm = gm1 = gm2 = gm3 = −gm4 = 110 µS
and C = C1 = C2 = C3 = C4 for circuit simplicity.

3.1.1 Gm-C integrator

Inverted-based Gm-C configuration is chosen to design
the integrator in this circuit due to its low power con-
sumption, high linearity, and high input dynamic as
depicted in Fig. 5. In this figure, the current output io
is the inverse of the current i1, where

i1 = −gmvi . (12)

A pair of NMOS and PMOS devices are utilized to
provide the total transconductance gain

gm = μnCox
Wn

Ln
(VGSn − VTHn)

+μpCox
Wp

L p
(VGSp − VTHp). (13)
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Fig. 4 Scale index spectrum according to the parameter b3

Fig. 5 Integrator circuit design

Fig. 6 Circuit design of current square

Two couples of devices (N2,N3) and (P2, P3) are used
to form bi-directional current mirrors,

io = −i1 = gmvi ,

io = 1

C

∂vo

∂t
= gmvi

→ ∂vo

∂t
= gm

C
vi .

(14)

The transistor size of P1 and N1 is chosen to satisfy
K = μpCox

Wp
L p

= μnCox
Wn
Ln

. Then, the transcon-
ductance gm is approximated as gm = K (VDD −
VTHn −VTHp). The simple circuit of an inverted-based
transconductance integrator has a limited dynamic
range of input voltage. To drive all the transistors to
the saturation region, the voltage headroom is [VTHn →
VDD−VTHp]. Therefore, low voltage threshold devices
are used in the circuit design to increase voltage head-
room.The output swing is limited by the overdrive volt-
ages of NMOS and PMOS devices from VOD(NMOS)

to (VDD − VOD(PMOS)). The nonlinearity and vari-
ability in the transconductance and the intrinsic capac-
itor contribute to variations in theDC-transfer function.
The transconductance in (14) is assumed to be indepen-
dent of the gate voltages when the transistors are in the
saturation region. However, the drain-to-source volt-
ages of the MOSFETs VDS or the output voltage may
drive the devices to linear regions when VDS ≤ (VGS−
VTH). Moreover, transistor mismatches in threshold
voltages and the transistor parameter K affect the
variability of transconductance. A typical mismatch
between two physically adjacent transistors is 20%,
corresponding to a difference in gate voltage of 10mV
which should be taken into account. A circuit of con-
stantGmcanhelp increase the linearity of an integrator.

3.1.2 Current square circuit

The nonlinear function iout = f (v1, v2) = i1 × i2
in (11) was implemented using a low-power multiplier
[13,30]. The currentmultiplier was implemented based
on current square cells as shown in Fig. 6. Assuming all
transistors areworking in the saturation region, the rela-
tion between the drain to source current of a transistor
(ID) and the gate-to-source voltage (VGS) is expressed
as

ID = K (VGS − VTH)2 (15)

In Fig. 6, N3 and N4 are identical diode-connected
NMOS devices; therefore, the voltage VB is calculated
as

VB = 2VGS3 = 2

(√
I0
K

+ VTH

)

. (16)
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The drain current ofN1 is (iib+iob); therefore, the gate
voltage of N1 is calculated as

VGS1 =
√
iib + iob

K
+ VTH, (17)

and the gate-to-source voltage of N2 is obtained as

VGS2 =
√
iob
K

+ VTH, (18)

Calculating the voltage VB based on the gate-to-source
voltages of N1 and N2, we get

VB = VGS1 + VGS2

↔ √
iob + √

iib + iob = 2
√
I0

↔ √
iob + iib = 2

√
I0 − √

iob

↔ iob + iib = 4I0 + iob − 4
√
I0 × iob

↔ 16I0 × iob = (4I0 − iib)
2

↔ iob = (4I0 − iib)2

16I0
.

(19)

In the current square circuit, various mismatches
including channel length modulation, input current
mismatch caused by devices mismatch in current mir-
rors, and transistor mismatches in the circuit in Fig. 6
introduce current offsets at the output. The current error
caused by the input current mismatch decreases with
the increase in the input current and depends on the
mismatch percentage of the input current which relates
to the current mirror mismatch. It can be reduced by
choosing large devices in the current mirror. Accord-
ing to [30], the output current error is half of the current
mirror mismatch percentage of the input current. The
DC-transfer function of current conveying relies on the
assumption that (i) N3 and N4 are identical and (ii)
N1, N2, N3, and N4 have identical transistor parameter
K . The transistor mismatches caused the input current
error, and the threshold voltage mismatches lead to a
current offset at the output. Therefore, the transistor siz-
ing should take them into account to reduce the current
offset. Large devices are preferred to reduce current
mirror mismatches.

Fig. 7 Hyperbolic function implementation

3.1.3 Hyperbolic circuit

The nonlinear function i1 = f (V1) is a hyperbolic tan-
gent function which is based on a differential ampli-
fier circuit as shown in Fig. 7. Assuming the MOSFET
devices are working in saturation regions, the drain to
source current is calculated as:

Isat = IDe
κVG−VS . (20)

In this circuit, the current output charges the integrated
capacitors. Thus, the current mode is preferred. Driv-
ing the differential input pair to saturation, the transfer
function of this circuit is proportional to the input off-
set, i1 = iD1 − iD2 = f (Vin) as

i1 = iD1 − iD2 = ISS
eκV1 − eκVT

eκV1 + eκVT

= ISS tanh
κ(V1 − VT )

2
.

(21)

The deviations from the ideal behavior of the hyper-
bolic tanh(·) circuit derive from the following: tran-
sistors mismatch, voltage limitations due to transistors
coming out of saturation, and finite slope of the drain
curves in saturation. In Fig. 7, the PMOS devices P1
and P2 in the current mirror are not 100% identical
which leads to a shift and a difference between the neg-
ative and positive asymptotes of the tanh curve. This
contributes to the asymmetric geography of the chaotic
attractor. The voltage headroom at the output depends
on the saturation properties of P2. Therefore, the drain-
source voltage at saturation VODsat of PMOS P2 below
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Fig. 8 Multiplier circuit design

VDD sets the upper limit, while drain-source voltages at
saturation of NMOS N1 and N3 above GND constrain
the minimum output voltage.

3.1.4 Multiplier

An inverted-based transconductance amplifier was uti-
lized to obtain current i2 = gm6v2 and three current
square cells were employed to construct the multiplier
as shown in Fig. 8, inwhich i3 = i1+i2, and the current
output from multiplier iout is calculated as

iout = I0 + io3 − io1 − io2

= I0 + (i1 + i2 − 4I0)2

16I0
− (i1 − 4I0)2

16I0

− (i2 − 4I0)2

16I0

= i1 × i2
8I0

= ISS tanh
κ(V1−VT )

2 gm6v2

8I0

(22)

The proposed circuit realization in (11) is reformed to
the original formulation of the chaotic system in (1) by
normalizing by the time constant τ = C

gm
, and dimen-

sionless by an arbitrary voltage Vr , respectively, as

⎡

⎢
⎢
⎣

∂V1 V1
∂V2 V2
∂V3 V3
∂V4 V4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

∂V1
∂τ

V1
Vr

∂V2
∂τ

V2
Vr

∂V3
∂τ

V3
Vr

∂V4
∂τ

V4
Vr

⎤

⎥
⎥
⎥
⎦

(23)

The circuit components are chosen to be compatible
with the chaotic system parameters as

a1 = C1

C4
; a2 = gm5

gm
; b1 = gm6 ISS

8gm I0
; b2 = κ

2
;

b3 = κ

2
VT . (24)

3.1.5 Hyperchaotic circuit

Thehyperchaotic core circuit design is presented inFig.
9 using low-voltage devices in 130nm CMOS tech-
nology with a supply voltage of 1.2V. All the capac-
itors were specifically chosen as C = C1 = C2 =
C3 = C4 = 3.2 pF. The bias current in the differ-
ential circuit to conduct the tanh(·) function is set to
ISS = 40 µA, the voltage input VT = 0.65 V, and the
current source to I0 = 10 µA. The intrinsic capaci-
tors of the MOSFETs introduce a variation in the sys-
tem’s parameters of the chaotic circuit implementation
in (11) gm/C . According to Fig. 9, the parasitic capaci-
tors at theMOSFETgates introduce thevariations in the
integrated capacitors. Therefore, to minimize the effect
of intrinsic parasitic capacitors, the devices’ sizes are
minimized to reduce gate capacitors, which are propor-
tional toW ×L×Cox (W, L, andCox denote the device
width, device length, and the gate-oxide capacitor per
unit area, respectively). The effect of parasitic capaci-
tors is also investigated according to the PVTvariations
as depicted in Fig. 10. As seen from this figure, the PVT
variations may contribute up to 6% of the integrated
capacitor. Despite these effects, the system success-
fully generates chaotic signals. The initial condition of
the chaotic circuit is controlled by the initial voltages
of integrated capacitors. External voltages are used to
charge the integrated capacitors to provide initial val-
ues. This solution ensures that the biases of all devices
in the circuit are correct and that the circuit can cor-
rectly start to oscillate. Then, the circuit is switched to
an autonomous process and the noise is superimposed
to the provided initial condition. Thanks to the high
sensitivity of chaotic systems to the initial condition,
a different circuital evolution at ever circuit startup is
obtained.

The active and passive components in the circuit
design affect the intrinsic oscillator frequency of con-
tinuous chaotic systems. The sampling frequency of
the comparators is expected to be as high as possi-
ble at the price of the randomness of the output bit-
streams. In our hyperchaotic circuit design, the circuit
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Fig. 9 Circuit design of the proposed 4D hyperchaotic system

Fig. 10 Integrated capacitor C1 according to PVT variations

topologies are considered in a trade-off between the
power consumption, the circuit stability, and linearity.
Indeed, the proposed chaotic system implemented in
a fully CMOS circuit design has a self-oscillator fre-
quency of f = gm

2πC = 5.473MHzwhich is compatible
with the state-of-the-art. Therefore, the throughputs of
the binary outputs can be increased by using proper
post-processing and a high sampling frequency for the
comparator. Compared to using off-the-shelf devices
as in [11], where the oscillator frequency is limited to
a maximum of 830kHz and the sampling frequency
is 19MHz, the proposed system uses a sampling fre-
quency between 12 and 100MHz with different con-
figurations of the post-processing circuit.

The chaotic output phase spaces shown in Fig. 11
are compatible with the simulation results in MAT-

LAB. Moreover, the practical circuit design provides
higher dynamic characteristics than simulation results.
For example, we can still observe hidden attractors
with arbitrary trajectories of chaotic signals, while it
is in the limited periodic region in the system sim-
ulations in MATLAB. The power spectrum density
in Fig. 12 shows the chaotic signals from the pro-
posed 4D chaotic system circuit design in the fre-
quency domain. As can be observed from the fig-
ure, the peak of the power spectrum is concentrated
around the intrinsic oscillator frequency; however, it
is possible to find spectral components with a non-
negligible power for a wide band of frequencies. This
allows us to use a sampling frequencymuch higher than
the intrinsic oscillation frequency, while still expect-
ing good results in terms of randomness. As a final
comment, we can notice that using the proposed con-
tinuous hyperchaotic system to generate random bits
has two advantages compared to chaotic maps. The
first advantage comes from superior dynamic charac-
teristics. The second advantage is its four-dimensional
chaotic outputs. Although the proposed chaotic sys-
tem has two positive Lyapunov exponents, correspond-
ing to V1 and V2 voltage outputs, all four chaotic sig-
nal outputs could be used to generate random bits
in parallel. Moreover, in contrast to other continuous
chaotic systems, our proposed circuit design uses small
embedded CMOS capacitors (3.2 pF) allowing a non-
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(a) (b) (c)

Fig. 11 Trajectories of the chaotic outputs a V1–V2, b V1–V3, and c V1–V4

Fig. 12 Chaotic signal output frequency spectrum

negligible increase in the intrinsic frequency oscilla-
tor.

3.2 Comparator

Comparators with a maximum sampling frequency
of 100MHz are deployed. The comparator circuit
design is detailed in what follows and elaborated in
Fig. 13, which includes two stages. The first stage
is a preamplifier which is expected to have a small
gain with a high input dynamic. The output reset
switch using NMOS N4 in Fig. 13 is employed to
reduce regeneration in the comparison phase. The
second stage is a latch circuit which provides suf-
ficient gain for the comparison phase at the rising
edge of the clock signal. The clock frequency is oper-
ating at the maximum of 100MHz with 50%-duty
cycle. The comparator amplifies the input offset at

Fig. 13 Comparator circuit design

the first stage by the cross-coupled PMOS transis-
tors P1 and P2, and then, the offset output is ampli-
fied with a high gain at the second stage when the
clock signal CLK is at a high level. The PREAMP
block is desirable to track the sampled input which is
expected to have a large enough input bandwidth and
low gain gm(N1)/gm(P1). Relatively small NMOS
input devices are used to meet the low input capaci-
tance requirement. However, the random offsets due
to transistor mismatches, which is the main source
of nonlinearity, may be improved by increasing the
device’s length at the expense of higher input capac-
itance. The random offset caused by transistor mis-
match (in both voltage threshold mismatch and transis-
tor parameter mismatch) introduces the referred input
offset VOS. Two partitions of the attractor are consid-
ered Λ1 = [Vmin, Vref − VOS] and Λ2 = [Vref +
VOS, Vmax], the output bit from the comparator is
deduced as

Bx =
{
0 if Vx ⊂ Λ1

1 if Vx ⊂ Λ2
(x = 1, 2, 3, 4). (25)
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Fig. 14 Circuit design for post-processing based on dynamic D Flip-Flop

The chaotic circuit nonlinearity and mismatches con-
tribute to the imperfection of two partitions Λ1 and
Λ2 observed compared to the MATLAB simulations.
These effects are minimized at each previous block
circuit design in trade-off with its circuit require-
ments in both schematic and layout. The distribution
of analog chaotic signals, and the statistical analysis
of the mean value and standard deviation are used
to setup the reference voltages Vref of the compara-
tors.

3.3 SHIFT-XOR-based post-processing

In this paper, we used a SHIFT-XOR-based PRNGwith
multiple values for the length of SHIFT registers. This
circuit consists of four shift registers m-SHIFT regis-
ters and exclusive-ORs [23,28]. The binary output bits
from the comparator are evaluated and reused to XOR-
operators with the same bit-stream after a few time
steps. With such an approach, as observed in [28], it
is possible to have a much higher bit-rate preservation
efficiency compared to canonical approaches such as a
simple Von Neumann post-processing. Three values of
length of shift registers m = 2, m = 6, and m = 8 will
be evaluated in the statistical test. The circuit design
for a one-bit shift register (1b-SHIFT) is elaborated
in Fig.14 using a positive-edge trigger dynamic flip-
flop. The first period, when CLK is low, and CLKB is
high, is the sampling period where the input signal is
stored. In the second phase, when CLK is changed to
a high and CLKB is low, the signal is transferred to
the output. Finally, the input signal is shifted one clock
period.

4 Performance evaluation

The proposed circuit was designed and simulated using
130nm CMOS technology with a 1.2 V voltage supply
(VDD). In this section, we present the random bit gen-
erator performance including the power consumption,
the randomness evaluation by the statistical tests, and
the inter-signal correlation test. Moreover, a compari-
son to state-of-the-art designs is provided to emphasize
the work’s contribution to engineering applications.

4.1 Power consumption

The hyperchaotic circuit consumes a maximum of
980µWin generating chaotic signalswhile dissipates a
static current of 623 µA. The comparator utilizes 192
µW for data sampling at 100MHz. The total power
consumption without post-processing is 1240 µW at
the normal sampling frequency of 12MHz which pro-
vides a throughput of 48Mbps by four chaotic output
signals. The proposed hyperchaos-based RNG has a
high energy efficiency of 25.83pJ/b in normal opera-
tion. The power consumption is summarized in Table
3. We also tested the proposed TRNG at high-speed
operation mode of 100MHz for each chaotic output
signal. In this case, a high order polynomial feedback
function is used in post-processing circuit. In high-
speed operation mode, the total power consumption is
1748µW at a throughput of 400Mbps (each chaotic
output signal provides a throughput of 100Mbps after
its post-processing), which yields an energy efficiency
of 4.37pJ/b. The circuit layout is illustrated in Fig. 15,
in which 8-bit SHIFT registers are used in the post-
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Table 3 Power
consumption summary

(*): The maximum power

Power (µW) Hyperchaos Comparator Total

Static 748 48 843

Dynamic@12MHz 980(*) 65 1240

Dynamic@50MHz 980(*) 120 1459

Dynamic@100MHz 980(*) 192 1748

Fig. 15 Layout diagram of the chip

processing circuit. The total size includes the hyper-
chaotic core circuit and the digital post-processing cir-
cuit, in which the digital power is separated from the
analog power to reduce noise effects.

4.2 Randomness evaluation

One hundred sixty million bits were collected for the
numerical evaluation. Each chaotic dimensional signal
contributed forty million bits. The standard operation
tests were conducted with a normal supply (VDD=1.2
V) and at a temperature of 20◦C. The environment test-
ing includedmeasurements of the influence of tempera-
ture and power supply variations. The operation of the
proposed TRNG was tested on a wide range of tem-
perature (0 ◦C, 20 ◦C, and 60 ◦C) and a 10% voltage
variation (0.9 V, 1.1 V, 1.2 V, and 1.3 V).

4.2.1 Min-entropy estimation

To estimate the number of random bits extracted from
chaotic signals, the min-entropy, which provides a
lower-bound of the raw binary sequences extracted
from chaotic signals before post-processing process,
is evaluated as

Hmin(Bx ) = − log2[max
Bx⊂Λ

PΛ(Bx )](bit/symbol), (26)

where Bx is the raw binary random variable which
is the binary bit output from the comparator, with
probability PΛ(Bx ). Chaotic signals are converted into
binary streams by the comparator. The conversion rate
of binary sequences should be more than Hmin(Bx )

to obtain maximum entropy. The chaos-based random
number generator is determined as a non-IID (non-
independent and identically distributed) entropy source
as described by NIST SP 800-90B [38]. Since the
chaotic signals are digitalized into binary bits by the
comparators, four estimation strategies including most
common value, collision estimation, Markov estima-
tion, and compression estimation are applied to the raw
binary bits. Three raw binary sequences are collected
with a sampling frequency Fs = 3MHz. Table 4 shows
the results of entropy estimation on the raw binary
sequences from the chaotic circuit. Since theminimum-
entropy estimation is not high due to the asymmet-
rical geography of chaotic signals and circuit design
imperfections, the post-processing circuit is needed to
remove bias and increase randomness.

4.2.2 Correlation tests

The correlation, a measure of similarity between two
series as a function of the displacement of one relative
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Table 4 Entropy per bit
estimation of the raw binary
sequences

Raw data (binary) Seq.1 Seq.2 Seq.3

Most common value 0.9976 0.9980 0.9984

Collision estimation 0.7541 0.7045 0.7487

Markov estimation 0.9729 0.9582 0.9312

Compression estimation 0.6086 0.6631 0.6437

Fig. 16 Cross-correlation measurement of random bitstreams
generated from different chaotic signals V1 and V2 at the same
time

to the other, is used to measure the mutation of two
bitstreams [9]. The cross-correlation is calculated as:

rx1x2(k) = cx1x2(k)

sx1sx2
; k = 0,±1,±2, . . . (27)

where k is the number of time shifts (lag) and cx1x2 is
the cross-covariance coefficient of the time series x1,t
and x2,t , calculated as

cx1x2 (k) =
{

1
T

∑T−k
t=1 (x1,t − x̄1)(x2,t+k − x̄2); k = 0, 1, . . .

1
T

∑T+k
t=1 (x2,t − x̄2)(x1,t−k − x̄1); k = 0, −1, . . .

(28)

where sx1 and sx2 are standard deviations of the series√
cx1x1(0), and

√
cx2x2(0), respectively. To enable the

use of four chaotic signals as entropy sources for ran-
dombit generators independently, the cross-correlation
between these output ports is measured as depicted in
Fig. 16. This figure shows the un-correlated relation-
ship between the random bitstreams generated by the
chaotic signal V1 and V2 after post-processing with a
sampling frequency of 100MHz.

4.2.3 NIST’s test results

The final binary output bitstreams are evaluated using
statistical tests to verify the randomness, according to
the well-known test suite NIST SP 800-22 [24,29].
This statistical test works under a tentative assump-
tion of randomness (H0). Therefore, if the randomness
assumption is true for the data, the resulting calculated
test statistic value on the data will have a very low prob-
ability of exceeding the critical value. If the P-value,
which is calculated based on the critical value for each
test, is larger than 0.01, there is a 99.9% possibility
that the data are random. Then, the data could be used
for cryptographic purposes [24]. In total, fifteen statis-
tical tests were separated into two parts. 160M binary
bits collected were divided into 1000 streams of 160Kb
length for the first ten tests. The second part used 160
bitstreams of 1Mb length.

Fifteen statistical test results presented in Table 5
show the average P-value (PV) for each test and their
proportional pass rates (PP). At a normal operation
frequency (Fs=12MHz), the m-SHIFT-XOR passed
these tests with high P-values, and high pass propor-
tions with m = 2. To evaluate the relation between
the length of the shift registers and the possible sam-
pling frequency, we increased the sampling frequency
from 12 to 100MHz. The m-SHIFT-XOR (m = 2)
does not pass all the tests at 20MHz. However, it can
pass NIST tests with higher value ofm, in other words,
a higher order of polynomial feedback function. How-
ever, due to the trade-off between security and random-
ness, we could not increase the ratio between the sam-
pling frequency and the intrinsic frequency excessively.
The randomness is guaranteed in the high-frequency
operation mode of 50MHz with m-SHIFT-XOR when
m ≥ 6. The maximum operating frequency is tested at
100MHz, in which the 8-SHIFT-XOR post-processing
passed these statistical tests. The first ten tests require
minimum proportional pass of 980 samples (98%),
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Table 5 Statistical test results of the output bitstreams after post-processing

NIST SP-800.22 Test m=2 (12MHz) m=2 (20MHz) m=6 (50MHz) m=6 (80MHz) m=8 (100MHz)
PV PP PV PP PV PP PV PP PV PP

Monobit test 0.5728 0.991 0.6184 0.985 0.0898 0.984 0.2178 0.975 0.3236 0.995

Frequency within block test 0.3160 0.990 0.0378 0.989 0.8628 0.986 0.0166 0.974 0.7636 0.989

Runs test 0.4280 0.993 0.0393 0.995 0.4924 0.986 0.6703 0.972 0.1644 0.988

Longest run 1’s test 0.6308 0.994 0.0010 0.798 0.1381 0.990 0.9203 0.983 0.6308 0.994

Rank test 0.5756 0.988 0.0582 0.987 0.5422 0.990 0.0433 0.974 0.5756 0.988

Cumulative sum 0.3602 0.995 0.8832 0.988 0.7238 0.988 0.1865 0.980 0.9248 0.993

Discrete Fourier test 0.0127 0.982 0.0003 0.985 0.4047 0.990 0.0004 0.975 0.6556 0.986

Overlapping template (*) 0.1303 0.989 0.0001 0.825 0.9786 0.982 0.4082 0.987 0.1303 0.989

Non-overlapping template 0.8237 0.990 0.4262 0.994 0.8377 0.995 0.1825 0.991 0.9999 1

Linear complexity test 0.2518 0.994 0.5101 0.979 0.0356 0.981 0.0001 0.957 0.6631 0.986

Maurers universal test 0.0206 1 0.5303 1 0.4539 0.966 0.000 0.121 0.4413 1

Approximate entropy 0.4597 0.992 0.4775 0.991 0.0310 0.987 0.6662 0.975 0.9569 0.987

Serial 0.9379 0.988 0.4262 0.989 0.4118 0.986 0.4012 0.979 0.7405 0.987

Random excursions 0.6668 1 0.6286 1 0.3876 0.969 0.9229 0.981 0.3040 0.993

Random excursion variant 0.8087 1 0.9675 1 0.2492 0.990 0.8990 0.990 0.0494 1

Bold indicates a non-passed test
PV, P value; PP, proportion

Table 6 Comparison of modern TRNGs implemented in various entropy sources

Chaotic TRNGs Physical entropy TRNGs
This work∗ [14]∗ [19]∗ [40]∗ [31]∗∗ [8]∗∗

Entropy source Cont. Hyperchaos Dis.Chaos Dis. Chaos Cont. Chaos Meta. Thermal noise

Technology 130nm CMOS 65nm CMOS 65nm CMOS 180nm CMOS 14nm CMOS 65nm CMOS

Supply voltage [V] 1.2 1.2 0.4 1.8 0.6 0.65 1

Throughputs [Mbps] 48 400 0.01 50 0.27 1480 100

Power [mW] 1.240 1.748 0.142 1.32 0.000082 3.7 0.036

Energy Efficiency [pJ/b] 25.83 4.37 14.2 26.4 35.5 2.5 0.36

*post-layout simulation results, **measurement results

while the minimum requirement for the second part
is 95% or 152 samples passed.

Table 6 shows a comparison between the proposed
system and previous chaos-based RNGs in terms of
supply voltage, bit throughput, power consumption,
and energy efficiency. Our design is comparable to
other chaos-based random number generators. Due to
the high dimensional chaotic signals and the effective-
ness of the post-processing, all four chaotic signal out-
puts can be used to generate random bits, and therefore
the maximum throughput of the generator is increased
radically. Moreover, our work is comparable to other
kinds of generatorswhich are basedonphysical entropy
such as metastability and thermal noise [8,31]. The

work in [8] shows the best energy efficiency at a max-
imum of 100Mbps of throughput. Thus, the proposed
random bit generator benefits from a low power con-
sumption and a relatively high throughput.

5 Conclusion

In this paper, we presented a fully customized CMOS
true random number generator including a new hyper-
chaotic system with hidden attractors and m-SHIFT-
XORpost-processing to provide random binary bits for
cryptographic applications. The standalonegenerator is
fabricated in 130nm-CMOS technology. The novelty
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of the proposed 4D chaotic systemwas described using
theoretical and mathematical analysis. Moreover, the
circuit design was simulated in various working condi-
tions against physical attacks such as power variations
and noise attacks. The proposed true random number
generator provides a high energy efficiency of 4.37pJ/b
for a throughput of 400Mbps.
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