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Abstract
A time-inhomogeneous Feller-type diffusion process with linear infinitesimal drift α(t)x +
β(t) and linear infinitesimal variance 2r(t)x is considered. For this process, the transition
density in the presence of an absorbing boundary in the zero-state and the first-passage time
density through the zero-state are obtained. Special attention is dedicated to the proportional
case, inwhich the immigration intensity functionβ(t) and the noise intensity function r(t) are
connected via the relation β(t) = ξ r(t), with 0 ≤ ξ < 1. Various numerical computations
are performed to illustrate the effect of the parameters on the first-passage time density, by
assuming that α(t), β(t) or both of these functions exhibit some kind of periodicity.

Keywords Transient distributions · First-passage time densities · Periodic intensity
functions

Mathematics Subject Classification 60J60 · 60J70 · 82C31

1 Introduction and Background

One-dimensional time-inhomogeneous diffusion processes play a relevant role in differ-
ent application fields, including physics, biology, neuroscience, finance and others (cf.,
for instance, Giorno and Nobile [1,2], Albano and Giorno [3], Ghost and Prajneshu [4],
Buonocore et al [5], Gutiérrez et al [6], Di Crescenzo et al [7], Román-Román et al. [8],
Molini et al. [9], Gan and Waxman [10], Abundo [11]). In this paper, we consider a time-
inhomogeneous Feller-type diffusion process, characterized by linear infinitesimal drift and
linear infinitesimal variance vanishing in the zero-state (lower boundary of the process). We
assume that the zero-state represents an absorbing boundary for the process.
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Let {X(t), t ≥ t0}, t0 ≥ 0, be a time-inhomogeneous Feller-type diffusion process with
the following infinitesimal drift and infinitesimal variance

A1(x, t) = α(t) x + β(t), A2(x, t) = 2 r(t) x, (1)

defined in the state-space [0,+∞), with α(t) ∈ R, β(t) ∈ R, r(t) > 0 continuous functions
for all t ≥ t0.

The time-homogeneous Feller diffusion process, in which α(t) = α, β(t) = β and
r(t) = r for all t ≥ 0, is taken in account in Feller [12], where is shown that boundary
x = 0 changes its character depending on whether β ≤ 0 (exit), 0 < β < r (regular), β ≥ r
(entrance). Furthermore, as proved in Feller [13], if one knows the nature of the end points
of the state-space one can decide what kind of boundary condition has to be associated with
the Fokker-Planck and Kolmogorov diffusion equations to determine the transition pdf of the
process. A review showing the relevance of the Feller’s work on boundary classification of
one-dimensional diffusion processes is provided in Peskir [14]. By following this approach,
for the time-homogeneous Feller diffusion process, the transition pdf in the presence of an
absorption condition or a zero-flux condition in the zero-state is explicitly obtained in Karlin
and Taylor [15] and in Giorno et al. [16]. Furthermore, a class of Kolmogorov diffusion
equations that can be transformed into a Kolmogorov equation for a time-homogeneous
Feller process is considered in Capocelli and Ricciardi [17].

Feller diffusion process is widely used in mathematical biology to model the growth of a
population (cf., Lavigne and Roques [18], Masoliver [19], Ricciardi et al. [20]), in queueing
systems to describe the number of customers in a queue (cf., Di Crescenzo and Nobile [21]),
in neurobiology to analyze the input-output behavior of single neurons (see, for instance,
Ditlevsen and Lánský [22], Lánský et al. [23], Nobile and Pirozzi [24], Giorno et al. [25,26],
Buonocore et al. [27]), in mathematical finance to model asset prices, market indices, interest
rates and stochastic volatility (see, Tian and Zhang [28], Cox et al. [29], Linetsky [30], Göing-
Jaeshke and Yor [31]).

Sometimes, the Feller-type diffusion process X(t) is obtained as a continuous approxi-
mation of a time-inhomogeneous discrete Markov processes (see, for instance, Di Crescenzo
and Nobile [21], Giorno et al. [25]). Indeed, in population dynamics the Feller-type diffusion
process arises as a continuous approximation of a birth-death process with immigration (cf.
Giorno and Nobile [32] and references therein). In these cases α(t), related to the growth
intensity function, is positive (negative) when the birth intensity function is greater (less) than
the death intensity function, whereas α(t) = 0 if the birth intensity function is equal to the
death intensity function. Since α(t) is a time dependent function, it can be positive, negative
or zero at different time instants. Instead, β(t) is related to the immigration intensity function.
In particular, β(t) > 0 indicates the presence of immigrations and a zero-flux condition or
an absorbing condition can be imposed in the zero-state of the diffusion process.

For a full characterization of the time-inhomogeneous Feller-type diffusion process X(t),
the behavior at the boundary 0 must be specified. In this paper, we assume that the zero-state
is an absorbing boundary, so that the process X(t) terminates when the boundary is reached.
We suppose that α(t) ∈ R, β(t) ∈ R, r(t) > 0, β(t) ≤ ξ r(t), with 0 ≤ ξ < 1, for all t ≥ t0.

We denote by

fa(x, t |x0, t0) = ∂

∂x
P{X(t) ≤ x; X(ϑ) > 0,∀ϑ < t |X(t0) = x0}, x > 0, y > 0 (2)

the transition probability density function (pdf) of X(t) in the presence of an absorbing bound-
ary in the zero-state. As shown in Kolmogorov [33] and Dynkin [34], the pdf fa(x, t |x0, t0)
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satisfies the Kolmogorov equation

∂ fa(x, t |x0, t0)
∂t0

+ A1(x0, t0)
∂ fa(x, t |x0, t0)

∂x0
+ 1

2
A2(x0, t0)

∂2 fa(x, t |x0, t0)
∂x20

= 0, (3)

with A1(x0, t0) and A2(x0, t0) given in (1), to solve imposing the initial delta condition

lim
t0↑t

fa(x, t |x0, t0) = δ(x − x0) (4)

and the absorbing boundary condition in the zero-state:

lim
x0↓0

fa(x, t |x0, t0) = 0. (5)

Furthermore, let

T (x0, t0) = inf
t≥t0

{t : X(t) = 0}, X(t0) = x0 > 0 (6)

be the random variable describing the first-passage time (FPT) through the zero-state starting
from X(t0) = x0 > 0; we denote by

g(0, t |x0, t0) = d

dt
P{T (x0, t0) ≤ t}. (7)

We note that the FPT density g(0, t |x0, t0) is not affected by the boundary condition on the
zero-state, provided that it is attainable.

The problem of determining FPT densities for the Feller-type diffusion process arises
in a variety of fields, including neurobiology, population dynamics, queueing systems and
mathematical finance (cf., for instance, Linetsky [30],Masoliver and Perelló [35], Buonocore
et al. [36], D’Onofrio et al. [37], Giorno et al. [38,39], Albano e Giorno [40], Di Nardo and
D’Onofrio [41]). For instance, in population dynamics g(0, t |x0, t0) describes the extinction
density, whereas in queueing systems represents the busy period density. Lavigne and Roques
in [18] focus on the distribution of the extinction times of a populationwhose size is described
by a time-inhomogeneous Feller-type diffusion process with infinitesimal drift A1(x, t) =
α(t) x and infinitesimal variance A2(x, t) = σ 2 x , where α(t) is a continuous function and
σ 2 is a positive constant.

The functions (2) and (7) are intimately related; indeed, one has:
∫ +∞

0
fa(x, t |x0, t0) dx +

∫ t

t0
g(0, τ |x0, t0) dτ = 1. (8)

Relation (8) shows that the determination of g(0, t |x0, t0) requires the explicit evaluation
of the transition pdf fa(x, t |x0, t0) in the presence of an absorbing boundary at the zero-state.

Plain of the Paper

The paper is organized in five sections and seven appendices in which the proofs of the
main results are reported. In Sect. 2, for the time-inhomogeneous Feller-type diffusion pro-
cess X(t), with infinitesimal moments (1), we give some preliminary results concerning the
Laplace transform (according to x0) of the transition pdf fa(x, t |x0, t0) in the presence of
an absorbing boundary in the zero-state. The proportional case, in which the immigration
intensity function β(t) and the noise intensity function r(t) are related as β(t) = ξ r(t),
with 0 ≤ ξ < 1, is also analyzed. In Sect. 3, the transition pdf fa(x, t |x0, t0) is obtained for
the process (1) in the general case, by distinguishing the case x = 0 (Sect. 3.1) and x > 0

123



45 Page 4 of 27 V. Giorno, A. G. Nobile

(Sect. 3.2). In Sect. 4, we focus on the FPT of X(t) through the zero-state for the general
case and we determine the expression of the FPT pdf g(0, t |x0, t0). In Sects. 3 and 4, we
also show as the results of the proportional case can be derived from the general case. In
Sect. 5, various numerical computations are performed making use of MATHEMATICA to
illustrate the effect of periodic intensity functions on the FPT pdf g(0, t |x0, t0). Specifically,
we assume that the growth intensity function α(t), the immigration intensity function β(t)
or both these functions exhibit some kind of periodicity. The FPT mean t1(0, t |x0, t0) and
the coefficient of variation CV(0|x0, t0) = √

Var(0|x0, t0)/t1(0|x0, t0) are also analyzed.

2 Preliminary Results

In this section, we determine the Laplace transform (according to x0) of the transition pdf
fa(x, t |x0, t0) in the general case. Furthermore, the explicit expressions of the transition pdf
and of the FPT density through the zero-state are obtained in the proportional case.

2.1 Laplace Transform

For t ≥ t0 and x ≥ 0, we consider the Laplace transform:

Za(x, t |s, t0) =
∫ +∞

0
e−sx0 fa(x, t |x0, t0) dx0, Re s > 0. (9)

We determine Za(x, t |s, t0) so that, by taking its inverse Laplace transform, we obtain
fa(x, t |x0, t0). Multiplying both sides of (3) by e−sx0 , integrating with respect to x0 over
the interval [0,+∞) and making use of the boundary condition (5), we have the following
partial differential equation

∂Za(x, t |s, t0)
∂t0

− s [α(t0) + s r(t0)] ∂Za(x, t |s, t0)
∂s

+[s β(t0) − α(t0) − 2 s r(t0)] Za(x, t |s, t0) = 0, (10)

to solve with the initial condition

lim
t0↑t

Za(x, t |s, t0) = e−sx , (11)

derived from (9) by using the initial condition (4).

Proposition 1 We assume that α(t) ∈ R, β(t) ∈ R, r(t) > 0, β(t) ≤ ξ r(t), with 0 ≤ ξ < 1.
For t ≥ t0, we have:

Za(x, t |s, t0) = e−A(t |t0)

[1 + sR(t |t0)]2 exp
{
− s x e−A(t |t0)

1 + sR(t |t0)
}

× exp

{∫ t

t0
β(u)

s e−A(u|t0)

1 + sR(u|t0) du
}

, x ≥ 0, (12)

where

A(t |t0) =
∫ t

t0
α(z) dz, R(t |t0) =

∫ t

t0
r(τ ) e−A(τ |t0) dτ. (13)

Proof The proof is given in Appendix A. 
�
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2.2 Proportional Case

For all t ≥ 0, we suppose that the continuous functions β(t) and r(t) are proportional, i.e.

β(t)

r(t)
= ξ, 0 ≤ ξ < 1. (14)

In the absence of immigration, i.e. when β(t) = 0 for all t ≥ 0, one has ξ = 0.

Proposition 2 Under the assumption (14), for t ≥ t0 one has:

Za(x, t |s, t0) = e−A(t |t0)

[1 + sR(t |t0)]2−ξ
exp
{
− s x e−A(t |t0)

1 + sR(t |t0)
}
, x ≥ 0. (15)

Furthermore, the transition pdf of X(t) in the presence of an absorbing boundary in the
zero-state is:

fa(x, t |x0, t0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e−A(t |t0)

Γ (2−ξ)

[
1

R(t |t0)
]2−ξ

x1−ξ
0 exp

{
− x0

R(t |t0)
}
, x = 0,

e−A(t |t0)

R(t |t0)
(
x0
x

)(1−ξ)/2
exp
{
− x0+x e−A(t |t0)

R(t |t0)
}

× exp
{
1−ξ
2 A(t |t0)

}
I1−ξ

[
2
√

x x0 e−A(t |t0)

R(t |t0)
]
, x > 0,

(16)

with A(t |t0) and R(t |t0) defined in (13) and where

Iν(z) =
+∞∑
k=0

1

k!Γ (ν + k + 1)

( z
2

)2k+ν

, ν ∈ R (17)

denotes the modified Bessel function of the first kind.

Proof The proof is given in Appendix B. 
�
Note that, the first of (16) follows by taking the limit as x ↓ 0 in the second, recalling that

for fixed ν and for z → 0 one has (cf. Abramowitz and Stegun [42], p. 375, no 9.6.7):

Iν(z) ∼ 1

Γ (ν + 1)

( z
2

)ν

ν �= −1,−2, . . .

If (14) holds, for t ≥ t0, x > 0 and x0 > 0 from (16) it follows:

fa(x, t |x0, t0) =
( x0
x

)1−ξ

exp
{ (x − x0) [1 − e−A(t |t0)]

R(t |t0)
}
fa(x0, t |x, t0). (18)

Proposition 3 Under the assumption (14), for t ≥ t0 and x0 > 0 one has:
∫ +∞

0
fa(x, t |x0, t0) dx = 1

Γ (1 − ξ)
γ
(
1 − ξ,

x0
R(t |t0)

)
, 0 ≤ ξ < 1, (19)

with R(t |t0) given in (13) and where

γ (a, z) =
∫ z

0
e−y ya−1 dy, Re a > 0 (20)

denotes the incomplete gamma function.
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Proof Recalling (16) and using the transformation y = x e−A(t |t0)/R(t |t0) in the integral,
one obtains: ∫ +∞

0
fa(x, t |x0, t0) dx = exp

{
− x0
R(t |t0)

}[ x0
R(t |t0)

](1−ξ)/2

×
∫ +∞

0
e−y y−(1−ξ)/2 I1−ξ

[
2
√

x0 y

R(t |t0)
]
dy, 0 ≤ ξ < 1. (21)

Since (cf. Erdèlyi et al. [43], p. 197, no. 19)
∫ +∞

0
e−py y−ν/2 Iν(2

√
ay) dy = a−ν/2 pν−1 ea/p γ (ν, a/p)

Γ (ν)
, Re p > 0,

Eq. (19) follows from (21). 
�
Proposition 4 Under the assumption (14), for t ≥ t0 and x0 > 0 the FPT pdf through the
zero-state of X(t) is:

g(0, t |x0, t0) = 1

Γ (1 − ξ)

r(t) e−A(t |t0)

R(t |t0)
[ x0
R(t |t0)

]1−ξ

exp
{
− x0
R(t |t0)

}
, (22)

with R(t |t0) given in (13). Furthermore, for 0 ≤ ξ < 1 the ultimate FPT probability is:

P{T (x0, t0) < +∞} =

⎧⎪⎪⎨
⎪⎪⎩

1, lim
t→+∞ R(t |t0) = +∞,

1 − γ (1 − ξ, x0/c)

Γ (1 − ξ)
, lim
t→+∞ R(t |t0) = c < +∞.

(23)

Proof By virtue of (8), making use of (19), for 0 ≤ ξ < 1 one has:

g(0, t |x0, t0) = − ∂

∂t

∫ +∞

0
fa(x, t |x0, t0) dx = − 1

Γ (1 − ξ)

∂

∂t
γ
(
1 − ξ,

x0
R(t |t0)

)
,

from which (22) follows. Furthermore, taking the limit as t → +∞ in (8), it results

P{T (x0, t0) < +∞} =
∫ +∞

0
g(0, t |x0, t0) dt = 1 − lim

t→+∞

∫ +∞

0
fa(x, t |x0, t0) dx,

so that, recalling (19), one is lead to (23). 
�
Two interesting cases occur when ξ = 0 and ξ = 1/2.
Indeed, by setting ξ = 0 in (14), one considers the time-inhomogeneous Feller-type

diffusion process (1)withβ(t) = 0. In the context of population dynamics, this case describes
the absence of the immigration and it is of interest to determine for which choices of α(t) and
r(t) the population is doomed to extinction as the time increases. Recalling that γ (1, z) =
1 − e−z , for t ≥ t0, x0 > 0 and ξ = 0, from (19) one has

∫ +∞

0
fa(x, t |x0, t0) dx = 1 − exp

{
− x0
R(t |t0)

}
, (24)

and from (22) one obtains:

g(0, t |x0, t0) = r(t) x0 e−A(t |t0)

R2(t |t0) exp
{
− x0
R(t |t0)

}
. (25)
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Instead, when ξ = 1/2 in (14), the FPT pdf (22) identifies with the FPT pdf through
the zero-state for special time-inhomogeneous Wiener or Ornstein-Uhlenbeck diffusion pro-
cesses (see, for instance, Giorno and Nobile [1]). Specifically, if ξ = 1/2 and α(t) = 0, the
density (22) identifies with the FPT pdf gW (0, t |√x0, t0) of a time-inhomogeneous Wiener
process, with state-space in R, having infinitesimal drift B1(x, t) = 0 and infinitesimal vari-
ance B2(t) = r(t)/2; instead, if ξ = 1/2 and α(t) �= 0, the density (22) identifies with
the FPT pdf gOU (0, t |√x0, t0) of a time-inhomogeneous Ornstein-Uhlenbeck process, with
state-space in R, having infinitesimal drift C1(x, t) = [α(t)/2] x and infinitesimal variance
C2(t) = r(t)/2.

Under the assumption (14), if limt→+∞ R(t |t0) = +∞, it is meaningful to evaluate the
FPT moments through the zero-state starting from X(t0) = x0 > 0:

tk(0|x0, t0) =
∫ +∞

0
tk g(0, t |x0, t0) dt, k = 1, 2, . . .

Indeed, if limt→+∞ R(t |t0) = +∞, from Proposition 4 one has P{T (x0, t0) < +∞} = 1
and, making use of (8) and (19), for 0 ≤ ξ < 1 one has:

tk(0|x0, t0) = k
∫ +∞

0
tk−1

[∫ +∞

0
fa(x, t |x0, t0) dx

]
dt

= k

Γ (1 − ξ)

∫ +∞

0
tk−1γ

(
1 − ξ,

x0
R(t |t0)

)
dt, k = 1, 2, . . . (26)

We finally note that, for the time-homogeneous Feller process, in which α(t) = α, β(t) =
ξ r , r(t) = r , with α ∈ R, r > 0 and 0 ≤ ξ < 1, the pdf fa(x, t |x0, t0) and the FPT pdf
g(0, t |x0, t0) can be easily obtained from (16) and (22) by setting

A(t |t0) = α(t − t0), R(t |t0) =

⎧⎪⎨
⎪⎩
r(t − t0), α = 0,

r

α

(
1 − e−α(t−t0)

)
, α �= 0.

(27)

3 General Case

We assume that α(t), β(t) and r(t) are continuous functions such that α(t) ∈ R, β(t) ∈ R,
r(t) > 0, β(t) ≤ ξ r(t), with 0 ≤ ξ < 1. From (12), for t ≥ t0 we have

Za(x, t |s, t0) =
{
Za(0, t |s, t0), x = 0,
Za(0, t |s, t0) Va(x, t |s, t0), x > 0,

(28)

where

Va(x, t |s, t0) = exp
{
− s x e−A(t |t0)

1 + sR(t |t0)
}
, (29)

with A(t |t0) and R(t |t0) given in (13). We note that Va(x, t |s, t0) does not dependent
upon β(t). Therefore, to obtain the transition pdf fa(x, t |x0, t0) for X(t) with infinitesimal
moments (1), we proceed as follows:

(1) we determine the transition pdf fa(0, t |x0, t0) for x0 > 0 and t ≥ t0 by taking the inverse
Laplace transform of Za(0, t |s, t0);
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(2) wefind the inverseLaplace transformva(x, t |x0, t0)of (29) andwe calculate the transition
pdf fa(x, t |x0, t0) as a convolution, according to x0, between fa(0, t |x0, t0) and the
function va(x, t |x0, t0) for x > 0, x0 > 0 and t ≥ t0.

3.1 General Case: x = 0

In this section, we obtain the transition pdf in the presence of an absorbing boundary in the
zero-state when the process X(t) reaches x = 0 at time t ≥ t0. By setting x = 0 in (12), for
t ≥ t0 we obtain:

Za(0, t |s, t0) = e−A(t |t0)

[1 + sR(t |t0)]2 exp

{∫ t

t0
β(u)

s e−A(u|t0)

1 + sR(u|t0) du

}
, (30)

with A(t |t0) and R(t |t0) defined in (13).
In the sequel, we denote by Bn(d1, d2, . . . , dn) the complete Bell polynomials, recursively

defined as follows:

B0 = 1, Bn+1(d1, d2, . . . , dn+1)=
n∑

i=0

(
n

i

)
Bn−i (d1, d2, . . . , dn−i ) di+1, n ∈ N0, (31)

with

dk = k!
[R(t |t0)]k

∫ t

t0
β(u)e−A(u|t0)[R(t |t0) − R(u|t0)]k−1 du, k = 1, 2, . . . (32)

Proposition 5 Under the assumption of Proposition 1, for t ≥ t0 and x0 > 0 the transition pdf
of the time-inhomogeneous Feller-type diffusion process X(t) with an absorbing boundary
in the zero-state is

fa(0, t |x0, t0) = x0 e−A(t |t0)

R2(t |t0) exp
{
− x0
R(t |t0)

}
Ψ (t |x0, t0), (33)

where

Ψ (t |z, t0) =
+∞∑
n=0

Bn(d1, d2, . . . , dn)

(n + 1)! L(1)
n

[ z

R(t |t0)
]
, z > 0, (34)

with A(t |t0) and R(t |t0) defined in (13), Bn(d1, d2, . . . , dn) given in (31) and in (32), and

L(a)
n (y) =

n∑
k=0

(−1)k
(
n + a

n − k

)
yk

k! , a ≥ 0, n = 0, 1, . . . (35)

denoting the Laguerre polynomials.

Proof The proof is given in Appendix C. 
�

Remark 1 (Proportional case) We assume that (14) holds. We prove that the first of (16)
follows from (33).

Indeed, from (31) and (32) one has

dn = ξ (n − 1)!, B0 = 1, Bn(d1, d2, . . . , dn) = (ξ)n, n = 1, 2, . . . , (36)
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where (ξ)n denotes the Pochhammer symbol defined as (ξ)0 = 1 and (ξ)n = ξ (ξ+1) · · · (ξ+
n − 1) for n = 1, 2, . . . Recalling that the series of Laguerre polynomials satisfies the
following identity (cf. Erdèlyi et al [44], p. 213, no. 16):

+∞∑
n=0

(ξ)n

Γ (a + n + 1)
L(a)
n (y) = y−ξ

Γ (a − ξ + 1)
, a > 0, y > 0, 0 ≤ ξ < a + 1, (37)

under the assumption (14), from (34) one has:

Ψ (t |z, t0) =
+∞∑
n=0

(ξ)n

(n + 1)! L
(1)
n

[ z

R(t |t0)
]

= 1

Γ (2 − ξ)

[ z

R(t |t0)
]−ξ

, z > 0. (38)

Hence, if (14) holds, Eq. (33) identifies with the first of (16). ♦

3.2 General Case: x > 0

In this section, we obtain the transition pdf fa(x, t |x0, t0) for x > 0 and t ≥ t0. From (29),
for t ≥ t0, x > 0 and Re s > 0 we have Va(x, t |s, t0) ≥ 0 and

lim
s↓0 Va(x, t |s, t0) = 1.

We show that Va(x, t |s, t0) is the Laplace transform of a function va(x, t |x0, t0), i.e.

Va(x, t |s, t0) =
∫ +∞

0
e−s x0va(x, t |x0, t0) dx0, Re s > 0. (39)

Proposition 6 Under the assumption of Proposition 1, for x0 > 0 and t ≥ t0, one has:

va(x, t |x0, t0) = exp
{
− x e−A(t |t0)

R(t |t0)
}

δ(x0) + 1

R(t |t0)
√

x

x0
e−A(t |t0)

× exp
{
− x0 + x e−A(t |t0)

R(t |t0)
}
I1

[
2
√
x x0 e−A(t |t0)
R(t |t0)

]
, x > 0, (40)

with A(t |t0) and R(t |t0) defined in (13), whereas δ(x) denotes the delta Dirac function and
Iν(z) represents the Bessel function modified of first kind.

Proof The proof is given in Appendix D. 
�
The function va(x, t |x0, t0) in (40) is the sum of two terms. The second term in (40)

identifies with x fa(x, t |x0, t0)/x0, where fa(x, t |x0, t0) is given in (16) for x > 0 and ξ = 0
(absence of immigration). Since,

∫ +∞

0

x

x0
fa(x, t |x0, t0) dx0 = 1 − exp

{
− x e−A(t |t0)

R(t |t0)
}
, x > 0,

from (40) it follows that
∫ +∞

0
va(x, t |x0, t0) dx0 = 1.

For x > 0, the transition pdf fa(x, t |x0, t0) can be obtained via a convolution, according to x0,
between the pdf fa(0, t |x0, t0) and the function va(x, t |x0, t0), determined in Propositions 5
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and 6, respectively:

fa(x, t |x0, t0) =
∫ x0

0
fa(0, t |z, t0) va(x, t |x0 − z, t0) dz, x > 0, x0 > 0. (41)

Proposition 7 Under the assumption of Proposition 1, for t ≥ t0, x > 0 and x0 > 0 one
has:

fa(x, t |x0, t0) = e−A(t |t0)

R2(t |t0) exp

{
− x0 + x e−A(t |t0)

R(t |t0)

}{
x0 Ψ (t |x0, t0)

+
√
x e−A(t |t0)
R(t |t0)

∫ x0

0

z√
x0 − z

I1

[
2
√
x (x0 − z) e−A(t |t0)

R(t |t0)
]
Ψ (t |z, t0) dz

}
, (42)

with A(t |t0) and R(t |t0) given in (13) and Ψ (t |z, t0) defined in (34).
Proof It follows from (41), by virtue of (33) and (40). 
�

Note that, by taking the limit as x ↓ 0 in (42), we obtain (33).

Remark 2 (Proportional case) We assume that (14) holds. We prove that the second of (16)
follows from (42).

Indeed, recalling (36) and (38), from (42) for t ≥ t0, x > 0 and x0 > 0 one has:

fa(x, t |x0, t0) = e−A(t |t0)

Γ (2 − ξ)

[ 1

R(t |t0)
]2−ξ

exp

{
− x0 + x e−A(t |t0)

R(t |t0)

}

×
{
x1−ξ
0 +

√
xe−A(t |t0)
R(t |t0)

∫ x0

0

(x0 − y)1−ξ

√
y

I1

[
2
√
x y e−A(t |t0)
R(t |t0)

]
dy

}
. (43)

By virtue of (17), one obtains

∫ x0

0

(x0 − y)1−ξ

√
y

I1
(
2a

√
y
)
dy = x−ξ

0

a2

{
−ax0 + aξ x (1+ξ)/2

0 I1−ξ (2a
√
x0)Γ (2 − ξ)

}
,

for a > 0, ξ < 2 and x0 > 0. Hence, under the assumption (14), Eq. (43) leads to the second
of (16). ♦

4 The First-Passage Time Through the Zero-State

We now focus on the distribution function of the FPT through the zero-state for the time-
inhomogeneous Feller-type diffusion process X(t), with infinitesimal moments (1), when
α(t), β(t) and r(t) are continuous functions such that α(t) ∈ R, β(t) ∈ R, r(t) > 0,
β(t) ≤ ξ r(t), with 0 ≤ ξ < 1. The FPT problem of X(t) through the zero-state can be
studied starting from Eq. (8) and making use of (42).

Proposition 8 Under the assumption of Proposition 1, for t ≥ t0 and x0 > 0 one has:
∫ +∞

0
fa(x, t |x0, t0) dx = 1 − exp

{
− x0
R(t |t0)

}
+ x0

R(t |t0) exp
{
− x0
R(t |t0)

}

×
+∞∑
n=1

Bn(d1, d2, . . . , dn)

n! Φ
(
1 − n, 2; x0

R(t |t0)
)
, (44)
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with R(t |t0) defined in (13), Bn(d1, d2, . . . , dn) given in (31) and (32) and where

Φ(a, b; x) = 1 +
+∞∑
n=1

(a)n

(b)n

xn

n! (45)

denotes the confluent hypergeometric function (Kummer’s function).

Proof The proof is given in Appendix E. 
�
Remark 3 (Proportional case) We assume that (14) holds. We prove that from (44) one
obtains (19).

Indeed, recalling (36) and making use of the relation Φ(1, 2; z) = (ez − 1)/z, from (44)
for t ≥ t0 and x0 > 0 one has:

∫ +∞
0

fa(x, t |x0, t0) dx = x0
R(t |t0) exp

{
− x0
R(t |t0)

} +∞∑
n=0

(ξ)n

n! Φ
(
1 − n, 2; x0

R(t |t0)
)
. (46)

Since (Tricomi [45], p. 31, no. 10)

+∞∑
n=0

(b − c)n
n! Φ(a − n, b; z) = Γ (b)

Γ (c)
zc−b Φ(a, c; z), b > 0, c > 0, b − c > 0, (47)

from (46) one has:
∫ +∞

0
fa(x, t |x0, t0) dx = e−x0/R(t |t0)

Γ (2 − ξ)

[ x0
R(t |t0)

]1−ξ

Φ
(
1, 2 − ξ ; x0

R(t |t0)
)
. (48)

The incomplete gamma function (20) can be expressed in terms of the Kummer’s function
(cf. Tricomi [45]p. 160, no. 7):

γ (a, z) = 1

a
e−z za Φ(1, a + 1, z), Re a > 0,

so that Eq. (19) follows from (48). ♦
Relation (44) plays an important role in the determination of the FPT distribution function

and of the FPT density through the zero-state. Indeed, by virtue of (8), for t ≥ t0 and x0 > 0
the FPT distribution function is

P{T (x0, t0) < t} =
∫ t

t0
g(0, τ |x0, t0) dτ = 1 −

∫ +∞

0
fa(x, t |x0, t0) dx, (49)

so that the FPT density through the zero-state can be obtained as

g(0, t |x0, t0) = − ∂

∂t

∫ +∞

0
fa(x, t |x0, t0) dx . (50)

Proposition 9 Under the assumption of Proposition 1, for t ≥ t0 and x0 > 0 one has:

g(0, t |x0, t0) = x0
R(t |t0) exp

{
− x0
R(t |t0)

}{r(t) e−A(t |t0)

R(t |t0)

×
+∞∑
n=0

Bn(d1, d2, . . . , dn)

n! Φ
(
−n, 1; x0

R(t |t0)
)

−
+∞∑
n=1

1

n! Φ
(
1 − n, 2; x0

R(t |t0)
) d

dt
Bn(d1, d2, . . . , dn)

}
, (51)
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with A(t |t0) and R(t |t0) defined in (13) and Bn(d1, d2, . . . , dn) given in (31) and (32).

Proof The proof is given in Appendix F. 
�
Remark 4 (Proportional case) We assume that (14) holds. We prove that from (51) one
obtains (22).

Indeed, from (36) one has B0 = 1 and Bn(d1, d2, . . . , dn) = (ξ)n for n = 1, 2, . . ., so
that, under the assumption (14), for t ≥ t0 and x0 > 0 from (51) one has:

g(0, t |x0, t0) = x0 r(t) e−A(t |t0)

R2(t |t0) exp
{
− x0
R(t |t0)

} +∞∑
n=0

(ξ)n

n! Φ
(
−n, 1; x0

R(t |t0)
)
. (52)

Making use of (47), it results

+∞∑
n=0

(ξ)n

n! Φ
(
−n, 1; x0

R(t |t0)
)

= 1

Γ (1 − ξ)

[ x0
R(t |t0)

]−ξ

,

so that (22) follows from (52). ♦

5 Special Cases

Under the assumption (14), we analyze the cases in which the growth intensity function α(t),
or the immigration intensity function β(t) or both of them have some kind of periodicity.
These cases are of interest in various applied fields, such as in population growth and in
queueing systems. Indeed, periodic immigration intensity functions play an important role
in the description of the evolution of dynamic for systems influenced by seasonal immigra-
tion or other regular environmental cycles. Furthermore, periodic growth intensity functions
express the existence of fluctuation in the population dynamics and the presence of rush hours
occurring on a daily basis in queueing systems.

5.1 Periodic Immigration Intensity Function

We consider the time-inhomogeneous Feller-type process X(t) such that

A1(x, t) = α x + ξ r(t), A2(x, t) = 2 r(t) x, (53)

with α ∈ R, 0 ≤ ξ < 1 and

r(t) = ν
[
1 + c sin

(2π t
Q

)]
, t ≥ 0, (54)

where ν > 0 is the average of the periodic function r(t) of period Q, c is the amplitude of
the oscillations, with 0 ≤ c < 1. From (13), for t ≥ t0 one has A(t |t0) = α (t − t0) and

R(t |t0)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ν(t − t0) + c ν Q
2π

[
cos
(
2π t0
Q

)
− cos

(
2π t
Q

)]
, α = 0,

ν
α

(
1 − e−α(t−t0)

)
+ c ν Q

4π2+Q2α2

{
2π cos

(
2π t0
Q

)

+α Q sin
(
2π t0
Q

)
− e−α(t−t0)

[
2π cos

(
2π t
Q

)
+ α Q sin

(
2π t
Q

)]}
, α �= 0.

(55)
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Fig. 1 The FPT distribution (on the left) and the FPT density (on the right) through the zero-state starting from
X(0) = 5 are plotted as function of t for the process (53), with α = 0.05, r(t) given in (54) with ν = 0.75,
c = 0.9, Q = 2 with ξ = 0 (blue solid curve), ξ = 0.3 (red dotted curve) and ξ = 0.6 (black dashed curve)

Fig. 2 As in Fig. 1 for α = −0.05

Fig. 3 As in Fig. 1 for α = 0

Then, from (55) one obtains:

lim
t→+∞ R(t |t0) =

⎧⎪⎨
⎪⎩

+∞, α ≤ 0,

ν
α

+ c ν Q
4π2+Q2α2

[
2π cos

(
2π t0
Q

)
+ α Q sin

(
2π t0
Q

)]
, α > 0,

so that, by virtue of (23), the FPT through the zero-state is a certain event forα ≤ 0.Moreover,
for α = 0 the FPT moments (26) are divergent.

In Figs. 1, 2 and 3, the FPT distribution G(0, t |x0, t0) = 1 − ∫ +∞
0 fa(x, t |x0, t0) dx ,

obtained making use of (19), and the FPT pdf g(0, t |x0, t0), given in (22), are plotted as
function of t for the diffusion process (53) for some choices of parameters. In Fig. 4, the
mean t1(0|x0, t0) and the coefficient of variation CV(0|x0, t0), obtained making use of (26),
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Fig. 4 The mean (on the left) and the coefficient of variation (on the right) of FPT from X(0) = 5 through the
zero-state are plotted as function of ν for the diffusion process (53) with α = −0.05, c = 0.9, Q = 2

are plotted as function of ν for ξ = 0, 0.3, 0.6. We note that as ν increases, the FPT mean
t1(0|x0, t0) decreases whereas the coefficient of variation increases. Instead, as ξ increases
in [0, 1), the FPT mean increases and the coefficient of variation decreases, due to a raise of
the immigration intensity function.

5.2 Periodic Growth Intensity Function

We consider the time-inhomogeneous Feller-type process X(t) such that

A1(x, t) = α(t) x + ξ r , A2(x) = 2 r x, (56)

with r > 0, 0 ≤ ξ < 1 and

α(t) = η − 2π b

Q1

cos
(
2π t
Q1

)

1 + b sin
(
2π t
Q1

) , t ≥ 0, (57)

where η ∈ R is the average of the periodic function α(t) of period Q1, b determines the
amplitude of the oscillations, with 0 ≤ b < 1. In Fig. 5, the intensity function (57) is plotted
as function of t for some choices of parameters η, b and Q1. The dotted lines refer to the
average cases, in which α(t) = η with η = −5 (bottom) and η = 5 (top). From (13), for
t ≥ t0 one has

A(t |t0) = η (t − t0) − ln
[
1 + b sin

(2π t
Q1

)]
+ ln

[
1 + b sin

(2π t0
Q1

)]
, (58)

and

R(t |t0)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

r

1+b sin

(
2π t0
Q1

) {t − t0 − b Q1
2π

[
cos
(
2π t
Q1

)
− cos

(
2π t0
Q1

)]}
, η = 0,

r

1+b sin

(
2π t0
Q1

) { 1−e−η(t−t0)

η
− 2π b Q1

4π2+Q2
1η

2

[
e−η(t−t0) cos

(
2π t
Q1

)

+ Q1η
2π e−η(t−t0) sin

(
2π t
Q1

)
− cos

(
2π t0
Q1

)
− Q1η

2π sin
(
2π t0
Q1

)}
, η �= 0.

(59)
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Fig. 5 The intensity function α(t), given in (57), is plotted as function of t for some choices of parameters.
The dotted lines refer to the average cases

Then, from (59) one obtains:

lim
t→+∞ R(t |t0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+∞, η ≤ 0,

r

{
1
η
+ 2π b Q1

4π2+Q2
1 η2

[
cos

(
2π t0
Q1

)
+ Q1η

2π sin

(
2π t0
Q1

)]}

1+b sin

(
2π t0
Q1

) , η > 0,

so that, by virtue of (23), the FPT through zero-state is a certain event for η ≤ 0. Moreover,
for η = 0 the FPT moments (26) are divergent.

In Fig. 6, the FPT pdf g(0, t |x0, t0), given in (22), is plotted as function of t for the
process (56) for some choices of parameters. Instead, in Fig. 7, the mean t1(0|x0, t0) and the
coefficient of variation CV(0|x0, t0), obtained making use of (26), are plotted as function
of r for ξ = 0, 0.3, 0.6. We note that as r increases, the FPT mean t1(0|x0, t0) decreases,
whereas the coefficient of variation increases. Moreover, the FPT mean and the coefficient
of variation increase with ξ in [0, 1).

5.3 Periodic Immigration and Growth Intensity Functions

We consider the time-inhomogeneous Feller-type process X(t) such that

A1(x, t) = α(t) x + ξ r(t), A2(x, t) = 2 r(t) x, (60)

with 0 ≤ ξ < 1, r(t) defined in (54) and α(t) given in (57). Recalling (13), for t ≥ t0 one
obtains A(t |t0) given in (58) and

R(t |t0) = ν

1 + b sin
(
2π t0
Q1

)
∫ t

t0
e−η(τ−t0)

[
1 + c sin

(2πτ

Q

)][
1 + b sin

(2πτ

Q1

)]
dτ.

(61)

The explicit expression of R(t |t0) in (61) is obtained in Appendix G. We note that
limt→+∞ R(t |t0) diverges as η ≤ 0, so that, due to (23), the FPT through the zero-state
is a certain event for X(t).

In Fig. 8, the FPT pdf g(0, t |x0, t0), given in (22), is plotted as function of t for the
process (60) for some choices of parameters. Comparing Figs. 6 and 8 , we note the effect
of the different periodicities of the growth intensity function α(t), with Q1 = 1, and of the
immigration intensity function β(t) = ξ r(t), with Q = 2. In Fig. 9, themean t1(0|x0, t0) and
the coefficient of variation CV(0|x0, t0), obtained making use of (26), are plotted as function
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 FPT densities through the zero-state starting from X(0) = 5 are plotted as function of t for the process
(56), with r = 1, α(t) given in (57) and with ξ = 0 (blue solid curve), ξ = 0.3 (red dotted curve) and ξ = 0.6
(black dashed curve)

Fig. 7 The mean (on the left) and the coefficient of variation (on the right) of FPT from X(0) = 5 to the
zero-state are plotted as function of r for the process (56) with η = −5, b = 0.3, Q1 = 1
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 FPT densities through the zero-state starting from X(0) = 5 are plotted as function of t for the process
(60), being r(t) defined in (54), with ν = 0.75 and c = 0.9, and α(t) given in (57) with ξ = 0 (blue solid
curve), ξ = 0.3 (red dotted curve) and ξ = 0.6 (black dashed curve)

of ν for ξ = 0, 0.3, 0.6. As ν increases, the FPT mean t1(0|x0, t0) decreases whereas the
coefficient of variation increases. Instead, as ξ increases in [0, 1), both the FPT mean and
the coefficient of variation increase.

6 Concluding Remarks

In this paper, we have considered a time-inhomogeneous Feller-type diffusion process
{X(t), t ≥ t0}, t0 ≥ 0, with infinitesimal drift A1(x, t) = α(t) x + β(t) and infinitesimal
variance A2(x, t) = 2 r(t) x , defined in the state-space [0,+∞), with α(t) ∈ R, β(t) ∈ R,
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Fig. 9 The mean (on the left) and the coefficient of variation (on the right) of FPT from X(0) = 5 to the
zero-state are plotted as function of ν for the process (60), being r(t) defined in (54), with c = 0.9 and Q = 2,
and α(t) given in (57), with η = −5, b = 0.3 and Q1 = 1

r(t) > 0, β(t) ≤ ξ r(t), with 0 ≤ ξ < 1, for all t ≥ t0. We have assumed that the zero-state
represents an absorbing boundary for X(t). This process plays a relevant role in different
fields, including physics, biology, neuroscience, finance and others. For instance, in popu-
lation biology α(t) represents the growth intensity function and can be positive, negative
or zero at different time instants, β(t) describes the immigration intensity function; instead,
the noise intensity function r(t) takes into account the environmental fluctuations. For this
process, the transition density fa(x, t |x0, t0) in the presence of an absorbing boundary in
zero-state and the FPT density g(0, t |x0, t0) from X(t0) = x0 to the zero-state are obtained.
Special attention is dedicated to the proportional case, in which the immigration intensity
function and the noise intensity function are related as β(t) = ξ r(t), with 0 ≤ ξ < 1.
Various numerical computation are performed to illustrate the effect of periodic intensity
functions on the FPT pdf g(0, t |x0, t0), by assuming that α(t), β(t) or both these functions
exhibit some kind of periodicity.
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Appendix

A Proof of Proposition 1

To solve (10)with initial condition (11), we use themethod of characteristics (cf., for instance,
Williams [46]) and we consider the following differential equations:
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dt0
dξ

= 1,
ds

dξ
= −s [α(t0) + s r(t0)], dZa

dξ
= [α(t0) + 2 s r(t0) − s β(t0)] Za,

(A1)

with the initial conditions:

t0(w, ξ = t) = t, s(w, ξ = t) = w, Za(w, ξ = t) = e−wx . (A2)

The first equation of (A1), with the related initial condition in (A2), leads to t0 = ξ . Then,
solving the second equation in (A1) with t0 = ξ and making use of the second of (A2), one
has:

s = w e−A(ξ |t)

1 + w R(ξ |t) · (3)

Moreover, solving the third equation in (A1) with t0 = ξ and s given in (3), we have

Za(w, ξ) = e−wx exp

{
A(ξ |t) +

∫ ξ

t
[2 r(u) − β(u)] w e−A(u|t)

1 + w R(u|t) du
}
, (4)

where the third of (A2) has been used. From (3) with ξ = t0, we also obtain

w = s e−A(t |t0)

1 + s R(t |t0) · (5)

Hence, recalling that ξ = t0 and making use of (5), from (4) it follows:

Za(x, t |s, t0) = e−A(t |t0) exp
{
− s x e−A(t |t0)

1 + s R(t |t0)
}

× exp

{
−
∫ t

t0
[2 r(u) − β(u)] s e−A(u|t0)

1 + s
[
R(t |t0) + e−A(t |t0) R(u|t)] du

}
. (6)

Since

R(t |t0) + e−A(t |t0) R(u|t) = R(u|t0), t0 ≤ u ≤ t,

one has:

exp

{
−
∫ t

t0
[2 r(u) − β(u)] s e−A(u|t0)

1 + s
[
R(t |t0) + e−A(t |t0) R(u|t)] du

}

= exp

{
−2

∫ t

t0
r(u)

s e−A(u|t0)

1 + s R(u|t0) du
}

exp

{∫ t

t0
β(u)

s e−A(u|t0)

1 + s R(u|t0) du
}
. (7)

We note that

exp

{
−2

∫ t

t0
r(u)

s e−A(u|t0)

1 + s R(u|t0) du
}

= 1

[1 + s R(t |t0)]2 , (8)

being

d

du
ln[1 + s R(u|t0)] = s r(u) e−A(u|t0)

1 + s R(u|t0) , t0 ≤ u ≤ t . (9)

Making use of (7) and (8) in (6), one obtains (12). Finally, we note that the assumptions on
the functions α(t), β(t) and r(t) in Proposition 1 imply that

0 ≤ Za(x, t |s, t0) ≤ e−A(t |t0)

[1 + sR(t |t0)]2−ξ
exp
{
− s x e−A(t |t0)

1 + sR(t |t0)
}
, 0 ≤ ξ < 1,
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so that

lim
x0↓0

fa(x, t |x0, t0) = lim
s↑+∞ s Za(x, t |s, t0) = 0,

i.e. the condition (5) is satisfied. 
�

B Proof of Proposition 2

We note that

exp

{∫ t

t0
β(u)

s e−A(u|t0)

1 + s R(u|t0) du
}

= exp

{
ξ

∫ t

t0

s r(u) e−A(u|t0)

1 + s R(u|t0) du

}
= [1 + s R(t |t0)]ξ ,

(B1)

where the last identity follows by virtue of (9). Hence, making use of (B1) in (12), one obtains
(15). To derive (16), we consider the inverse Laplace transform of (15) distinguishing two
cases: (i) x = 0 and (ii) x > 0.
Case (i) If x = 0, Eq. (15) becomes:

Za(0, t |s, t0) = e−A(t |t0)

[R(t |t0)]2−ξ

[
s + 1

R(t |t0)
]ξ−2

, 0 ≤ ξ < 1. (B2)

Since (cf. Erdèlyi et al. [43], p. 144, no. 3)
∫ +∞

0
e−sx0 xν−1

0 e−ax0 dx0 = Γ (ν) (s + a)−ν, Re ν > 0,

taking the inverse Laplace transform in (B2), for t ≥ t0 the first of (16) immediately follows.
Case (ii) Let x0 > 0. By setting

1 + s R(t |t0) = z,
x0

R(t |t0) = y, (B3)

in (15), making use of (9), one has:
∫ +∞

0
e−zy

{
ey fa

[
x, t |R(t |t0)y, t0

]}
dy = e−A(t |t0)

R(t |t0) exp
{
− x e−A(t |t0)

R(t |t0)
}

×zξ−2 exp
{ x e−A(t |t0)

z R(t |t0)
}
, 0 ≤ ξ < 1. (B4)

Since (cf. Erdèlyi et al. [43], p. 197, no. 18)
∫ +∞

0
e−zy a−ν/2 yν/2 Iν(2

√
a y) dy = z−ν−1 ea/z, Re ν > −1,

taking the inverse Laplace transform in (B4), for t ≥ t0 one obtains:

fa
[
x, t |R(t |t0)y, t0

] = e−y e−A(t |t0)

R(t |t0) exp
{
− x e−A(t |t0)

R(t |t0)
} [ x e−A(t |t0)

R(t |t0)
]−(1−ξ)/2

×y(1−ξ)/2 I1−ξ

[
2

√
x y e−A(t |t0)

R(t |t0)
]
, 0 ≤ ξ < 1, (B5)

from which, applying again the transformation x0 = R(t |t0) y, the second of (16) follows. 
�
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C Proof of Proposition 5

Let x0 > 0 and t ≥ t0. Making use of (B3) in (30) and recalling (9), one has:

∫ +∞

0
e−zy

{
ey fa

[
0, t |R(t |t0)y, t0

]}
dy = e−A(t |t0)

R(t |t0) z2

× exp

{
(z − 1)

∫ t

t0

β(u) e−A(u|t0)

R(t |t0) + (z − 1) R(u|t0) du
}

. (C1)

We note that

exp

{
(z − 1)

∫ t

t0

β(u) e−A(u|t0)

R(t |t0) + (z − 1) R(u|t0) du
}

= exp

⎧⎨
⎩
z − 1

z

∫ t

t0

β(u) e−A(u|t0)

R(t |t0)
[
1−
(
z−1
z

) (
1 − R(u|t0)

R(t |t0)
)] du

⎫⎬
⎭

= exp

{+∞∑
k=1

(
1 − 1

z

)k 1

[R(t |t0)]k
∫ t

t0
β(u) e−A(u|t0) [R(t |t0) − R(u|t0)]k−1 du

}
,

(C2)

where the last equality follows being

0 <
z − 1

z

(
1 − R(u|t0)

R(t |t0)
)

< 1, t0 ≤ u ≤ t .

Since (cf., for instance, Comtet [47]):

exp

{+∞∑
r=1

dr
r ! ϑr

}
=

+∞∑
n=0

Bn(d1, d2, . . . , dn)

n! ϑn,

where Bn(d1, d2, . . . , dn) are the complete Bell polynomials defined in (31), with dk given
in (32), from (C2) one obtains:

exp

{
(z − 1)

∫ t

t0

β(u) e−A(u|t0)

R(t |t0) + (z − 1) R(u|t0) du
}

=
+∞∑
n=0

Bn(d1, d2, . . . , dn)

n!
(
1 − 1

z

)n
.

(C3)

Then, making use of (C3) in (C1) one has:

∫ +∞

0
e−zy

{
ey fa

[
0, t |R(t |t0)y, t0

]}
dy = e−A(t |t0)

R(t |t0) z2
+∞∑
n=0

Bn(d1, d2, . . . , dn)

n!
( z − 1

z

)n
.

(C4)

Finally, since (cf. Gradshteyn and Ryzhik [48], p. 809, no. 8)

∫ +∞

0
e−zy yα L(α)

n (y) dy = Γ (α + n + 1) (z − 1)n

n! zα+n+1 Re α > −1, Re z > 0,
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by setting α = 1, Eq. (C4) leads to:

fa
[
0, t |R(t |t0)y, t0

] = e−y e−A(t |t0)

R(t |t0)
+∞∑
n=0

Bn(d1, d2, . . . , dn)

n!
y

n + 1
L(1)
n (y), y > 0.

Applying again the transformation x0 = R(t |t0) y, one obtains (33). 
�

D Proof of Proposition 6

We use (B3) in (29), so that, by virtue of (39), for t ≥ t0 we obtain:∫ +∞

0
e−zy

{
ey va

[
x, t |R(t |t0)y, t0

]}
dy = 1

R(t |t0) exp
{

− x e−A(t |t0)

R(t |t0)
}
exp

{ x e−A(t |t0)

R(t |t0) z
}

y > 0, x > 0. (D1)

Since (cf. Erdèlyi et al. [43], p. 197, no. 16)
∫ +∞

0
e−z y

[
δ(y) +

√
a I1(2

√
a y)√

y

]
dy = ea/z, Re z > 0,Re a > 0,

from (D1) for t ≥ t0 and x > 0 one has:

va
[
x, t |R(t |t0)y, t0

] = e−y

R(t |t0) exp
{
− x e−A(t |t0)

R(t |t0)
}

×
{
δ(y) +

√
x e−A(t |t0)
y R(t |t0) I1

[
2

√
x y e−A(t |t0)

R(t |t0)
]}

, y > 0. (D2)

Then, applying the transformation x0 = R(t |t0) y, Eq. (40) follows from (D2), recalling that
δ(a x) = δ(x)/|a| and g(x) δ(x − a) = g(a) δ(x − a). 
�

E Proof of Proposition 8

From (42), we obtain:∫ +∞

0
fa(x, t |x0, t0) dx =

[ 1

R(t |t0)
]3/2

exp
{
− x0
R(t |t0)

}{
x0
√
R(t |t0) Ψ (t |x0, t0)

+
∫ x0

0
dz

z Ψ (t |z, t0)√
x0 − z

∫ +∞

0
e−y√y I1

[
2

√
x0 − z

R(t |t0)
√
y
]
dy

}
. (E1)

We note that (cf. Erdèlyi et al [43], p. 197, no. 18)
∫ +∞

0
e−py yν/2 Iν(2

√
ay) dy = aν/2 p−ν−1ea/p, Re p > 0,Re ν > −1,

so that from (E1), by virtue of (34), it follows:
∫ +∞

0
fa(x, t |x0, t0) dx = 1

R(t |t0)
[
x0 exp

{
− x0
R(t |t0)

}
Ψ (t |x0, t0)

+R(t |t0)
+∞∑
n=0

Bn(d1, d2, . . . , dn)

(n + 1)!
∫ x0/R(t |t0)

0
y e−y L(1)

n (y) dy

]
. (E2)
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Recalling the expression of the Laguerre polynomials (35), one has:

∫ z

0
y e−y L(1)

n (y) dy =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − (1 + z) e−z, n = 0,

z2 e−z, n = 1,

z2e−z

n
L(2)
n−1(z), n = 2, 3, . . .

(E3)

Then, making use of (E3) in (E2), for t ≥ t0 and x0 > 0 one obtains:

∫ +∞

0
fa(x, t |x0, t0) dx = 1 − exp

{
− x0
R(t |t0)

}
+ x0

R(t |t0) exp
{
− x0
R(t |t0)

}

×
+∞∑
n=1

Bn(d1, d2, . . . , dn)

(n + 1)!
{
L(1)
n

[ x0
R(t |t0)

]
+ 1

n

x0
R(t |t0) L

(2)
n−1

[ x0
R(t |t0)

]}
. (E4)

Moreover, since the Laguerre polynomials satisfy the following functional relations (cf.
Gradshteyn and Ryzhik [48], p. 1001, no. 8.971.4 and no. 8.971.5)

y L(a+1)
n (z) = (n + a) L(a)

n−1(z) − (n − y) L(a)
n (z),

L(a−1)
n (z) = L(a)

n (z) − L(a)
n−1(z),

one also has:

n L(1)
n (z) + y L(2)

n−1(z) = (n + 1) L(1)
n−1(z).

Hence, (E4) can be rewritten as

∫ +∞

0
fa(x, t |x0, t0) dx = 1 − exp

{
− x0
R(t |t0)

}
+ x0

R(t |t0) exp
{
− x0
R(t |t0)

}

×
+∞∑
n=1

Bn(d1, d2, . . . , dn)

n n! L(1)
n−1

[ x0
R(t |t0)

]
. (E5)

Finally, since (cf. Gradshteyn and Ryzhik [48], p. 1001, no. 8.972.1)

L(a)
n (z) =

(
n + a

n

)
Φ(−n, a + 1; z), a ≥ 0, n = 0, 1, . . . , (E6)

Eq. (44) follows immediately from (E5). 
�
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F Proof of Proposition 9

Making use of (44) in (50), one has

g(0, t |x0, t0) = x0
R(t |t0) exp

{
− x0
R(t |t0)

}{r(t) e−A(t |t0)

R(t |t0)

×
[
1 +

(
1 − x0

R(t |t0)
) +∞∑
n=1

Bn(d1, d2, . . . , dn)

n! Φ
(
1 − n, 2; x0

R(t |t0)
)]

−
+∞∑
n=1

Bn(d1, d2, . . . , dn)

n!
d

dt
Φ
(
1 − n, 2; x0

R(t |t0)
)

−
+∞∑
n=1

1

n! Φ
(
1 − n, 2; x0

R(t |t0)
) d

dt
Bn(d1, d2, . . . , dn). (F1)

Since (cf. Gradshteyn and Ryzhik [48], p. 1023, no. 9213)

d

dz
Φ(a, b; z) = a

b
Φ(a + 1, b + 1; z),

one obtains:

d

dt
Φ
(
1 − n, 2; x0

R(t |t0)
)

= n − 1

2

x0 r(t) e−A(t |t0)

R2(t |t0) Φ
(
2 − n, 3; x0

R(t |t0)
)
.

Therefore, Eq. (F1) can be rewritten as:

g(0, t |x0, t0) = x0
R(t |t0) exp

{
− x0
R(t |t0)

}{r(t) e−A(t |t0)

R(t |t0)
+∞∑
n=0

Bn(d1, d2, . . . , dn)

n!

×
[(

1 − x0
R(t |t0)

)
Φ
(
1 − n, 2; x0

R(t |t0)
)

− n − 1

2

x0
R(t |t0) Φ

(
2 − n, 3; x0

R(t |t0)
)]

−
+∞∑
n=1

1

n! Φ
(
1 − n, 2; x0

R(t |t0)
) d

dt
Bn(d1, d2, . . . , dn)

}
, (F2)

where the use of the following relations

Φ(a, a; z) = ez,
z

b
Φ(a + 1, b + 1; z) = Φ(a + 1, b; z) − Φ(a, b; z) (F3)

has been made. Finally, recalling that

a Φ(a + 1, b + 1; z) = (a − b)Φ(a, b + 1; z) + bΦ(a, b; z),
the expression in square bracket in Eq. (F2) becomes:

(
1 − x0

R(t |t0)
)
Φ
(
1 − n, 2; x0

R(t |t0)
)

− n − 1

2

x0
R(t |t0) Φ

(
2 − n, 3; x0

R(t |t0)
)

= Φ
(
1 − n, 1; x0

R(t |t0)
)

− x0
R(t |t0) Φ

(
1 − n, 2; x0

R(t |t0)
)

= Φ
(
−n, 1; x0

R(t |t0)
)
, (F4)
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where the last identity follows from (F3). Then, substituting (F4) in (F2), we obtain Eq. (51).

�

G Evaluation of R(t|t0) in (61)

From (61) one has:

R(t |t0) = ν

1 + b sin
(
2π t0
Q1

)[R1(t |t0) + c R2(t |t0) + b c R3(t |t0)
]
,

with 0 ≤ b < 1 and 0 ≤ c < 1, where

R1(t |t0) =
∫ t

t0
e−η(τ−t0)

[
1 + b sin

(2πτ

Q1

)]
dτ

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t − t0 − b Q1
2π

[
cos
(
2π t
Q1

)
− cos

(
2π t0
Q1

)]
, η = 0,

1−e−η(t−t0)

η
− 2π b Q1

4π2+Q2
1η

2

[
e−η(t−t0) cos

(
2π t
Q1

)

+ Q1η
2π e−η(t−t0) sin

(
2π t
Q1

)
− cos

(
2π t0
Q1

)
− Q1η

2π sin
(
2π t0
Q1

)]
, η �= 0,

R2(t |t0) =
∫ t

t0
e−η(τ−t0) sin

(2πτ

Q

)
dτ

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q
2π

[
cos
(
2π t0
Q

)
− cos

(
2π t
Q

)]
, η = 0,

2π Q
4π2+Q2η2

{
cos
(
2π t0
Q

)
+ Qη

2π sin
(
2π t0
Q

)

−e−η(t−t0)
[
cos
(
2π t
Q

)
+ Qη

2π sin
(
2π t
Q

)]}
, η �= 0,

and

R3(t |t0) =
∫ t

t0
e−η(τ−t0) sin

(2πτ

Q

)
sin
(2πτ

Q1

)
dτ

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

QQ1
4π

{
1

Q−Q1

[
sin
(
2π t Q−Q1

QQ1

)
− sin

(
2π t0

Q−Q1
QQ1

)]

− 1
Q+Q1

[
sin
(
2π t Q+Q1

QQ1

)
− sin

(
2π t0

Q+Q1
QQ1

)]}
, η = 0,

QQ1
2

{
e−η(t−t0)

[ QQ1η cos

(
2π t Q+Q1

QQ1

)
−2π(Q+Q1) sin

(
2π t Q+Q1

QQ1

)
4π2(Q+Q1)2+Q2Q2

1η
2

−
QQ1η cos

(
2π t Q−Q1

QQ1

)
−2π(Q−Q1) sin

(
2π t Q−Q1

QQ1

)
4π2(Q−Q1)2+Q2Q2

1η
2

]

−
QQ1η cos

(
2π t0

Q+Q1
QQ1

)
−2π(Q+Q1) sin

(
2π t0

Q+Q1
QQ1

)
4π2(Q+Q1)2+Q2Q2

1η
2

+
QQ1η cos

(
2π t0

Q−Q1
QQ1

)
−2π(Q−Q1) sin

(
2π t0

Q−Q1
QQ1

)
4π2(Q−Q1)2+Q2Q2

1η
2

}
, η �= 0,
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for Q �= Q1, whereas

R3(t |t0) =
∫ t

t0
e−η(τ−t0) sin2

(2πτ

Q

)
dτ

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t−t0
2 − Q

8π sin
(
4π t
Q

)
+ Q

8π sin
(
4π t0
Q

)
, η = 0,

1−e−η(t−t0)

2η + Q
2[16π2+Q2η2]

{
4π sin

(
4π t0
Q

)
− Qπ cos

(
4π t0
Q

)

−e−η(t−t0)
[
4π sin

(
4π t
Q

)
− Qπ cos

(
4π t
Q

)]}
, η �= 0,

for Q = Q1. 
�
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