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Abstract
Enabling information systems to face anomalies in the presence of uncertainty is a com-
pelling and challenging task. In this work the problem of unsupervised outlier detection in
large collections of data objects modeled bymeans of arbitrary multidimensional probability
density functions is considered. We present a novel definition of uncertain distance-based
outlier under the attribute level uncertainty model, according to which an uncertain object
is an object that always exists but its actual value is modeled by a multivariate pdf. Accord-
ing to this definition an uncertain object is declared to be an outlier on the basis of the
expected number of its neighbors in the dataset. To the best of our knowledge this is the
first work that considers the unsupervised outlier detection problem on data objects mod-
eled by means of arbitrarily shaped multidimensional distribution functions. We present
the UDBOD algorithm which efficiently detects the outliers in an input uncertain dataset
by taking advantages of three optimized phases, that are parameter estimation, candidate
selection, and the candidate filtering. An experimental campaign is presented, including a
sensitivity analysis, a study of the effectiveness of the technique, a comparison with related
algorithms, also in presence of high dimensional data, and a discussion about the behavior
of our technique in real case scenarios.

Keywords Nearest neighbors · Outlier detection · Uncertain data · Unsupervised learning

1 Introduction

Traditional data analysis techniques deal with feature vectors having deterministic values.
Thus, data uncertainty is usually ignored in the problem formulation. However, uncertainty
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arises in real data in many ways, since the data may contain errors or may be only partially
complete (Lindley 2006). The uncertainty may result from the limitations of the equipment,
indeed physical devices are often imprecise due to measurement errors. Another source
of uncertainty are repeated measurements, e.g. sea surface temperature could be recorded
multiple times during a day. Also, in some applications data values are continuously chang-
ing, as positions of devices or observations associated with natural phenomena, and these
quantities can be represented by using an uncertain model.

Simply disregarding uncertainty may led to less accurate conclusions or even inexact
ones. This has created a need for uncertain data management techniques (Aggarwal and
Yu 2009) managing data records typically represented by probability distributions (Mohri
2003; Kriegel and Pfeifle 2005; Bi and Zhang 2004; Aggarwal and Yu 2008; Angiulli and
Fassetti 2012, 2007; Aggarwal 2014; Khan et al. 2018), In this work it is assumed that an
uncertain object is an object that always exists but its actual value is uncertain and modeled
by a multivariate probability density function. This notion of uncertain object has been
extensively adopted in the literature and corresponds to the attribute level uncertainty model
viewpoint (Green and Tannen 2006).

In particular, we deal with the problem of detecting outliers in uncertain data. An outlier
is an observation that differs so much from others as to arouse suspicion that it was gen-
erated by a different mechanism (Hawkins 1980). As a major contribution, we introduce a
definition of uncertain outlier representing the generalization of the classic distance-based
outlier definition (Knorr et al. 2000; Ramaswamy et al. 2000; Angiulli and Pizzuti 2005;
Angiulli et al. 2006) to the management of uncertain data modeled as arbitrary probabil-
ity density functions. The distance-based definition is a solid one: it has been introduced in
order to overcome some limitations of statistical definitions, generalizes the notion of out-
lier provided by several discordance tests developed in statistics, is suitable for multivariate
data, and can be applied even if the distribution of the data is unknown. The contributions
of the work are summarized next.

– To the best of our knowledge, this is the first unsupervised outlier detection technique
working on data objects modeled by means of arbitrarily shaped multidimensional
distribution functions.

– We introduce a novel definition of uncertain outlier representing the generalization
of the classic distance-based outlier definition (Knorr et al. 2000; Ramaswamy et al.
2000; Angiulli and Pizzuti 2005) to the management of uncertain data modeled as
pdfs.

– Our approach consists in declaring an object as an outlier if the probability that it has at
least k close neighbors is low. Hence, it corresponds to perform a nearest neighbor den-
sity estimate on all the possible dataset outcomes. As such, its semantics is completely
different from previously introduced unsupervised approaches for outlier detection on
uncertain data (Aggarwal and Yu 2008; Wang et al. 2009; Jiang and Pei 2011).

– We show how the decision rule associated with the here introduced definition, although
difficult to compute, can be truthfully implemented.

– We provide an efficient uncertain distance-based outlier detection algorithm working
on any domain and with any distance function.

The rest of the paper is organized as follows. Section 2 introduces the notion of
distance-based uncertain outlier. Section 3 discusses work related to the one here presented.
Section 4 shows how to compute the outlier probability. Section 5 presents the outlier detec-
tion method. Section 6 illustrates experimental results. Finally, Section 7 concludes the
work.
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2 Preliminaries

2.1 Uncertain objects

Let (D, dist) denote a metric space, where D is a set, also called domain, and dist is a metric
distance on D. (e.g., D is the d-dimensional real space R

d equipped with the Euclidean
distance dist).

A certain object v is an element of D. An uncertain object x is a random variable having
domain D with associated probability density function f x , where f x(v) denotes the density
of x in v. We note that a certain object v can be regarded as an uncertain one whose associ-
ated pdf f v is δv(u), where δv(u) = δ(0), for u = v, and δv(u) = 0, otherwise, with δ(u)

denoting the Dirac delta function.
Given a set S = {x1, . . . , xN } of uncertain objects, an outcome IS of S is a set

{v1, . . . , vN } of certain objects such that f xi (vi) > 0 (1 ≤ i ≤ N ). The pdf f S associated
with S is

f S(v1, . . . , vN) =
N∏

i=1

f xi (vi).

Given two uncertain objects x and y, dist(x, y) denotes the continuous random variable
representing the distance between x and y.

In the following we assume that with each object x it is given a finite region SUP(x) such
that Pr(x �∈ SUP(x)) ≤ ω for a specific threshold ω. For example, SUP could be defined as
an hyper-ball or an hyper-rectangle (e.g. the minimum bounding rectangle or MBR). If x has
finite support, the threshold ω can be always set to 0. Note that under the above assumption
the error involved in the calculation of the probability Pr(dist(x, y) ≤ R), with x and y

two uncertain objects, is the square of ω.
The minimum distance mindist (x, y) between uncertain objects x and y is defined as

min{dist(u, v) : u ∈ SUP(x) and v ∈ SUP(y)}, while themaximum distancemaxdist (x, y)

between x and y is defined as max{dist(u, v) : u ∈ SUP(x) and v ∈ SUP(y)}.

2.2 Uncertain outliers

Given an uncertain dataset DS, Dk(x,DS) (or Dk(x), for short) denotes the continuous
random variable representing the distance between x and its k-th nearest neighbor in DS \
{x}. Next we define the notion of outlier in an uncertain dataset. For the sake of brevity, in
the sequel, we will refer to an outlier in an uncertain dataset as to an uncertain outlier.

Definition 1 Given an uncertain dataset DS, an uncertain distance-based outlier in DS
according to parameters k, R and δ ∈ (0, 1) is an uncertain object x of DS such that the
following relationship holds:

Pr(Dk(x,DS) ≤ R) ≤ 1 − δ.

That is to say, an uncertain distance-based outlier is a dataset object for which the
probability of having k dataset objects besides itself within distance R is smaller than 1− δ.

Let N be the number of objects in DS. In order to determine the probability Dk(x), the
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following multi-dimensional integral has to be computed, where DS′ denotes the uncertain
dataset DS \ {x} and IDS′ a generic outcome of DS′ (see also Section 2.1):

∫

DN

f x(v) · f DS′
(IDS′) · I[Dk(v, IDS′) ≤ R] dIDS′ dv, (1)

where the function I(·) outputs 1 if the probability of its argument is 1, and 0 otherwise.
According to the above formulation, deciding if an object is an uncertain distance-based
outlier requires to compute an integral involving all the outcomes of the dataset.

3 Related work

There exist several approaches to detect outliers in the certain setting, namely statistical-
based (Davies and Gather 1993; Barnett and Lewis 1994), deviation-based (Arning et al.
1996), distance-based (Knorr et al. 2000), density-based (Breunig et al. 2000; Papadimitriou
et al. 2003), reverse nearest-neighbor-based (Angiulli 2020), isolation-based (Liu et al.
2012), subspace-based (Knorr and Ng 1999; Aggarwal and Yu 2001a; Angiulli et al. 2009,
2013), knowledge-based (Angiulli and Fassetti 2014), neural network-based (Hawkins et al.
2002), support vector machine-based (Tax and Duin 2004), and many others (Chandola
et al. 2009; Aggarwal 2016). Among these approaches, distance-based outlier detection
methods have been shown to be effective in various scenarios (Knorr et al. 2000; Bay
and Schwabacher 2003; Ghoting et al. 2006; Tao et al. 2006; Angiulli and Fassetti 2009).
However, none of these techniques is designed to handle uncertain data and, as far as the
uncertain setting is concerned, only a few approaches have been proposed (Aggarwal and
Yu 2008; Wang et al. 2009; Jiang and Pei 2011).

The method described in Aggarwal and Yu (2008) is a density based approach designed
for uncertain objects which aims at selecting outliers in subspaces. The idea of the method
is to approximate the density of the dataset by means of kernel density estimation and then
to declare an uncertain object as an outlier if there exists a subspace such that the probability
that the object lies in a sufficiently dense region is negligible. Differently from our approach,
in Aggarwal and Yu (2008) the density estimate does not take directly into account the
form of the pdfs associated with uncertain objects, since it is performed by using equi-
bandwidth Gaussian kernels centered in the means of the object distributions. Pdfs are then
taken into account to determine the objects lying in regions of low density, where the density
is computed as before mentioned. Furthermore, since the method is interested in exploring
subspaces (we recall that our goal is to detect outliers in the full feature space), pdfs are
always expressed as the product of d independent one-dimensional pdfs, where d is the
dimension of the space, while we are able to manage arbitrarily shaped multidimensional
density functions.

In Wang et al. (2009) authors present a distance-based approach to detect outliers which
adopts a completely different model of uncertainty than our, that is the existential uncer-
tainty model, according to which an uncertain object x assumes a specific value vx with a
fixed probability px and does not exist with probability 1−px . According to this approach,
uncertain objects are not modeled by means of distribution functions, but rather are deter-
ministic values that may either occur or not occur in an outcome of the dataset. Hence,
although (Wang et al. 2009) deals with distance-based outliers, their scenario is completely
different from our, and the two methods are not comparable at all.

In Jiang and Pei (2011) an uncertain object consists of a pair (l, r), where l is a tuple
on a set of conditioning attributes and r is a set of tuples on a set of dependent attributes,
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also called instances. To each instance rj ∈ r a measure of normality is assigned, con-
sisting in the probability of observing rj given that both r and l have been observed. The
normality of an object is then obtained as the geometric mean of the normality of all its
instances. Authors exploits kernel density estimation and Bayesian inference to solve their
problem. Outlier instances are detected by comparing against normal ones. Outlier objects
are then detected as those objects most of whose instances are abnormal. We notice that
the approach presented in Jiang and Pei (2011) essentially aims at detecting the abnor-
mal instances, that, loosely speaking, are the abnormal outcomes of the uncertain objects.
Thus, the task on interest in Jiang and Pei (2011) is not comparable to that considered here.
Moreover, uncertain objects are modeled in a way which is completely different from that
considered here.

The work (Liu et al. 2013) describes a SVDD-based outlier detection technique on uncer-
tain data. The approach assigns a confidence score to each example, which indicates the
likelihood of an example tending normal class, and then incorporates these confidence
scores into the SVDD training phase for outlier detection. Hence, the technique does not
directly manage uncertain objects, but rather attempts to mitigate possible error measure-
ments by reducing the contribution on the construction of the decision boundary of the
examples with the least confidence score.

4 Outlier probability

In this section we show how the value of Pr(Dk(x) ≤ R) can be computed, for x a
generic uncertain object of DS. Given a certain object v and an uncertain object y, let
p

y
v (R) = Pr(dist(v, y) ≤ R) denote the cumulative density function representing the rela-

tive likelihood for the distance between objects v and y to assume value less or equal than
R, that is

py
v (R) = Pr(dist(v, y) ≤ R) =

∫

BR(v)

f y(u) du, (2)

where BR(v) denotes the hyper-ball having radius R and centered in v.
Let v be an outcome of the uncertain object x. For k ≥ 1, the probability Pr(Dk(v,DS \

{x}) ≤ R) that v has at least k other dataset objects within distance R can be expressed as:

1 −
⎛

⎝
∑

S⊆DS:|S|<k

⎛

⎝
∏

z∈S

pz
v(R) ·

∏

z∈DS\S
(1 − pz

v(R))

⎞

⎠

⎞

⎠ , (3)

that is one minus the probability that less than k dataset objects lie within distance R from
v. Thus,

Pr(Dk(x) ≤ R) =
∫

D

f x(v) · Pr(Dk(v,DS \ {x}) ≤ R) dv, (4)

that is to say, loosely speaking, the summation over all the outcomes v of x of the occurrence
probability of v multiplied by the probability that v has at least k objects within distance R

over all the outcomes of the remaining dataset objects.
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The subsequent section describes the algorithm UDBOD, whose aim is to quickly
detect the dataset objects for which the right hand side of (4) is smaller than the provided
probability threshold 1 − δ. Next it is discussed how to compute p

y
v (R).

4.1 Computing the probability py
v (R )

Probability values p
y
v (R) depend on the objects v and y, and on the real value R and involve

the computation of one integral with domain of integration D (more precisely, the hyper-
ball BR(v)). It is known (Lepage 1978) that given a function g, if m points w1, w2, . . .,
wm are randomly selected according to a given pdf f , then the following approximation
holds:

∫
g(u) du ≈ 1

m

m∑

i=1

g(wi)

f (wi)
. (5)

Thus, in order to compute the value p
y
v (R) reported in (2), the function g

y
v (u) such that

g
y
v (u) = f y(u) if dist(v, u) ≤ R, and g

y
v (u) = 0 otherwise, can be integrated by evaluating

the formula in (5) with m points wi randomly selected according to the pdf f y . This pro-
cedure reduces to computing the relative number of sample points wi lying at distance not
greater than R from v, that is

py
v (R) = |{wi : dist(v,wi) ≤ R}|

m
. (6)

5 Uncertain distance-based outlier detector

In this section we describe the algorithm UDBOD (for Uncertain Distance-Based Outlier
Detector) that mines the distance-based outliers in an uncertain dataset DS consisting of N

objects.
Definition 1 makes use of three parameters, that are k (or, equivalently, � ∈ (0, 1), by

setting k = �N ), R, and δ. We point out that these parameters can be held fixed to the
default values in order to perform a meaningful analysis, as experimental results show that
outlier detection is little sensitive to the values of user-specific parameters. Specifically,
according to the statistical and distance-based outlier detection literature (Knorr et al. 2000;
Angiulli and Fassetti 2009), meaningful values for the parameter � are in the range (0, 2‰]
(the value 1‰ is employed by default), while δ being a threshold level can be conveniently
set in the range [0.8, 0.9] (the value 0.9 is employed by default). As for the value of the
parameter R, it will be automatically determined by UDBOD once the percentage α of
outliers to detect has been specified. The value α is much more easy to determine than R

and can be conveniently set to the 3‰ (Angiulli and Fassetti 2009).
Other than the above external parameters, the method requires some internal parameters,

described in the sequel of the section, that do not require to be set by the user, since their
optimal values are automatically determined from the external ones. Table 1 summarizes
some of the symbols employed in this section, and meaningful ranges and recommended
values for the parameters.
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Table 1 Symbols employed in Section 5.1

Symbol Range Recommended value Description

δ 0.8/0.9 0.9 Outlier probability threshold

� 1‰ / 2‰ 1‰ Relative number of nearest neighbors

k 	�N
 	�N
 Absolute number of nearest neighbors

α [2‰, 5‰] 3‰ Percentage of outliers to detect

ε 1‰/2‰ 2‰/1‰ Estimation error for α̂

1 − λ [0.8, 0.9] 0.8/0.9 Estimation error upper bound

s See (8) 1,228/8,093∗ Sample size for R estimation

β [0, 1] 0.5 (See Section 6) Mass factor

R See Algorithm 2 See Algorithm 2 Outlier radius

*The default value is s = 1,228 (ε = 2‰ and 1 − λ = 0.8) for N < 100,000, and s = 8,093 (ε = 1‰ and
1 − λ = 0.9) otherwise

The pseudo-code of UDBOD is reported in Algorithm 1. It consists of three phases:
parameter estimation, candidate selection, and candidate filtering.

5.1 Parameter estimation phase

The Parameter estimation phase determines the right value R∗ for the outlier radius R as a
function of � and α. Note that the effectiveness of the uncertain distance-based definition
relies on the right selection of the radius value. Setting a meaningful value for the param-
eter R is a difficult task since its right value heavily depends on the characteristics of the
input data. In particular, we will map the problem of setting R to the problem of setting a
parameter β ∈ [0, 1], by means of which the expected fraction of outliers can be controlled
in a very simple and meaningful way. Indeed, as made clearer next, for β = 0 (β = 1,
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resp.) we have the statistical guarantee that a subset (superset, resp.) of the actual outliers is
retrieved. In order to provide the above statistical guarantees, the meaningfulness of the out-
lier radius is related to the number of outliers estimated by means of a sampling procedure.
The following definition is preliminarily needed.

Definition 2 Given two uncertain objects x and y, and a value β ∈ [0, 1], also called mass
factor, let distβ(x, y) denote the distance value:

distβ(x, y) = β · maxdist (x, y) + (1 − β) · mindist (x, y).

Note that for β = 1 the distance distβ(x, y) coincides with maxdist (x, y) and that for
β = 0 the distance distβ(x, y) coincides withmindist (x, y), while for β ∈ (0, 1), dist(x, y)

assumes an intermediate value.
Let Dβ

k (x,DS) (or D
β
k (x), whenever the dataset DS is clear from the context) denote the

k-th nearest neighbor distance in DS \ {x} according to distβ .
Let α denote the percentage of outliers to be detected. Then, once the parameter k =

	�N
 has been fixed, the value R∗ for the parameter R such that the α percent of the dataset
objects has less than k objects at distance distβ less than R∗ can be estimated by means of
the method reported in Algorithm 2.

In order the above method to be effective, a meaningful value for the sample size s must
be employed. Now, it is shown how to set the size s of the sample in order to have a statistical
guarantee that the actual percentage α̂ of objects in the whole dataset DS having D

β
k greater

than the R∗ is close to α.
With this aim, the following relation must hold

Pr(|̂α − α| ≤ ε) > 1 − λ, (7)

asserting that the probability that the estimation error, that is the difference between α̂ and
α, is lower than an error threshold ε, is greater than 1− λ. Clear enough, the lower ε and λ,
the closer α̂ to α. By the Central Limit theorem, if the sample size s is large enough, then
the following relationship holds:

Pr (|̂α − α| ≤ ε) ≈ 2 · 	

(
ε
√

s√
α(1 − α)

)
− 1.
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Hence, the relation in (7) is satisfied if

s >
α(1 − α)

ε2

(
	−1

(
1 − λ

2

))2

. (8)

For example, let α = 3‰, and let ε = 2‰ and λ = 0.2, so that the number of uncertain
outliers is between the 1‰ and the 5‰ with probability 0.8. By using (8) the sample size is
s = 1,228. Now, we prove that the radius R∗ returned by the Parameter estimation phase is
meaningful for the Definition 1. First, some properties of D

β
k are introduced.

Property 1 Let x be an uncertain object for which D1
k (x) is less or equal than R. Then x is

not an outlier.

Indeed, if the condition of the statement is true, then each outcome of x has at least k

neighbors within radius R in every outcome of the dataset.

Property 2 Let x be an uncertain object for which D0
k (x) is greater than R. Then x is an

outlier.

Indeed, if the condition of the statement is true, then each outcome of x has less than k

neighbors within radius R in every outcome of the dataset. Thus, given radius R′, it follows
from Proposition 1 that the uncertain objects x of DS satisfying D1

k (x) > R′ are a superset
of the outliers in DS for R = R′. Moreover, it follows from Proposition 2 that the uncertain
objects x of DS satisfying D0

k (x) > R′ are a subset of the outliers in DS for R = R′.

Theorem 1 Let R1 (R0, resp.) be the smallest radius such exactly αN dataset objects x

satisfy the condition D1
k (x) > R1 (D0

k (x) > R0, resp.), and let n1 (n0, resp.) the actual
number of uncertain distance-based outliers in DS for R = R1 (R = R0, resp.). Then, the
expected number n = αN of outliers in DS is lower bounded by n1 (upper bounded by n0,
resp.), that is n1 ≤ n ≤ n0.

Proof As already pointed out, the αN objects x satisfying condition D1
k (x) > R1 are a

superset of the actual number n1 of outliers for R = R1 and, consequently, n1 ≤ αN = n.
Moreover, the αN objects x satisfying condition D0

k (x) > R0 are a subset of the actual
number n0 of outliers for R = R0 and, consequently, n0 ≥ αN = n.

This makes clear the motivation underlying the introduction of the parameter β: by prop-
erly tuning the value of β the actual number of outliers (and also of candidate outliers; see
in the following) can be controlled in a very simple way. As for the value to assign to β, in
the section devoted to experimental results it will be shown that β = 0.5 is a good option.

If at the expected outlier level α there is not a clear separation between the radius associ-
ated with outliers and that associated with inliers, then it can be concluded that there are less
than αN true outliers in the dataset. So, in this case the fraction α should be lowered, for
otherwise a considerable fraction of dataset objects would be recognized as outliers. This
can be accomplished by properly lowering the radius R∗. In particular, Algorithm 2 guaran-
tees that the computed radius R∗ is at least four standard deviations far apart from the mean
of the distribution of distances between sampled objects and their 	�s
-th nearest neighbor
in the sample. Specifically, this estimation correction selects the smallest radius associated
with objects in the sample which is not smaller than the above mentioned threshold.
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5.2 Candidate selection phase

The Candidate selection phase fast determines the set OutCands of candidate outliers by
exploiting a deterministic lower bound property based on the maxdist distance between
uncertain objects. We start by recalling the definition of a distance-based outlier in the
context of certain datasets (Knorr et al. 2000).

Definition 3 Given a dataset of objects on which is defined a distance dist, a positive inte-
ger k and a positive real number R, an object v is said to be a (certain) distance-based
outlier according to parameters k and R, if less than k objects of DS lie within distance R

from v.

The following result bridges the link between certain and uncertain distance-based
outliers.

Theorem 2 For each δ, if x is an uncertain distance-based outliers of DS according to
parameters k, R and δ then x is a certain distance-based outlier of DS for the distance
maxdist according to parameters k and R.

Proof We prove that if x is not a certain distance-based outliers of DS then x is not an
uncertain distance-based outlier of DS. First, we notice that x is not a certain distance-based
outlier according to parameters k andR if and only if the distance to its k-th nearest neighbor
is smaller than R. Moreover, we recall that D1

k (x) denotes the distance from x and its k-th
nearest neighbor according to the distance maxdist . The proof follows by Property 1.

From the above theorem a suitable set OutCands of uncertain candidate outliers can
be obtained by regarding DS as a set of certain objects equipped with the certain distance
maxdist and by computing the certain distance-based outliers therein contained.

As an important property, next it is shown that if the employed distance function dist is
a metric, then the maximum distance function maxdist induced on dist is a metric as well.

Theorem 3 Let dist be a metric. Then the maxdist function induced by the distance dist is
a metric.

Proof Four properties have to be proven: non-negativity, symmetry, identity of indis-
cernibles, and triangle inequality. The first two properties immediately follows from the fact
that dist is a metric.

As for the identity of indiscernibles, assume that maxdist (x, y) = 0, then it is the case
that for each realization u of x̂ and v of ŷ such that Pr [̂x = u∧ ŷ = v] > 0, dist(u, v) = 0.
Hence, by the fact that dist is a metric, u = v, and x and y must be the same uncertain
object. As for the reverse direction, since x and y are the same random variable, u and v are
always identical.

As for triangle inequality, given three generic uncertain objects x, y, and z, the triangle
inequality is satisfied, that is to say that: maxdist (x, z)+maxdist (z, y) ≥ maxdist (x, y).
Let x1 and z1 (y2 and z2, resp.) the outcomes of the uncertain objects x and z (y and z, resp.)
for which the relationship dist(x1, z1) = maxdist (x, z) (dist(z2, y2) = maxdist (z, y),
resp.) is satisfied.
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Let x0 and y0 be the outcomes of the uncertain objects x and y for which dist(x0, y0) =
maxdist (x, y) holds. Assume that maxdist (x, y) > maxdist (x, z) + maxdist (z, y).
Given an arbitrary outcome z0 of z, since dist is a metric by assumption, by the triangle
inequality it holds that dist(x0, z0) + dist(z0, y0) ≥ dist(x0, y0) = maxdist (x, y), and,
by the above assumption, it finally holds that dist(x0, z0) + dist(z0, y0) > dist(x1, z1) +
dist(z2, y2). But, this would contradict the definition of x1, z1, z2 and y2, since, by defini-
tion of maxdist , it is the case that dist(x1, z1) ≥ dist(x0, z0) and dist(z2, y2) ≥ dist(z0, y0)
and, hence, that dist(x1, z1)+dist(z2, y2) ≥ dist(x0, z0)+dist(z0, y0). Hence, the statement
follows.

Thus, even if the space obtained by using maxdist as a distance function is not
Euclidean, it is anyway a metric one provided that dist is itself a metric (as it is the case
when dist is the Euclidean distance). The above result has the important practical implica-
tion that the set OutCands can be determined by exploiting certain distance-based outlier
detection algorithms designed to work in general metric spaces.

As a consequence, in step 2 the algorithm UDBOD employs the DOLPHIN technique
(Angiulli and Fassetti 2009). DOLPHIN performs two sequential scans of the dataset. Dur-
ing the first scan, a superset of the true outliers is detected. by accumulating in a data
structure, called INDEX, the incoming objects that cannot be recognized as outliers by
exploiting the objects already stored in INDEX. The second scan is needed to recognize the
true outliers in INDEX. The temporal cost is derived by proving that the size of INDEX is
O( k

p
).
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5.3 Candidate filtering phase

The Candidate filtering phase (see steps 3-9 in Algorithm 1) computes the set Outliers of
uncertain outliers contained in the dataset by processing the objects in the setOutCands. In
order to reduce the computational effort, a lower bound property is introduced and exploited,
which avoids to consider all the potential neighbors of the candidate outliers in order to
compute their outlier probability.

The objects x of OutCands such that D0
k (x) > R can be safely inserted into Outliers

since, as stated in Section 2, they are outliers for sure. We call these objects ready outliers.
As for the non-ready outliers x, it has to be decided whether Pr(Dk(x) ≤ R) ≤ 1 − δ

or not, and this is accomplished by computing (4) exploiting the procedure explained in
the following of this section and reported in Algorithm 3 (see lines 6-26). With this aim,
consider the set DSx,R = {y ∈ DS | mindist (x, y) ≤ R}, also called the neighbor list of x

(in DS w.r.t. R).
The objects in the set DSx,R are all and only the uncertain objects of DS which give a

contribution to the probability Pr(Dk(x) ≤ R), since for the objects z ∈ DS \ DSx,R it
holds that Pr(dist(x, z) ≤ R) = 0.

Let w1, . . . , wm denote m outcomes of x, and let y1, . . . , y
 denote the uncertain objects
in the set DSx,R ordered accordingly to an arbitrary criterion.

Let P(wh, i, j) denote the probability that the certain object wh has exactly i neighbors
among the first j uncertain objects y1, . . . , yj of DSx,R

Moreover, let P j
k (x) denote the probability that x has at least k neighbors within distance

R among the first j uncertain objects of DSx,R , then by exploiting the approximation in (5):

P
j
k (x) = 1

m

m∑

h=1

(
1 −

k−1∑

i=0

P(wh, i, j)

)
(9)

The following theorem holds.

Theorem 4 If there exists j ≤ k such that P j
k (x) > 1 − δ then x is not an outlier.

Proof The proof follows by noticing that, for each j ∈ {1, 2, . . . , |DSx,R|}, it holds that
P

j
k (x) ≤ Pr(Dk(x) ≤ R), that is to say that P j

k (x) is a lower bound for the probability that
x has exactly i neighbors in a generic outcome of DS.

Consequently, if for some j ≤ k the left hand side term above exceeds 1 − δ, then the
computation can be early stopped reporting that x is not an outlier.

Notice that P 

k (x) is precisely Pr(Dk(x) ≤ R). Interestingly, in order to compute P 


k (x)

and its lower bounds P
j
k (x) (1 ≤ j ≤ 
) only space O(mk) is needed instead of O(mk
),

since the mk
 terms P(wh, i, j) can be computed by means of the incremental procedure
described next. Let pj be Pr(dist(wh, yj ) ≤ R), then the following relationship is satisfied:

P(wh, i, j) = pj · P(wh, i − 1, j − 1) + (1 − pj ) · P(wh, i, j − 1),

that is to say, the probability that the certain object wh has exactly i neighbors among the
first j uncertain objects y1, . . . , yj is equal to (i) the probability pj that yj is a neighbor
of wh and wh has exactly i − 1 neighbors among the uncertain objects y1, . . . , yj−1, plus
(ii) the probability 1 − pj that yj is not a neighbor of wh and wh has exactly i neighbors
among the uncertain objects y1, . . . , yj−1. By the above relationship it is clear that in order
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to compute the terms P(wh, ·, j) only the terms P(wh, ·, j −1) are needed, that are k terms
for each of the m outcomes wh of x.

The Candidate Filtering Phase, reported in Algorithm 3, details the procedure to com-
pute the lower bound P

j
k (x) (there, the variable LB is used to accumulate the value of the

lower bound, while the matrix elements P [h, i] to store the values P(wh, i, ·)).
The above procedure does not depend on the order y1, . . . , y
 of the objects in DSx,R ,

but considering first the objects closest to x may help to accelerate convergence of the lower
bound. With this aim, uncertain objects in the set DSx,R are sorted in ascending order of
their score s(yj ) defined as:

s(yj ) = maxdist (x, yj ) − R

maxdist (x, yj ) − mindist (x, yj )
,

for maxdist (x, yj ) > R, and s(yj ) = 0 for maxdist (x, yj ) ≤ R. The score s(yj ) ranges
in [0, 1].

5.4 Temporal cost

Let d denote the cost of computing the distance dist between two certain objects of D and
also the distances maxdist and mindist between two uncertain objects of D. Let c denote
the number of outlier candidates, let m denote the number of samples employed to evaluate
integrals by means of the formula in (6), and let 
 denote the mean number of elements in the
neighbor lists DSx,R employed to compute the outlier probability, for x a candidate outlier.

The parameter selection phase costs O(s2d), where s � N is the size of the sample
employed to estimate R∗, size that can be considered fixed. The candidate selection phase
costs O( k

p
Nd), where p ∈ (0, 1] is an intrinsic parameter of the dataset at hand (Angiulli

and Fassetti 2009). As for the candidate filtering phase, for each outcome wh of x (1 ≤
h ≤ m) and for each yj ∈ DSx,R (1 ≤ j ≤ 
), computing Pr(dist(wh, yj ) ≤ R), with
yj ∈ DSv , costs O(md), while obtaining the terms P(wh, ·, j) costs O(k). Thus, deciding
for Pr(Dk(x) ≤ R) ≤ 1 − δ costs in the worst case O(
m(md + k)). As a whole, the
candidate filtering phase costs O(c
m(md + k)).

Thus, the cost of the algorithm is O
(
s2d + k

p
Nd + c
m(md + k)

)
. The last phase of

the algorithm is the potentially heaviest one, since it involves integral calculations. To be
practical, the algorithm must be able to select a number of outlier candidates c close to the
value αN of expected outliers (α ∈ [0, 1]) and possibly to keep as lower as possible the
value of 
.

6 Experimental results

In this section, we describe experimental results carried out by using the UDBOD algorithm.
If not otherwise stated, we use the default values for parameters in Table 1 and m = 1,000.
The experiments are conducted on a Intel Xeon 2.33 GHz based machine with 4GB of RAM
under the GNU/Linux operating system. Each dataset is characterized by a parameter γ ,
called spread, used to set the degree of uncertainty associated with dataset objects.

Experiments are organized as follows. Section 6.1 studies the scalability of the method.
Section 6.2 studies how parameters influence the number of candidate and ready outliers.
Section 6.3 compares the proposed method with related literature. Finally, Section 6.4
presents two cases of study.
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Fig. 1 Scalability with respect to the dataset size and the number of dimensions for the Synthetic dataset

6.1 Scalability analysis

We considered a family of synthetic data whose elements differ for the number N of uncer-
tain objects and the number D of attributes, generated according to the following strategy.
The uncertain objects in each dataset form two normally distributed separated clusters with
mean (−10, 0, . . . , 0) and (10, 0, . . . , 0), respectively. Moreover, the 3‰ of the dataset
objects are uniformly distributed in a region lying on the hyper-plane x = 0 (that is to say,
their first coordinate is always zero). Uncertain objects are randomly generated and may use
a normal, an exponential or a uniform distribution whose spread is related to the standard
deviation of the overall data by means of the parameter γ ∈ {0.02, 0.05, 0.1}.

Figure 1 on the left shows the scalabilitywith respect to the numberN of objects. In this exper-
iment, N has been varied between 10,000 and 1,000,000, while the number of dimensions
D has been held fixed to 3. These curves show that the method has very good performances
for different values of spread. In particular, the execution time is below 1,000 seconds even
for one million of objects, confirming that the method is able to manage large datasets.

Figure 1 on the right shows the scalability with respect to the number of dimensions
D. This time the number of objects has been held fixed to 10,000. Also in this case, time
performances are good. The execution time clearly increases with the dimensionality, due
to the increasing cost of evaluating outcomes of the distributions, but in these experiments
it remained below 100 seconds even for 10-dimensional datasets.

Fig. 2 Accuracy of the Synthetic
dataset family
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Table 2 Outliers detected for the
Synthetic dataset Spread \ Radius 1.0 1.25 1.5 1.75

0.02 3.3‰ 3.1‰ 3.0‰ 3.0‰

0.05 3.7‰ 3.1‰ 3.0‰ 3.0‰

0.1 8.7‰ 4.1‰ 3.0‰ 3.0‰

We studied also the accuracy. Figure 2 reports the F-score as a function of the radius R.
It is assumed that the outliers are the objects lying on the hyperplane x = 0. The curves
highlight the accuracy of the approach. Indeed, for values of radius above 1.5 the F-score is
close to 1 for every considered spread, and for spread equal to 0.02 and 0.05 the F-score is
almost always above 0.9 for every radii considered.

For the highest spread and the lowest radius considered, the F-score lowers. This situation
can be understood by considering Table 2 which reports the number of outliers returned by
the method. It can be seen that for spread equal to 0.1 and radius set to 1.0, the number
of outliers returned by the method is notably larger than the actual number of outliers. All
the objects lying on the hyperplane x = 0 are correctly retrieved, but the method start to
consider as outliers the objects lying in the tails of the distributions associated with the
clusters.

6.2 Sensitivity analysis

In this section, we study how parameters influence performances, that is the number
of candidate outliers and of ready outliers. We employed the following datasets: Cities
(N = 5,922, d = 2), Household (N = 2,075,259, d = 7) Skin (N = 245,057, d = 3),
and US Points (N = 15,206, d = 2). Cities, containing 5,922 city and village locations
in Greece, and US Point, containing 15,206 points of populated places in USA, are from
the R-Tree Portal.1 Household and Skin, are from the UCI ML Repository.2 Household
contains 2,075,259 measurements of electric power consumption. Skin is collected by ran-
domly sampling 245,057 RGB values from face images of various age groups, race groups,
and genders.

For all datasets, a family of uncertain datasets has been obtained as follows. An uncertain
object xi has been associated with each certain object vi in the original dataset, whose pdf
f xi (u) is a multidimensional normal, uniform or exponential randomly selected distribution
centered in xi and whose spread is related to the standard deviation of the overall data
by means of the parameter γ . Different values for the parameter β and for the spread γ

(specifically, γ ∈ {0.05, 0.1}) have been taken into account.
Figure 3 reports the number of candidate outliers detected at the end of the candidate

selection phase (gray bar, on the left), the actual number of outliers detected (green bar, on
the middle), and the number of non-ready candidates (red bar, on the right). Specifically, the
non-ready candidates are the objects for which (4) has to be evaluated. Notice that in almost
all of the runs the number of candidate objects represents a small fraction of the overall
dataset size, in the worst case amounting to the 0.65% (when γ = 0.05) and the 1.67%
(when γ = 0.10) for Cities, the 0.32% for Household, the 0.38% (when γ = 0.05) and the

1See http://www.rtreeportal.org.
2See http://archive.ics.uci.edu/ml.

http://www.rtreeportal.org
http://archive.ics.uci.edu/ml
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Fig. 3 Number of candidates (gray bars, on the left), outliers (green bars, on the middle), and non-ready
candidates (red bars, on the right). The dashed line represents the number αN of expected outliers

0.45% (when γ = 0.10) for Cities, and the 1.21% (when γ = 0.05) and the 5.97% (when
γ = 0.10) for Cities. This confirms that the candidate selection phase allows to save a vast
amount of time.
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The dashed line represents the number αN , with α = 3‰. From the figure it is clear
the effect of the parameter β on the efficiency of the method (number of candidates) and
on the number of actual outliers. It appears there is a trade-off between these two numbers
that can be controlled by means of β. As far as the correspondence between the number of
actual outliers and the number αN of expected ones, according to Theorem 1 the number
of outliers for β = 0 (β = 1, resp.) should be greater (lower, resp.) than the expected
αN . Clearly, this is true modulo (i) the error introduced by the radius estimation and (ii)
the introduction of the correction to the estimation. Specifically, the above relationship is
satisfied for Cities, US Points and Household with γ = 0.05, and for Cities and US Points
with γ = 0.10. As for the other cases, the number of actual outliers is always smaller than
the expected one, since the correction of the estimation has been employed. This is also
confirmed by the fact that the number of actual outliers is almost the same for the different
values of β. Thus, in these cases there are less than αN true outliers and the parameter
estimation phase is able to determine the right radius. Thus, the above experiment highlights
that the parameter estimation phase allows to determine values for the parameters complying
with the required number of outliers without exceeding the number of clearly non-outlying
objects.

As for the number of candidates, it is about inversely proportional to the value of β. So,
in order to reduce the computational effort it is better to employ β values greater than zero.
As for values of β close to one, the actual number of outliers could result sensibly smaller
than the αN fraction, so it is better to employ β values smaller than one. Intermediate values
for β (around 0.5) seem a good trade-off between the number of candidates and the number
of actual outliers. Indeed, β = 0 could result in a lot of candidate outliers (e.g., for US
Points and γ = 0.1 the number of candidates is more than 16 times greater than the number
of outliers), while β = 1 could result in too few outliers (e.g., for Cities and γ = 0.1 the
number of outliers is about nine times smaller than the expected one).

Figure 4 shows the size of the neighbor list associated with rejected candidates (green
bar, on the left), namely the non-ready candidates which are inliers, and number of neigh-
bors considered until early stop is reached (red bar, on the right). The dashed line represents
the value of the parameter k. The figures show that the candidate filtering phase is able to
recognize the inliers without the need to take into account all the 
 objects in the neighbor
list (whose average number corresponds to the blue bars in Fig. 4). In particular, how wit-
nessed by red bars (on the right), the number of neighbors actually considered in (9) is close
to k. Notice that at least k neighbors have to be considered in order to prove the inlierness of
an object. Thus the candidate filtering phase allows to maintain very low the computational
effort to be paid on candidate objects.

Figure 5 shows the elapsed time at the end of the parameter estimation phase (dotted
line), the candidate selection phase (dashed line), and the candidate filtering phase (solid
line). The plots confirm that the bulk of the computation is given by the last phase.

6.3 Comparison with other methods

We compared UDBOD with the DensitySamp technique introduced in Aggarwal and Yu
(2008) and the Determistic technique introduced in Aggarwal and Yu (2001b). The tech-
nique (Aggarwal and Yu 2008) is designed for uncertain data and described in Section 3.
The technique (Aggarwal and Yu 2001b) does not manage uncertainty, but determines out-
liers by finding projections of the data which have abnormally low density, and was already
used as a baseline competitor in Aggarwal and Yu (2008). Deterministic determines outliers
by finding projections of the data which have abnormally low density. In the comparison we
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Fig. 4 Rejected candidates: size of the neighbor list (green bars, on the left) and number of neighbors
considered until early stop (red bars, on the right). The dashed line represents the value of the parameter k
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Fig. 5 Execution time: elapsed time at the end of the parameter estimation phase (dotted line), at the end of
the candidate selection phase (dashed line), and at the end of the candidate filtering phase (solid line)
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employed a family of datasets described in Aggarwal and Yu (2008), whose characteristics
are recalled next. The data points were generated by creating Gaussian clusters in the under-
lying data. whose centers were generated uniformly in the unit data cube. The number of
data points in each cluster was proportional to a random variable drawn from a uniform dis-
tribution in [0, 1]. The radius along each dimension was drawn from a uniform distribution
in [0, r]. A fraction p of the data points were designated as outliers. The outliers were gen-
erated anywhere in the data cube. A total of N data points were generated in d dimensions.
All datasets were normalized, so that the standard deviation along each dimension was 1
unit. Each uncertain attribute is normally distributed with zero mean and standard deviation
drawn from a uniform distribution in [0, 2 · f ] · σ , where σ is the standard deviation of that
dimension in the underlying data. The dataset is denoted by R(r).O(p).d(d).D(N).U(f ).

Since the outliers were known, the precision and recall could be measured. In the case
of UDBOD, the trade-off between the precision and recall is measured by varying the
radius R. As for the two other algorithms, we varied their parameters and applied Deter-
ministic to the above datasets as described in Aggarwal and Yu (2008). Figure 6 reports
the results of the comparison. According to Aggarwal and Yu (2008), we employed the
following values for the parameters: r = 0.3, d = 10, p ∈ {0.1, 0.2}, N = 100K,
and f ∈ {1.0, 1.5, 2.0, 2.5, 3.0}. Specifically, the two plots on the top report the Preci-
sion and the Recall of the methods for different outlier fractions, namely p = 0.1 and
p = 0.2, and uncertainty level f = 1.5. As for the two plots on the bottom, the F-score
obtained by the methods for the same outlier fractions p and uncertainty levels f ranging
in [1.0, 3.0].
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Fig. 7 Uncertain MNIST and
detected outliers

6.4 Cases of study

Handwritten digits. MNIST is an high-dimensional dataset of handwritten digits repre-
sented as images of 28 × 28 pixels extensively employed in the literature3. We simulated
an uncertain scenario in which digits are blurred, by associating a normally distributed
uncertain object oi with mean μi and standard deviation σi to each non-overlapping 2 × 2
tile of image pixels. The parameters μi and σi are obtained as the mean and the standard
deviation of the intensities of the pixels within the corresponding tile. Thus, the dataset
consists of 196-dimensional uncertain objects. We randomly selected 590 digits from the
class “1” and 10 digits from the remaining classes to form a dataset of 600 uncertain
objects.

Figure 7 shows the dataset objects (pixels intensities are those corresponding to μi val-
ues). Digits corresponding to the outliers have been highlighted by complementing their
intensity values (so that they appear on a dark background). Outliers are computed for k = 5
and for the radius value determined by the algorithm with α = 0.02 (corresponding to about
12 objects) and β = 0.5. It can be seen that eight out of the ten non-“1” digits have been
detected. The only exception is represented by a “8” digit with markedly uncertain borders
and a largely distorted “9” digit. As for remaining outliers, they correspond to “1” digits
that are not usual within the collection.

The number of candidates returned by the candidate selection phase was 110. This num-
ber witnesses the difficulty of the problem, since it follows from the fact that the support
of the objects are largely overlapping. Despite this number, during candidate filtering the
mean number of neighbors considered until early stop was only 7.4. By using m = 100, the
execution time of UDBOD was about 104.4 seconds (11.7 secs for parameter estimation, 5
secs for candidate selection, and 87.7 secs for candidate filtering).

Mobile ad-hoc network data. A Mobile Ad hoc NETworks (MANET) (Bai and Helmy
2006) is a collection of wireless mobile nodes forming a self-configuring network. Appli-
cations include mobile classrooms, battlefield communication, disaster relief, and others.
The mobility model of a MANET is designed to describe the movement pattern of mobile
users, and how their location, velocity and acceleration change over time. A popular mobil-
ity model is the Random Waypoint model (Bettstetter et al. 2004), in which nodes move
independently within a certain area, called support area. For a squared support area of size

3http://yann.lecun.com/exdb/mnist.

http://yann.lecun.com/exdb/mnist
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a by a, with a its diameter, centered in (x0, y0), the pdf of the random waypoint model is
provided by the following analytical expression:

frw(x, y) ≈ 36

a6
·
(

(x − x0)
2 − a2

4

)
·
(

(y − y0)
2 − a2

4

)
,

for x ∈ [
x0 − a

2 , x0 + a
2

]
and y ∈ [

y0 − a
2 , y0 + a

2

]
, and frw(x, y) = 0 outside.

The nodes of a MANET are typically distinguished by their limited power, process-
ing, and memory resources. Multiple hops are usually needed for a node to exchange
information with any other node and nodes take advantage of their neighbors in order to
communicate with the rest of the network. A node can correctly receive packets if the signal
strength of the packet at that node is above a certain threshold and the needed transmis-
sion power is inversely proportional to the squared distance separating the transmitter to the
receiver.

The dataset (see Fig. 8a) consists of 250 MANET nodes distributed along three different
paths joining two locations. Each red square in the figure delimits the support area asso-
ciated with a node (diameters of support areas range from the 2% to 6% of the simulation
area side). Since, information exchange is accomplished by multiple hops involving neigh-
bor nodes, the smaller the number of neighbors lying in the neighborhood of a node, the
less reliable, in terms of QoS (Quality of Service), the region which the node belongs to.
Thus, we exploit uncertain distance-based outlier detection to determine the less reliable
regions of the simulation area. With this aim, we fixed the radius R to the 7% of the simu-
lation area side (a circular region of radius R is highlighted in 8a), a value corresponding to
a predefined level of transmission power due to device constraints.

Since, the QoS can be related to the number of neighbors, we detected the uncertain
distance-based outliers for increasing values of k. Figures 8c and d show the outliers for
k = 3 and k = 10, respectively. The outliers for k = 3 are positioned along the central path,
which corresponds to the lowest populated region of the area, while the additional outliers
for k = 10 are located along the path on the right, which corresponds to the mild populated
region of the area. As for remaining objects, they are located along the path on the left, which
corresponds to the most reliable route between the two extrema. As for Fig. 8b, it provides
a picture of the QoS associated with each location of the area, since the color of each point
(colors range from blue, for k = 1, to red, for k = 35) is proportional to the smallest value
of k for which the location, regarded as an uncertain object, becomes an outlier.

(a) (b) (c) (d)

Fig. 8 MANET dataset: a nodes distributed along 3 paths; b QoS associated with locations (colors range
from red, for higher QoS values, to blue); uncertain outliers (blue asterisks) for k = 3 c and k = 10 d



Journal of Intelligent Information Systems

7 Conclusions

A novel definition of uncertain outlier has been introduced dealing with multidimensional
arbitrary shaped pdfs and representing the generalization of the classic distance-based out-
lier definition. Our approach corresponds to perform a nearest neighbor density estimate
on all the possible outcomes of the dataset and, to the best of our knowledge, has no
counterpart in the literature. Possible future research directions include techniques for alle-
viating the cost involved with the computation of integrals, possibly based on exploiting
data indexing techniques, and of alternative notions of uncertain outlier, as ones inspired to
adaptive density estimation strategies, or by considering more involving scenarios including
time-varying distributions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
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