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Abstract
This paper aims to investigate the seismic vulnerability of an  existing unanchored steel 
storage tank ideally installed in a refinery in Sicily (Italy), along the lines of performance-
based earthquake engineering. Tank performance is estimated by means of component-
level fragility curves for specific limit states. The assessment is based on a framework 
that relies on a three-dimensional finite element (3D FE) model and a low-fidelity demand 
model based on Gaussian process regression, which allows for cheaper simulations. More-
over, to approximate the system response corresponding to the random variation of both 
peak ground acceleration and liquid filling level, a second-order design of experiments 
method is adopted. Hence, a parametric investigation is conducted on a specific existing 
unanchored steel storage tank. The relevant 3D FE model is validated with an experimental 
campaign carried out on a shaking table test. Special attention is paid to the base uplift due 
to significant inelastic deformations that occur at the baseplate close to the welded base-
plate-to-wall connection, offering extensive information on both capacity and demand. As 
a result, the tank performance is estimated by means of component-level fragility curves 
for the aforementioned limit state which are derived through Monte Carlo simulations. The 
flexibility of the proposed framework allows fragility curves to be derived considering both 
deterministic and random filling levels. The comparison of the seismic vulnerability of the 
tank obtained with probabilistic and deterministic mechanical models demonstrates the 
conservatism of the latter. The same trend is also exhibited in terms of risk assessment.
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1 Introduction

1.1  Background and motivation

The integrity of the oil and gas industry, and in particular of large-capacity atmospheric 
tanks for hazardous material storage, is important not only for maintaining the flow of 
energy products but also for preventing significant potential catastrophic events. Therefore, 
the assurance of adequate levels of safety of liquid storage tanks and the use of advanced 
seismic performance assessment techniques that account for all possible sources of uncer-
tainty is of paramount importance within the performance-based earthquake engineering 
(PBEE) (Cornell and Krawinkler 2000; Hermkes et al. 2014; Saha et al. 2016). Along the 
same vein, Kameshwar and Padgett (2018), Bernier and Padgett (2019) and Bernier et al. 
(2019) proposed specific approaches to quantify both vulnerability and risk of anchored 
storage tanks subjected to hurricane effects.

Two crucial steps of the PBEE are represented by the damage analysis that incorpo-
rates any engineering demand parameter (EDP) distribution into fragility functions; and 
the loss analysis that is typically expressed in the form of mean annual frequency (MAF) of 
exceeding a threshold of interest for industrial owners and stakeholders.

Concerning fragility functions of steel storage tanks, very few public databases are 
available, e.g. ALA (2001a, b) and HAZUS (2001). They are empirically built for general 
types of components with substantial amounts of assumptions and uncertainties involved 
in material and geometry properties and limit states. Other research efforts for establish-
ing fragility functions used: (1) historical or empirical observations employed in probit 
functions, e.g. Salzano et  al. (2003) or (2) analytical approaches covering single failure 
modes that use simplified or refined models for fluid–structure interaction modelling, e.g. 
Iervolino et al. (2004), Buratti and Tavano (2014), Phan et al. (2016), (2017), Cortes and 
Prinz (2017) and Phan et al. (2019). Regarding analytical approaches, fragility functions 
are derived using the results of nonlinear dynamic analyses of structural models; therefore, 
the accuracy of fragility functions strongly depends on the reliability of relevant models. 
As a result, given the complexity of various nonlinear mechanisms involved in unanchored 
storage tanks such as liquid-tank and tank-foundation interactions, three-dimensional finite 
element (3D FE) models are more suitable for predicting nonlinear responses of the whole 
system. In this respect, 3D FE models outperform because: (1) they account for full inter-
action between limit states; (2) they distinctly indicate the interaction between tank and 
liquid as well as tank and foundation; (3) they minutely allow for the estimation of system 
fragility curves. Unfortunately, the computational time involved in these high-fidelity (HF) 
models is rather high. Hence, a fragility analysis that can rely on such complex models and 
accounts for all possible sources of uncertainty seems not to be viable.

A valid alternative to improve computational efficiency, also in this context, is the use of 
surrogate models [low-fidelity (LF) models] that can be defined as a synthetic model fam-
ily representing the statistical relation between seismic inputs and structural outputs. They 
can be built from a few numbers of response samples generated through accurate numeri-
cal models or experimental data (Bhosekar and Ierapetritou 2018). Several LF approaches 
are available in the literature, which are based either on regression or interpolation models; 
in particular, high-dimensional model representations, polynomial regressions, artificial 
neural networks, Bayesian networks, multivariate adaptive regression splines, radial basis 
function networks, support vector regressions, and Kriging were proposed (Van Beers and 
Kleijnen 2003; Kleijnen 2017; Forrester et al. 2008).
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Among various types of LF models, Kriging or Gaussian process regression is adopted 
in this study. The basic idea of Kriging is to predict the value of a function at a given 
point by computing a weighted average of known values of the function in proximity of the 
point. This approach treats the function of interest as a realization of a Gaussian random 
process whose parameters are estimated from available inputs and model responses (Ras-
mussen and Williams 2006; Lu et al. 2018). This specific metamodel was selected because: 
(1) it represents the best linear unbiased predictor (Sacks et al. 1989); (2) it is only based 
on matrix manipulations; (3) it can provide an exact interpolation, i.e. it performs as the 
high-fidelity model when the input is the same as that of the training data; (4) it provides 
both the prediction but also the local variance of the prediction error. Inevitable draw-
backs are related to: (1) the inversion of the covariance matrix, whose size could entail 
serious computational problems; (2) the estimation of the hyperparameters that involves a 
constrained iterative search. This why kriging was successfully used both in seismic risk 
assessment and seismic fragility analysis (Gidaris et al. 2015; Ghosh et al. 2019), and in 
real-time storm/hurricane risk assessment (Jia and Taflanidis 2013). As a result, Gidaris 
et  al. (2015) adopted a Kriging model to approximate mean and standard deviation val-
ues of structural demands, allowing to analytically evaluate seismic fragility functions of a 
four-story concrete office building. Zhang and Wu (2017) further applied a Kriging model 
for the seismic fragility analysis of an elastoplastic single-degree-of-freedom (SDOF) sys-
tem and a reinforced concrete bridge. More recently, Ghosh et al. (2019) also employed a 
Kriging metamodel-based Monte Carlo simulation to improve the seismic fragility analy-
sis of structures. More precisely, they implicitly considered record-to-record variability of 
earthquakes utilizing the adaptive nature of Kriging.

1.2  Scope

From a PBEE viewpoint, the seismic fragility of a liquid storage tank has not been ade-
quately investigated with the implementation of an accurate 3D structural model which 
accounts for the randomness both in the input motion and structure level, for instance, 
peak ground acceleration ( PGA ) and liquid filling level; these are the issues that the paper 
explores further. Thus, in order to set seismic fragility functions, both HF and LF mod-
els of a steel storage tank with unanchored support conditions based on a Kriging model 
and a design of experiments (DOE) method are proposed herein. Though both Eurocode 8, 
part 4 (2006) and API 650 (2007) restrict uplift of unanchored above-ground storage tanks, 
their seismic response is highly nonlinear, dependent on several parameters and much more 
complex than that predicted by design standards based on a mechanical spring-mass anal-
ogy. Therefore, several unanchored above-ground storage tanks stand in areas with a high 
risk of earthquakes either because they are not properly designed or because they were not 
seismically designed at all. Moreover, both Ormeño et al. (2012) and Pineda et al. (2012) 
indicated that very strong earthquakes caused uplifting and sliding and, therefore, damage 
even in the presence of self-anchored tanks resulted to be often inefficient.

Accordingly, Sect. 2 describes the main features of Kriging to be used for unanchored stor-
age tanks. In turn, 3D FE models for an unanchored tank characterized by different liquid 
filling levels are developed using the ABAQUS software in Sect. 3, where the fluid–structure 
interaction between liquid and tank is taken into account by a coupled acoustic-structure anal-
ysis. A calibration/validation of a HF model is also carried out in this section using the results 
of a wide experimental investigation. In Sect.  4, in order to sample random variable reali-
zations within a set of eight ground motion records and filling levels, the central composite 
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design (CCD) for the DOE is introduced, that enables least square estimation of all effects in a 
second-order polynomial. Then, in Sect. 5, the fragility analysis is performed based on a large 
number of samples generated with the Monte Carlo technique by using the proposed meta-
model. Finally, conclusions and future developments are provided in Sect. 6.

2  Kriging‑based low‑fidelity model for unanchored storage tanks

2.1  Basic equations of Kriging model

In this section, the basic equations of the Kriging model are briefly overviewed. As well-
known from the literature, Gaussian process regression also known as Kriging, is a method 
of approximation used in statistics, by which unknown interpolated values are modelled by a 
Gaussian process (Van Beers and Kleijnen 2003). The Kriging model is useful for predicting 
spatially correlated data and its flexibility is a result of a wide range of correlation functions to 
build the model. The formulation of the Kriging model is composed of two terms, as shown 
in Eq. (1) (Santner et al. 2003), where the computer model output y(�) is a realization of a 
Gaussian process,

The first term is the mean value of the Gaussian process represented by a vector of known 
regression functions � (�) and a vector of unknown regression coefficient vector β , and the sec-
ond term Z(x) is a zero-mean stationary Gaussian process with a covariance function,

where �2 is the process variance. The spatial correlation function R
(
�i − �j|�

)
 with known 

or unknown correlation parameters � controls the smoothness of the resulting Kriging 
model and the influence of nearby points.
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In order to obtain a Kriging LF model, usually, the hyperparameter vector � is unknown 
and needs to be estimated. In this respect, the maximum likelihood estimation is commonly 
used to identify the vectors � , �2 , � such that the likelihood of observations �n is maximum.

2.2  Kriging‑based LF model with random effects

In view of the fragility evaluation of unanchored storage tanks based on Kriging, the entire 
procedure for defining fragility functions is reframed herein. Initially, input random vari-
ables �1, �2,… , �n need to be distinctly defined. Generally, uncertain modelling parameters 
of storage tanks include both geometry and material properties. In this respect, in order 
to find which modelling parameters entail a significant effect on the seismic response of 
unanchored tanks, Phan et al. (2019) carried out a screening study; the authors found that 
the liquid filling level, among other geometry and material random variables such as shell 
plate thickness, baseplate thickness, steel yielding strength and liquid density, is the most 
significant one for the purpose of determining fragility functions. They have also found 
that fragility curves developed considering only the most significant modelling parameter 
are almost the same as those considering all random variables. As a result, the liquid filling 
level and PGA are considered as random variables in this study, representing the random-
ness of both structural modelling and seismic ground motions.

The next step of the proposed framework foresees the generation of samples of input 
random variables using a proper DOE methodology. Among different sampling meth-
ods available in the literature, Latin hypercube sampling (LHS) is often suggested for the 
Kriging metamodeling (Jack and Kleijnen 2017). Nonetheless, the CCD also represents a 
viable alternative (Jack and Kleijnen 2017; Paolacci and Giannini 2009). More precisely, 
this sampling method is widely adopted in physical experiments where replication errors 
exist due to unknown randomness. By minutely selecting corner, axial, and centre points, it 
approximates in a second-order response surface model, where all higher-order effects are 
zero. However, given the fact that seismic records with the same PGA are characterized by 
different frequency content, and only two random variables are considered, a relatively low 
number of sample points, i.e. simulations, is involved in the CCD. An in-depth discussion 
is presented in Subsection 4.2.

In a subsequent step, a 3D FE model of the unanchored tank is developed for each sam-
ple with a distinct filling level and PGA , and nonlinear time history dynamic analyses are 
performed. Peak responses are measured for each simulation and both mean and stand-
ard deviation of the response quantities are computed assuming a lognormal distribution. 
This is a common assumption in earthquake engineering; see, among others, Gidaris et al. 
(2015) and Jalayer and Cornell (2009). As a result, two distinct experiment designs are 
obtained, one for the mean value of measured responses and the other one for relevant 
standard deviations.

The following step consists in the development of the Kriging LF model for both mean 
and standard deviation of the response that is defined as

where Ŷ𝜇 and Ŷ𝜎 are the Kriging model of the mean and standard deviation of the response 
quantity vector �n . Equation (6) assumes a lognormal distribution of the response vector. 
Finally, in the last step Monte Carlo simulations are conducted based on the built proposed 

(6)Ŷ = eŶ𝜇+LogN(0,Ŷ𝜎)
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Kriging LF model. As a result, fragility curves that provide a probability of exceeding a 
given EDP associated with a critical limit state are derived.

2.3  Validation of Kriging model

The performance of the metamodel can be validated by calculating the error between 
observed and estimated values. The most common approach is the leave-one-out (LOO) 
cross validation. In order to perform the LOO, one point xi of the design of experiments is 
subsequently removed and the metamodel Ŷ(−i)

(
xi
)
 is computed from the remaining points 

of the design. The relative LOO error between the predicted and real responses for all xi is 
then investigated by means of

For an easier interpretation of this LOO error, a determination coefficient 
Q2 = 1 − 𝜀LOO∕Var

(
Ŷ
)
 can be extracted, where Var

(
Ŷ
)
 defines the estimated variance of 

the output variable. Therefore, a Q2 value close to 1 indicates a better prediction capability 
of a metamodel.

3  3D FE model of an unanchored storage tank

3.1  Case study

In order to facilitate a comparison with previous works, the case study of an existing unan-
chored storage tank presented in Phan et al. (2016) and Phan et al. (2019) is selected for 
this study. The tank falls under the category of broad configuration due to the slenderness 
ratio H∕R = 0.51 and is unanchored with respect to the foundation. The tank diameter is 
54.8 with a total height of 15.6 m, which is divided into nine shell courses. The tank is 
equipped with a floating roof, whose effect is overlooked in this study. The thickness of the 
shell courses is designed to vary from 33 mm at the bottom to 8 mm at the top. Dimensions 
of the actual tank and tested mock-up are shown in Fig. 1. As the tank was designed in the 
1970s, due to the lack of European seismic design standards, no annular plate was present 
at the base. The baseplate is endowed with a uniform thickness of 8 mm. The tank, here 
selected as the prototype for an experimental campaign (Bursi et al. 2018), is assumed to 
contain water at a maximum filling level of 14 m, i.e. about 90% of the tank height. Both 
wall and baseplate are made of S235 carbon structural steel.

3.2  A 3D FE model based on the acoustic‑structural coupling technique

The numerical modelling of unanchored storage tanks considering fluid–structure interac-
tion, as well as foundation-structure interaction, has been widely studied in recent years. As 
a recent work, Phan et al. (2019) presented a 3D model of the whole system, seismically 
analysed by using a coupled acoustic-structural analysis available in the software ABAQUS 
(SIMULIA 2014). From a numerical viewpoint, the acoustic approach is relatively simple 
and effective because there is no material flow and thus no mesh distortion; and therefore, 

(7)𝜀LOO =
1

n

n∑

i=1

[
Y
(
xi
)
− Ŷ(−i)

(
xi
)]2

.



Bulletin of Earthquake Engineering 

1 3

this modelling approach is selected in this study. In detail, the liquid domain is modelled 
using eight-node brick acoustic elements (AC3D8) while four-node doubly curved quadri-
lateral shell elements (S4R) are used to model the steel tank. The tank-liquid interaction is 
simulated employing a surface-based tie constraint between the inner tank and liquid sur-
face; this constraint is formulated based on a master–slave contact method, where normal 
forces throughout the simulation are transmitted using tied normal contact between surfaces. 
The sloshing waves of the free surface are also considered in the liquid model by means 
of a small-amplitude gravity waves assumption (Akyildiz and Unal 2006). Nonlinear phe-
nomena are indeed mainly due to impulsive waves that act in the region of the baseplate-
to-wall connection. The tank baseplate is assumed to rest on a rigid slab that is modelled 
using solid elements. Both the uplift and sliding phenomena between the tank base and the 
rigid slab are taken into account by a general contact modelling algorithm. The relevant 
boundary conditions of the 3D model are shown in Fig. 2 and the FE mesh for each part 
is illustrated in Fig. 3. Following Phan et al. (2019), a FE mesh size of 0.4 × 0.8 m for the 
longitudinal and circumferential direction is used, respectively. The aforementioned size is 
the outcome of a mesh convergence analysis, Phan et al. (2019), carried out utilizing non-
linear static analyses on the prototype tank, i.e. the one with H = 14 m, with a coarse mesh 

(a) (b)

Fig. 1  Broad tank subjected to shake table tests: a dimensions of the prototype tank; b dimensions of the 
1∕λ = 1∕18 tested mock-up

Fig. 2  Boundary conditions of the coupled acoustic-structure approach
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− 0.8 × 1.6 m-, a normal mesh  − .6 × 1.2 m-, a fine mesh  − 0.4 × 0.8 m- and a refined mesh  
− 0.2 × 0.4 m-. In order to achieve a good compromise between accuracy and computational 
time insofar as possible, a more refined mesh for the region near the connection is finally 
coupled to a size of 0.1 m for the longitudinal direction.  

Geometric and material nonlinearities are considered in the analysis. In particular, the 
plasticity of the steel is simulated using the true stress-true strain relationship of the mate-
rial obtained from mechanical tests (Bursi et al. 2018). The liquid has a water density of 
998.2 kg∕m3 and a bulk modulus is equal to 2150 MPa. Concerning the damping model, 
a mass proportional damping model is employed with a damping ratio of 2.0% at the first 
impulsive vibration mode of 77.15 Hz. Since the nonlinear behaviour of the liquid free sur-
face due to the convective motion is neglected and the small-amplitude gravity assumption 
is used, both the first convective and impulsive modes have been considered as the most 
significant modes contributing to the total response of the system (Malhotra 1995). As a 
result, to reduce the computation time, symmetric boundary conditions are adopted both 
for the acoustic and other domains.

3.3  An experimental campaign for the validation of the 3D FE model

The ability of the aforementioned FE model to simulate typical phenomena present in 
unanchored tanks is carried out through the results of a shaking table test campaign per-
formed on a broad tank (Bursi et al. 2018). The latter represents a reduced scale model of 
the tank introduced in Subsection 3.1. Since a perfect downscaling of the prototype was 
not possible, due to the very limited thin thickness, the test program was conducted with 
the minimum 1.5 sheet thickness available on the market. Accordingly, a 3  m diameter 
and 0.868 m height cylindrical tank, which is approximatively a “1/λ = 1/18” reduced scale 
model of the broad tank presented in Subsection 3.1, was used in the test program. The 
shell wall of the tested mock-up is made of a cylindrical stainless-steel sheet with a thick-
ness of 1.5 mm and is welded to the baseplate, which has the same material and thickness. 
A circular stiffener is present at the top of the shell. The specimen is simply rested on 
the shake table using an intermediate ethylene-propylene-diene monomer (EPDM) rubber 
sheet. This allowed both to obtain a friction coefficient between the tank base and the shak-
ing table equal to μ = 0.15 and to protect the mechanical bearings and electrical circuits in 
case of water overtopping. The estimated mass of the empty tank is 123 kg; conversely, the 
tank filled with water at 90% of its height, i.e. 0.781 m, leads to a total mass of 5600 kg.

Fig. 3  Numerical model of each part of the interaction system
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The horizontal components of the Chi–Chi Taiwan and Northridge USA earthquakes were 
used for testing (Bursi et al. 2018). The main characteristics of the seismic records are listed in 
Table 1. They were chosen to maximize distinct mechanical effects on the tank; in particular, 
the Chi–Chi record emphasized the sloshing behaviour for the potential damage of the floating 
roof while the Northridge excited more the uplift behaviour.

As a matter of fact, whilst the Chi–Chi signal conveys more energy in the high periods, 
with a significant influence on the top fluid dynamics, Northridge carries more energy in 
the low period range. However, in order to guarantee the activation of the desired mechani-
cal behaviour in the scaled specimen, both natural records were properly scaled in time and 
amplitude.

With regard to the sloshing effect, the scaling factor was derived imposing the equivalence 
between actual F and prototype F0 Froude numbers, respectively. According to the more gen-
eral Buckingham’s theorem,

where L represents the geometrical dimension and V  the velocity of the examined phenom-
enon. Moreover, given g = const and L = λtL0 , V0 =

V√
λ
 . As a result, in order to scale V  

without modifying the record intensity, the same factor 
√
� is applied to time t, i.e.

On the other hand, the uplift of an unanchored tank is influenced by the ratio σp∕σy between 
plastic stresses reached at the tank baseplate and its yielding threshold. More precisely, plastic 
stresses generated by a seismic action depend on the intensity � of this action, the inertia of the 
tank defined by its fluid density �f  , and the tank geometry, assimilated to its radius, R . In order 
to properly investigate the uplift at the prototype scale, according to Buckingham’s theorem, 
the equivalence is established as

Given that R =λR0 , in order to impose the equivalence in Eq.  (10), the intensity of the 
seismic input is scaled as well,γ=γ0

λ
 . Moreover, in order to preserve equivalence in terms of 

stresses, a velocity similarity needs to be imposed; provided that the accelerations are scaled 
by a factor � , the velocity similarity is granted by scaling the time t as

(8)F0=
V2
0

gL0
=
V2

gL
= F,

(9)t0=
t

√
λ
.

(10)
γ0ρf R0

σy
=
γρf R

σy
.

(11)t =λt0.

Table 1  Selected natural records and relevant mechanical effects

Seismic event Country Date Component Mechanical effect

Chi–Chi Taiwan 21/09/1999 NS Sloshing
Northridge-01 USA 17/01/1994 NS Uplifting
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The resulting signals are depicted in Fig. 4 in terms of the acceleration time history and 
corresponding elastic response spectrum.

The numerical hydrodynamic pressure on the shell wall is first obtained with the 
Chi–Chi signal. Figure 5 shows the numerical/experimental comparison of the hydro-
dynamic pressure distribution on the tank wall, whereas the time history data observed 
at the left end of the baseplate are also shown in Fig.  6. Both figures show a good 
matching.

Time history data of sloshing wave height at the left end of the free surface are 
depicted in Fig. 7 based on the Chi–Chi record. The matching between the numerical 
and experimental results in terms of both frequency and amplitude is evident. Moreo-
ver, Fig. 8 highlights the time history data of the base uplift measured at the right end 
of the baseplate based on the Northridge input signal. A careful reader may notice that 
experimental uplift displacements include negative values because the tank is settled on 
an EPDM rubber sheet. Nonetheless, the numerical and experimental results match. In 
sum, from the comparisons above, one can argue that the proposed 3D FE model of the 
fluid–structure system represents a HF model of the filled broad tank.

(a) (b)

Fig. 4  Input signals used for shaking table tests: a Chi–Chi signal and b Northridge signal

Fig. 5  A comparison of peak hydrodynamic pressure distribution on the shell wall at t  = 4.04 s
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4  Hazard analysis and design of experiments method

4.1  Seismic hazard and record selection

Owing to the use of the DOE technique discussed in Subsection  4.2, only eight seis-
mic records are selected for time history dynamic analyses with the HF 3D FE model 
described in Subsection  3.2. The tank is supposed to be ideally placed in one of the 
most seismically active zones in Sicily (Italy), the Priolo Gargallo village, characterized 
by soil type B, whose seismic hazard curve is depicted in Fig. 9a.

Fig. 6  A comparison of hydrodynamic pressure time history at the left end of the baseplate

Fig. 7  A comparison of maximum sloshing wave height time history at the left end of the liquid free sur-
face
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On the basis of a safe shutdown earthquake design condition (Bursi  et al. 2018), the 
eight natural records, as collected  in Table 2, have been identified for a return period of 
2475  years. The relevant selection has been performed matching the mean ( � = 0 ) and 
the mean + standard deviation ( � = 1 ) uniform hazard spectrum (UHS), respectively; they 
are depicted with the solid red and black line for the mean and the dashed red and black 
line for the relevant mean + standard deviation in Fig. 9b. As a result, the hazard analy-
sis takes into account only the uncertainties in magnitude, location and fault mechanism, 
while the uncertainties of record-to-record variability, expressed by the dispersion of the 
spectral ordinates, are directly transferred to the fragility functions when the multiple stripe 
analysis is carried out. This procedure reduces the record-to-record variability and at the 
same time preserves full hazard consistency.

The record sample size n = 8 adopted is derived by the rule suggested by Baltzopoulos 
et al. (2018). More precisely, they suggested to relate n to the coefficient of variation of the 
failure rate estimator COV  as 

√
n=Δ∕COV  , where Δ is a parameter that depends on both 

the dispersion of structural responses and the shape of the hazard curve at the site. Based 

Fig. 8  A comparison of uplift time history at the right end of the baseplate

(a) (b)

Fig. 9  a Seismic hazard curve of Priolo Gargallo (Italy) and b response spectra based on the UHS-based 
record selection
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on the localized nonlinearities involved herein, a non-particularly efficient intensity meas-
ure (IM), e.g. PGA , and a high seismicity zone (Phan and Paolacci 2016), corresponding 
to a slope of the hazard curve of about 3, Δ can read 0.5–0.6 (Jalayer and Cornell 2003). 
As a result, for a coefficient of variation COV = 0.2 , considered acceptable to maintain a 
certain accuracy, the number of records n ranges between 6.2 and 9. Given the small value 
of the ratio Δ∕COV  , and therefore of n, the number of selected ground motions of Table 2 
is chosen to be 8; in practice, this figure is limited given the 72 HF FE simulations carried 
out in Subsection 4.2. Moreover, the value of COV  selected is considered to be acceptable 
because it refers to risk error and not to record-to-record variability (Baltzopoulos et  al. 
2018).

4.2  Central composite design

As mentioned in Subsection 2.2, both tank filling level and seismic records, with different 
scaled PGA values, are identified as random variables that can significantly capture the 
seismic vulnerability of unanchored tanks (Phan et al. 2019). In particular, we assume a 
variation of the filling level between 50 and 100% of the maximum level, i.e. 7−14 m, to 
follow a uniform distribution; conversely, PGA is assumed to obey to a lognormal distribu-
tion with a mean of 0.6 g and a variation in a logarithmic scale of 0.2. Hence, the lower and 
upper bounds of PGA read, 0.45 g and 0.8 g respectively. The aforementioned values are 
gathered in Table 3.

As anticipated in Subsection 1.2, in order to generate a sample of random variables, we 
use herein the CCD method. It simulates an experimental design, based on the response 
surface methodology, where a second-order (quadratic) model for the response variable 
is built without needing to use a complete three-level factorial experiment (Gilmour and 
Trinca 2012). In particular, k central points and 2k points (i.e. full factorial two-level 

Table 2  Main characteristics of the selected records

Event Country Date Station MW Rjb (km) PGA (g) Soil type

1 L’Aquila Mainshock Italy 4/6/2009 AQV 6.3 4.87 0.388 B
2 Izmit Turkey 8/17/1999 ST859 7.6 73.00 0.161 B
3 APP. Lucano Italy 9/9/1998 LRG 5.6 6.63 0.115 B
4 L’Aquila Mainshock Italy 4/6/2009 AQK 6.3 5.65 0.455 B
5 Cape Mendocino USA 1992 Fortuna 7.01 15.97 0.112 B
6 Duzce 1 Turkey 11/12/1999 ST3134 7.2 11.00 0.069 B
7 Friuli Italy-01 Italy 1976 Tolmezzo 6.5 14.97 0.463 B
8 Kalamata Greece 9/13/1986 ST163 5.9 11.00 0.168 B

Table 3  Random variables considered in the model

Random variable Unit Distribution Parameters

Liquid level, H m Uniform Lower, L = 7 Upper, U = 14
Peak ground acceleration, 
PGA

g Lognormal Mean, m = 0.6 Variance, v = 0.2
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design) are generated to correctly derive the second-order terms of the surface, whereas 
additional 2k points obtained by changing one design variable at a time by an amount 
� = k∕4 to accurately estimate the linear terms. The value of � depends on the number 
of experimental runs in the factorial portion of the CCD. From Table 4, being k = 2 and 
assuming only one central point, nine samples are obtained. Figure 10 shows the CCD for 
k = 2 , where � = 22∕4 = 1.41.

The application of the CCD appropriate to the case to hand is summarized in Table 4, 
where the values of H and PGA for each sample are provided. As a result of the CCD, nine 
model samples with different combinations of H and PGA and eight selected records entail 
72 simulations on the HF 3D FE model.

Table 4  Central composite 
design samples

Sample Coded values Variables in actual form

X
1

X
2

H (m) PGA (g)

1 − 1 − 1 7.0 0.49
2 − 1 1 7.0 0.73
3 1 − 1 14.0 0.49
4 1 1 14.0 0.73
5 − 1.41 0 5.6 0.60
6 1.41 0 15.4 0.60
7 0 − 1.41 10.5 0.45
8 0 1.41 10.5 0.80
9 0 0 10.5 0.60

Fig. 10  Representation of a CCD 
with k = 2 , one central point, 
four factorial design points and 
four axial points
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4.3  Static pushover analysis

In order to primarily evaluate the static behaviour of the generated samples in terms 
of both global and local response, nonlinear pushover analyses are performed on five 
samples filled with different liquid levels. In this respect, the procedure proposed by 
Vathi and Karamanos (2018) is used, which has shown a reliable capability to assess the 
nonlinear static behaviour of unanchored tanks. In order to develop the pushover model, 
acoustic elements are ignored and a distributed load on the tank wall that replicates liq-
uid pressure is used instead. Three loading steps are applied as shown in Fig. 11 (grav-
ity + hydrostatic + hydrodynamic) and the hydrodynamic loading is calculated using 
the Eurocode 8 formula (EN1998-4 2006). This pressure action on both tank wall and 
baseplate is increased until a maximum acceleration value, for which numerical insta-
bility occurs due to high level of the plastic strains at the shell of the baseplate-to-wall 
connection.

Fig. 11  Loading steps of pushover analyses

Fig. 12  Static uplift responses
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The global responses in terms of uplift displacement of the baseplate are shown in 
Fig. 12. While Samples 1, 2 and 5 exhibit no uplift even a high level of the acceleration 
reached ( > 1 g ). The remaining cases show a clear uplift response with the increase of the 
base acceleration, especially Sample 6, which is filled with the highest liquid level.

In addition, local responses in terms of axial compressive stresses of the base shell 
courses, von Mises stresses and equivalent plastic strains of both shell wall and baseplate 
are also investigate. The representative results of the most severe case, i.e. Sample 6, are 
collected in Table 5. Typical distribution of equivalent plastic strain and von Mises stress 
contours are also shown in Fig. 13 respectively.

One can notice from Fig.  13 that stresses at baseplate-to-wall connection reach high 
values while the wall is still in the elastic range. This result demonstrates the vulnerability 
of shell wall-to-baseplate welded connection in unanchored storage tanks. Moreover, stress 
levels in the baseplate significantly increase due to the uplift. Although a high level of 
uplift has been observed, buckling of the shell wall is not activated. In this respect, a small 
value of axial compressive stress in the bottom shell course is observed in Table 5. As a 
result, from the pushover analysis, one can deduce that: (1) the occurrence of the buckling 
phenomenon in the wall is rather limited; (2) the most critical failure mode of the analysed 
tank is represented by the failure of the wall-to-baseplate connection. Consequently, in the 
following, only this failure mode of the tank will be considered.

4.4  Nonlinear time history analysis and observed training data for Kringing model

Nonlinear time history analyses on the 3D FE model are carried out using the set of eight 
ground motion records of Table  2. According to the CCD, a total of 72 simulations are 

Table 5  Static responses of 
Sample 6 at acceleration level 
of 0.63 g

Mechanical parameter Wall plate Baseplate

Uplift displacement (m) – 0.51
Axial compressive stress (MPa) 22.5 –
Von Mises stress (MPa) 222 292
Equivalent plastic strain 6.2 × 10

−4
1.7 × 10

−2

Fig. 13  Contours at the last time step of the analysis of a von Mises stresses and b equivalent plastic strain
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obtained, where nines samples are respectively paired with eight records which are scaled to 
a given PGA level illustrated in Table 4. As an example, time history data of both uplift and 
equivalent plastic strain at two ends of the baseplate, which are obtained from the simulation 
of Sample 6 subjected to the Kalamata earthquake, are highlighted in Fig. 14. A maximum 
uplift displacement of 0.5 m is achieved whilst the maximum equivalent plastic strain reads 
about 12%. Typical von Mises stress and equivalent plastic strain contours for this case are 
also depicted in Fig. 15, where response quantities are measured a t = 4.06 s . In particular, 
one can observe from the figures that the region near to the shells of the baseplate-to-wall 
connection experiences yielding whilst the remaining ones remain in the elastic region; this 
behaviour agrees well with the results provided by nonlinear static analysis.

Similarly, peak responses in terms of uplift displacement and equivalent plastic strain 
are estimated for all samples of Table 4; the relevant results are plotted in Fig. 16. A careful 
reader can notice that Sample 4 and 6 exhibit high seismic demands due to the high values 
of H, whereas responses induced from Sample 1 and 5 are rather small.

With regard to Kriging, each analysis takes into account the uncertainty of ground 
motions in terms of PGA . Nonetheless, for each PGA value, mechanical responses vary 
also due to the relevant frequency content. Therefore, time history analysis results cannot 

(a) (b)

Fig. 14  Time history data measured for Sample 6 in terms of a uplift displacement and b equivalent plastic 
strain at the left and right ends of the baseplate due to the Kalamata earthquake

Fig. 15  HF model results measured for Sample 6 in terms of a von Mises stress contours and b equivalent 
plastic strain contours due to the Kalamata earthquake at t = 4.06 s
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be directly used as input of the LF Kriging model. Hence, both mean and standard devi-
ation of logarithmic values of the dataset composed by the 72 responses -the combina-
tion of Tables 3 and 4- are used instead. This is different from the objective of Giovanis 
et al. (2016), where means and variances of medians were used for estimation of epistemic 
uncertainties. Those values are obtained using the UQLAB software (Lataniotis et  al. 
2018), in which a linear function is used as the baseline of the LF model.

4.5  Selection of basis and correlation functions for Kriging model

Based on observed training responses including mean and standard deviation, Kriging met-
amodels are developed herein by means of the UQLAB software (Lataniotis et al. 2018). 
Therefore, the optimal type of basis and correlation functions is  selected based on the 
Leave-one-out (LOO) error and the coefficient of determination of the LOO cross valida-
tion. Thus, the most commonly used basis functions of UQLAB are  tested. For this pur-
pose, the default correlation, i.e. Matern-5_2, is set and the maximum likelihood estima-
tion method is used for the optimization problem. More precisely for the kriging model 
of the mean logarithmic response, the measures of fit for four different basis functions are 
shown in Table 6. A careful reader can observe that the optimal type of basis functions 

(a) (b)

Fig. 16  HF model outputs in terms of a uplift displacement and b equivalent plastic strain of the baseplate

Table 6  LOO cross validation 
results for different basis 
functions

Basis function Correlation function Mean of loga-
rithmic response

�LOO Q2

Linear Matern-5_2 0.401 0.966
Quadratic 8.165 0.299
2nd degree polynomial 8.165 0.299
3rd degree polynomial 3.565 0.694
Linear Exponential 0.474 0.959

Gaussian 0.368 0.968
Linear 0.246 0.979
Matern-3_2 0.418 0.964
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is the linear function, with a coefficient of determination value to 97%. The three others 
that include quadratic, 2nd and 3rd degree polynomial functions exhibit worst correlations 
( Q2 < 70%).

The selection of the optimal correlation function is subsequently carried out considering 
four different correlation functions as shown in Table 6. It is evident that all the correlation 
functions paired with the linear basic function exhibit a favourable level of performance 
( Q2 > 96% ); for the case of linear correlation function, Q2 approaches 98%.

As a result of the selection process, the linear type of basis and correlation functions are 
selected for the development of Kriging models for both mean and standard deviation of 
response values. Finally, the composite Kriging model whose output assumes a lognormal 
distribution is defined by means of Eq. (6).

5  Fragility analysis with Kriging metamodel

The conditional probability P[D ≥ C|IM] that the demand D exceeds the limit state capac-
ity C is known as fragility function. Given the closed form of the Kriging model in Eq. (6), 
fragility function can be determined by means of Monte Carlo simulations, which is 
defined as the fraction of the number of points such that D ≥ C and the total number of 
points,

where Nsi indicates the total number of simulations performed and I
(
Dsi ≥ C

)
 defines the 

indicator function. As anticipated in Subsection 2.2, Phan et al. (2019) deeply investigated 
the uplift response of unanchored storage tanks. They concluded that important inelastic 
deformations occur at the baseplate of the welded baseplate-to-wall connection, leading to 
either failure due to excessive tensile strain or low-cycle fatigue damage.

In that model, the plastic rotation demand has been used with a rotation limit of 0.2 rad 
(EN1998-4 2006); this threshold corresponds to a tensile strain value of the baseplate of 
about 5%. Even though, values between 2 and 5% have been suggested for the ultimate 
tensile resistance of baseplates (Vathi and Karamanos 2017), only the aforementioned first 
type of failure is considered. As a result, the maximum local tensile strain limit at the base-
plate is adopted as the EDP with a threshold of 5% as the corresponding limit state. The 
corresponding fragility curves have been found on the basis of Monte Carlo simulations 
carried out on the composite Kriging model, i.e. Eq.  (6). In particular, simulations are 
repeated for each specific PGA value with a step size of 0.005 g, in the range 0.005–1.6 g 
of PGA . The data post-processing on the 100000 observations leads to fragility functions 
depicted in Figs. 17 and 18. Functions are smooth because of the large sample set adopted. 
The fragility curves presented in Fig. 17 indicate the probability of exceeding the tensile 
strain limit of 5% at the baseplate. Owing to the high flexibility of the Kriging model, 
we have investigated both deterministic and probabilistic conditions in terms of the fill-
ing level H . More precisely, H = Hmax corresponds to the most conservative condition, 
with a median value of PGA closed to 0.6 g. Conversely, H = 0.5Hmax corresponds to a 
median PGA = 1.6 g. In addition, Fig. 18 depicts the fragility curves relevant to H assumed 
as a random variable. Two ranges of filling level are considered: 75–100% and 50–100%, 
respectively. As a result, the median value of PGA changes from 0.65 g ( H = 100%Hmax ) 

(12)P[D ≥ C|IM] =
1

Nsi

Nsi∑

1

I
(
Dsi ≥ C

)
,
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to 0.9 g ( H = 75 − 100%Hmax ). These figures highlight that a deterministic assumption for 
the filling level could lead to an erroneous fragility evaluation which is found to be highly 
variable with reference to this parameter. 

With regard to the outcome of mechanical models, Vathi and Karamanos (2018) pro-
posed, among others, a mechanical lumped model, where the uplift phenomenon is rep-
resented by a rotational spring derived using a pushover analysis on a 3D FE model. 
Therefore, we can compare herein both the fragility curves derived by means of Kriging 
and mechanical models.

The features of this model derived for the present case study can be found in Phan 
et  al. (2019), where component fragility curves are built with H = 100%Hmax and the 
use of cloud analysis (Mackie and Stojadinovic 2005). In this case, the plastic rotation 
demand has been used instead, with a corresponding rotation limit of 0.2 rad (EN1998-4 
2006). It is important to stress that the HF model suggested herein can directly capture 
the local behaviour of the tank, in terms of stresses and strains, whereas the mechani-
cal model needs to resort to approximate definitions of strains. As expected, Fig. 19a 
highlights that the LF model is less conservative than the mechanical model. The reason 
is mainly due to the limited prediction capability of the mechanical model. In order 
to estimate the accuracy of the Kriging model, i.e. Eq.  (6), Monte Carlo simulations 
are performed on Kriging models generated using bounded values of Ŷ𝜇 and Ŷ𝜎 which 
are assumed to Gaussian distributed. Figure 19b indicates relevant mean value and 95% 

Fig. 17  Fragility curves of the 
baseplate-to-wall connection 
failure with fixed liquid levels

Fig. 18  Fragility curve of the 
baseplate-to-wall connection 
failure with variable liquid levels
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confidence interval of failure probability estimates. The error propagation associated 
with the Kriging model is limited.

The effect of using different fragility models for the evaluation of seismic risk of the 
unanchored tank to hand is analysed. Given the Kriging model, the MAF of failure λc 
can be computed from the numerical integration of the risk equation, i.e.

where � is the hazard function in terms of PGA . Along this line, Table 7 collects the MAF 
values both for Kriging and mechanical models.

Also, in this case, the mechanical model is overly conservative with respect to the pro-
posed Kriging model of about four times. Finally, the results of Table 7 highlight that in 
the case of H = (75–100%) Hmax the MAF value remarkably decreases -about three times- 
as compared with that of the deterministic case, i.e. H = 100%Hmax.

(13)𝜆c =

N∑

i=1

[[
P
[
D > C|PGAi

]
+ P

[
D > C|PGAi−1

]][
P
(
PGAi

)
− P

(
PGAi−1

)]
∕2

]
,

Fig. 19  Fragility curves relevant to baseplate failure: a provided by Kriging and mechanical models for 
H = H

max
 , b provided by Kriging with mean value and 95% confidence interval

Table 7  Failure mean annual 
frequency

Model Liquid level MAF

Kriging model H = (50–100%)H
max 2.455 × 10

−5

H = (75–100%)H
max 4.431 × 10

−5

H = 50%H
max 2.333 × 10

−6

H = 75%H
max 3.240 × 10

−5

H = 100%H
max 1.311 × 10

−4

Mechanical model H = 100%H
max 5.019 × 10

−4
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6  Conclusions

A reliable seismic vulnerability assessment of steel storage tanks with unanchored support 
conditions based on PBEE has been developed. It relies on a HF model for broad tanks that 
consists of a 3D FE model set in the ABAQUS software and adopts a Kriging-based LF 
demand model that allows for cheaper simulations of the whole model. In addition, a sec-
ond-order DOE method is adopted to approximate the system response considering both 
peak ground acceleration and liquid filling level as random variables. A parametric inves-
tigation that involves the aforementioned analysis techniques is conducted on an existing 
unanchored steel storage tank. Special consideration is paid to base uplift due to significant 
inelastic deformations that can occur at the baseplate close to the welded baseplate-to-wall 
connection. As a result, to estimate the tank performance, component-level fragility curves 
of the aforementioned limit state are derived by means of Monte Carlo simulations. There-
fore, fragility curves are derived considering the filling level both deterministic and proba-
bilistic. Results highlighted that a deterministic assumption for the filling level could lead 
to a biased vulnerability assessment. Moreover, the comparison of the seismic vulnerabil-
ity of the tank achieved with both a probabilistic and a deterministic simplified mechani-
cal model demonstrates their conservatism. The same trend also applies in terms of risk 
assessment. Finally, with a focus on one storage unit, the exam of simultaneous states of 
damage triggered by an increased seismic intensity and their correlations that can be better 
tracked by means of a HF model deserves further studies; and the analysis of a portfolio of 
tanks in a tank farm is the natural outcome of future analyses based on Kriging.
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