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Abstract
Tunnel boring machine (TBM) performance prediction is often a critical issue in the early stage of a tunnelling project, 
mainly due to the unpredictable nature of some important factors affecting the machine performance. In this regard, deter-
ministic approaches are normally employed, providing results in terms of average values expected for the TBM performance. 
Stochastic approaches would offer improvement over deterministic methods, taking into account the parameter variability; 
however, their use is limited, since the level of information required is often not available. In this study, the data provided by 
the excavation of the Maddalena exploratory tunnel were used to predict the net and overall TBM performance for a 2.96 km 
section of the Mont Cenis base tunnel by using a stochastic approach. The preliminary design of the TBM cutterhead was 
carried out. A prediction model based on field penetration index, machine operating level and utilization factor was adopted. 
The variability of the parameters involved was analysed. A procedure to take into account the correlation between the input 
variables was described. The probability of occurrence of the outcomes was evaluated, and the total excavation time expected 
for the tunnel section analysed was calculated.

Keywords Hard rock TBM performance prediction · Stochastic approach · Field penetration index · Monte Carlo method · 
TBM cutterhead design · Mont Cenis base tunnel

Abbreviations
MCBTgripper  Section of the Mont Cenis base tunnel 

between pk 48 + 68 and pk 51 + 64
METpar  Section of the Maddalena exploratory tun-

nel parallel to the axis of  MCBTgripper

1 Introduction

The overall cost of a tunnel project is significantly affected 
by tunnel completion time. TBM performance prediction 
is therefore a key issue in the early stage of the project, 
when the profitability of the mechanised method is evalu-
ated. In this regard, several prediction methods were devel-
oped, including semi-theoretical models (e.g., Roxborough 
and Phillips 1975; Snowdon et al. 1982; Sanio 1985; Wijk 

1992; Rostami and Ozdemir 1993), empirical models (e.g., 
Bruland 1998; Barton 1999; Bieniawski et al. 2006; Gong 
and Zhao 2009; Khademi Hamidi et al. 2010; Hassanpour 
et al. 2011; Farrokh et al. 2012; Delisio and Zhao 2014; 
Zare Naghadehi and Ramezanzadeh 2017), computer-aided 
models (e.g., Alvarez Grima et al. 2000; Zhao et al. 2007; 
Mahdevari et al. 2014; Salimi et al. 2016; Armaghani et al. 
2017) and full-scale laboratory tests (e.g., Bilgin et al. 1999; 
Chang et al. 2006; Gertsch et al. 2007; Cho et al. 2010; 
Copur et al. 2014). Among them, no one may be effectively 
used in every case; each model, with a certain degree of 
reliability, works better than others in some contexts, but is 
unreliable in others. Semi-theoretical and empirical models 
present considerable advantages in terms of ease of use, cost 
and execution time, but they are sometimes unable to pro-
vide accurate results. Computer-aided models may provide 
reliable results when applied in context with characteristics 
similar to their original database. Full-scale tests are usually 
the best solution in massive rock conditions, provided that 
appropriate equipment and samples are available. In special 
cases, a prototype machine in laboratory or a real machine 
on-site is tested. This solution is the more precise method 
but is very expensive and time-consuming (Bilgin et al. 
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2014). In this regard, there is a growing tendency to realise 
exploratory tunnels in the preliminary stage of very long 
tunnel projects (tens of kilometres), which generally consist 
of double tubes. These tunnels, whose length is typically 
within a few kilometres, are usually realised in the same rock 
mass context as the main tunnel, with a similar excavation 
method and a little smaller diameter, providing very detailed 
information for the machine performance prediction and the 
cutterhead design in the early stage of the main project.

The models discussed above often involve deterministic 
approaches, which are easy to use, but are not able to take 
into account the variability of the predictors. Such variability 
is particularly relevant in TBM performance prediction, con-
sidering the nature of the parameters involved and the effects 
of their unpredictability. In particular, according to Bilgin 
et al. (2014), the factors influencing TBM performance 
can be divided into three main groups: mechanical factors 
(related to the machine), geological-geomechanical factors 
(related to the rock) and operational factors. Mechanical fac-
tors are often constant during the tunnel excavation (guaran-
teed by proper machine maintenance), whereas geological-
geomechanical and operational factors may vary, resulting in 
a significant variability of the machine performance (Rispoli 
et al. 2018). In this regard, TBM performance is usually 
defined as overall performance and net performance. Overall 
performance includes parameters such as advance rate (AR), 
in meters of advancement per working day, and machine uti-
lization factor (UF), in percentage. Net performance is nor-
mally expressed as rates of penetration in meters of advance-
ment per boring hour (PR) or in millimetres of penetration 
per cutterhead revolution (ROP).

The unpredictability of a phenomenon is the result of 
the contribution of two main factors: epistemic uncertainty 
and aleatory variability (Bedi 2013). Epistemic uncertainty 
is related to the lack of knowledge of the phenomenon ana-
lysed and can be reduced by additional information (Guo 
and Du 2007). The aleatory variability is instead caused 

by the inherent randomness of the physical system and 
cannot be reduced by increasing the amount of information 
(Bedi 2013). According to Bedi and Harrison (2013), the 
optimal modelling approach can be selected on the basis 
of the level of information available (Fig. 1). In particular, 
in presence of unpredictability that essentially consists of 
aleatory variability, the use of stochastic models may pro-
duce accurate results, which are provided in probabilistic 
terms, allowing the evaluation of the probability of occur-
rence of a certain outcome.

In view of these advantages, some literature studies for 
TBM performance prediction were developed by stochastic 
approaches, though their number is quite limited due to the 
high degree of knowledge required on the input param-
eters. Among them, Einstein (1996) adopted stochastic 
approaches in the planning of tunnel projects. Alber (2000) 
evaluated the probability distribution of AR on the basis of 
nine classes of tunnelling conditions. Isaksson and Stille 
(2005) used the Monte Carlo technique to estimate time 
and costs of completion of TBM tunnel projects. Frenzel 
(2012) provided a comparison between deterministic and 
stochastic approach, to determine PR and cutters wear on 
the basis of input parameters such as uniaxial compressive 
strength (UCS), Brazilian tensile strength and the Cer-
char abrasivity index (CAI). Piaggio et al. (2013) used the 
Monte Carlo method together with CSM model (Rostami 
and Ozdemir 1993), to estimate the probability distribution 
of PR and AR for the safety gallery of the Fréjus Tunnel. 
Copur et al. (2014) implemented a stochastic model into 
a deterministic model, to assess the performance of two 
EPB TBMs, by defining the input variables on the basis 
of the results obtained from full-scale rock cutting tests. 
Maji and Theja (2017) provided a model for estimating 
PR through a stochastic approach, which incorporates the 
unpredictability of input parameters such as UCS, RMR, 
cutter life index and CAI.

Fig. 1  Modelling approach 
depending on the degree of 
knowledge (from Bedi and Har-
rison 2013)
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This paper is devoted to the TBM performance predic-
tion for a specific section of the Mont Cenis base tunnel 
(MCBT) planned to be parallel to a portion of the completed 
Maddalena exploratory tunnel. The observations made dur-
ing the excavation of the exploratory tunnel, together with 
those obtained from similar projects reported in the lit-
erature, provided a high degree of knowledge of the input 
parameters involved in the machine performance prediction 
for the section of the MCBT analysed, thus allowing the use 
of a stochastic approach. Moreover, a preliminary design of 
the cutterhead was provided, according to the requirements 
of the design documents.

2  Mont Cenis Base Tunnel

2.1  General Overview of the Project

The MCTB will cross the route between Susa (Italy) and 
Saint-Jean-de-Maurienne (France), representing the core 
element in the construction of the new Lyon-Turin line 
(NLTL), which will be an essential component of the Medi-
terranean corridor of the trans-European transport network 
from Algeciras to Budapest. The MCBT final design cur-
rently involves a total tunnel length of 57.5 km (45 km in 
France and 12.5 km in Italy), consisting of two parallel 
tubes at a distance ranging from 25 to 40 m, with a final 
diameter of 8.4 m (Bufalini et al. 2017). Four access tunnels 
are planned (Fig. 2). One of them, the Maddalena explora-
tory tunnel, extends into Italy, with the portal located at La 
Maddalena, in the municipality of Chiomonte (Turin). It was 
completed in February 2017, with a final length of 7 km, and 
was driven by a 6.3 m diameter gripper TBM.

2.2  Section of the MCBT under Study

The TBM performance prediction provided in this paper 
concerns a particular section of the Italian side of the MCBT 
between pk 48 + 68 (close to the state border) and pk 51 + 64 
(before the safety area). The alignment of this MCBT section 
(hereafter referred to as  MCBTgripper) is planned to be paral-
lel to the axis of the portion of the Maddalena exploratory 
tunnel between pk 3 + 955 and pk 6 + 915 (hereafter referred 
to as  METpar). This condition allows for the extraction of 
critical information regarding the  MCBTgripper, including 
geological features, rock mass properties and excavation 
conditions expected.

2.3  Information from Maddalena Exploratory 
Tunnel

2.3.1  Geological Features

The geological profile expected for the  MCBTgripper is shown 
in Fig. 3. The  MCBTgripper alignment crosses the Clarea 
complex, which is basically characterized by mica-schist. 
The main schistosity is on average oriented NE-SW and 
tends to incline at nearly horizontal angles. The most preva-
lent joint sets are substantially arranged on the schistosity 
or parallel to the tunnel axis. High-angle fault systems are 
also present, usually oriented along NE-SW directions, with 
a maximum thickness of a decimetre (Parisi et al. 2017).

Fig. 2  Scheme of the Mont Cenis base tunnel alignment (TELT Company)
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2.3.2  Rock Mass Properties

On the basis of the observations made during the  METpar 
excavation, the rock mass properties expected in  MCBTgripper 
are summarised in Table 1. Average RMR and GSI are 59 
and 64, respectively. The rock is strongly anisotropic due to 
the schistosity, shown by the significant difference in UCS 
obtained for different test directions. The joint spacing usu-
ally ranges from 0.5 to 1.2 m. The water inflows are very 
limited. The extremely low values of the RMR partial rating 
related to joint orientation  (P6RMR) are due to the joint sets 
arranged parallel to the tunnel axis.

2.3.3  Excavation Conditions

The rock mass conditions encountered in  METpar involved 
a systematic rock blocks detachment from the crown and 
at the face of the tunnel, affecting the TBM performance. 
The blocks detachment from the tunnel crown involved 
a longer time to ensure the tunnel stability. The blocks 

release at the face of the tunnel resulted in frequent con-
veyor belt breakages, due to overly coarse rock fragments 
directly conveyed onto the belt. To deal with these issues, 
two main operational measures were taken during the 
excavation of the  METpar: a vibrating sieve and a crusher 
were introduced to avoid the belt breakages, and a special 
support was adopted, consisting of steel ribs connected 
by steel rebars in the upper arch, to limit instability issues 
(Rispoli et al. 2018).

These conditions would suggest the use of a Shield 
TBM; however, the adoption of the above-mentioned 
measures allowed a significant improvement of the exca-
vation conditions, resulting in an increase of the overall 
machine performance. On this basis, NLTL design docu-
ments (2017a) have planned that the  MCBTgripper will be 
driven by a Gripper TBM, together with technical meas-
ures similar to those employed in  METpar. Nonetheless, 
the TBM design for the  MCBTgripper excavation has not 
yet been included in the design documents.

Fig. 3  Geological profile of the 
 MCBTgripper, according to the 
observations made during the 
excavation of the  METpar (TELT 
company)

Table 1  Summary of the 
distribution of rock mass 
parameters obtained from 
the geo-structural surveys 
performed during the excavation 
of the  METpar

The values of average and standard deviation (Std dev) are weighted in respect of geo-structural surveys 
length.  UCSpar and  UCSper are the values of uniaxial compressive strength obtained from the point load 
tests carried out parallely and perpendicularly to the schistosity.  P2RMR,  P3RMR,  P4RMR,  P5RMR and  P6RMR 
are the partial ratings of RMR, defined according to Bieniawski (1989)

Parameter RMR GSI UCSpar (MPa) UCSper (MPa) P2RMR P3RMR P4RMR P5RMR P6RMR

Average 59.0 64.1 85.1 212.6 17.7 13.3 18.0 9.6 − 11.9
Std dev 5.2 5.4 13.0 19.7 1.7 2.1 2.2 2.0 0.5
Min 34.0 40.0 48.0 73.0 13.0 8.0 7.0 4.0 − 12.0
Max 73.0 80.0 125.0 265.0 20.0 17.0 21.0 15.0 − 9.0
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3  Cutterhead Preliminary Design

The cutterhead design was performed according to the 
requirements of the design documents (e.g., machine type 
and diameter), the observations made during the  METpar 
excavation (e.g., rock mass boreability and excavation con-
dition) and literature studies.

A nominal TBM diameter of 10 m with 63 cutters was 
selected for this study. On the basis of the characteristics of 
262 TBMs, including 72 Gripper TBMs, Ates et al. (2014) 
provided relationships among several TBM parameters, such 
as machine diameter and weight, cutterhead thrust, torque 
and rotational speed, and number of cutters. Although a 
specific value of the  MCBTgripper diameter is not currently 
included in the design documents, information is provided 
about the Single Shield Multi-mode TBM planned for the 
excavation of the other section on the Italian side of MCBT, 
with a diameter of 9.95 m and an additional 0.02 m for over-
cutting (NLTL design documents 2017b). On this basis, a 
nominal diameter of 10 m was chosen, with an average value 
of 63 cutters, based on a range of cutters between 60 and 65 
(except those for overcutting) in Ates et al. (2014).

A disc cutter size of 19″ was chosen. Although an aver-
age normal cutter force lower than 200 kN was recorded 
during the excavation of the  METpar, suggesting the use 
of 17″ disc cutters, further aspects should be taken into 
account. First, the use of larger cutters would allow for 
a higher limit of cutterhead rotational speed, which will 
be significantly lower than that of  METpar, because of 
its higher cutterhead diameter. Second, the thrust level 
of the TBM recorded during the  METpar excavation was 
also affected by the explorative nature of the tunnel, which 
sometimes led to a reduction of the operating level. How-
ever, in the excavation of  MCBTgripper, reaching the maxi-
mum advance rate is a primary aim and consequently a 
thrust level higher than in  METpar excavation may be nec-
essary. Moreover, assuming that the TBM designed for the 
 MCBTgripper could also be used in other sections of MCBT, 
different possible rock mass contexts should also be con-
sidered; e.g., Rispoli et al. (2018) showed that the load 
capacity of 17″ disc cutters was definitely not sufficient for 
an efficient rock chipping in the massive rock formation 
encountered in the first portion of the Maddalena explora-
tory tunnel, which lead to dramatic reductions of the net 
performance. Thus, 19″ discs were selected, allowing a 
longer cutter life as well (Ozdemir 1992; Roby et al. 2008).

A maximum thrust force of 25.5 MN was chosen, based 
on the total number of cutters and the load capacity of 
the 19″ disc cutters, namely 311 kN (Zou 2017). Moreo-
ver, according to Concilia (2003), a coefficient of 1.3 was 
adopted to take account of the friction losses in extraordinary 
excavation conditions (i.e., advancement axis adjustment).

According to Bilgin et al. (2008), the average cutter spac-
ing was calculated as:

where s is the average cutter spacing in m, ∅TBM is the nomi-
nal diameter of the TBM in m and Ncutter is the number of 
cutters (except those for overcutting).

Assuming a 19″ disc cutter velocity limit of 200 m/min 
(Rostami 2008; Rostami and Chang 2017), the maximum 
cutterhead speed was obtained as:

where RPMmax is the maximum cutterhead speed and Vmax is 
the cutter velocity limit for 19″ cutters in m/min.

A maximum cutterhead torque of 9855 kN m was con-
servatively chosen, based on Ates et al. (2014), who, for a 
TBM diameter of 10 m, provided a torque around 6700 kN m 
with an additional 47% as upper limit.

The maximum cutterhead power was obtained as:

where P is the maximum power in kW, T  is the maximum 
torque kN m and RPMmax is the maximum cutterhead speed 
in rev/min.

Since the  MCBTgripper will cross quite fractured rock 
masses, using a cutterhead provided with a roof shield, 
similarly to the machine employed in  METpar, is advisable, 
to protect the crew immediately behind the cutterhead from 
rock falls. Moreover, the cutterhead should be properly 
designed in order to reduce the wear that typically affects 
cutterhead and cutters in jointed rock mass conditions. In 
particular, as suggested by Delisio and Zhao (2014), it is 
advisable to build a flat-profile cutterhead for minimizing 
any protrusion to the tunnel face, to insert a cutter protection 
for preventing cutter breakages due to the impacts against 
the rock blocks detached from the tunnel face, and to rein-
force the cutter housing structures.

Based on the above, the characteristics of the Gripper 
TBM preliminary designed for the  MCBTgripper are summa-
rised in Table 2.

4  Stochastic Approach

According to Bedi and Harrison (2013), the best modelling 
approach should be selected on the basis of the degree of 
knowledge of the phenomenon analysed. In the case under 
study, the level of information provided from  METpar, together 

(1)s =
∅TBM

2 ⋅ Ncutter

=
10

2 ⋅ 63
= 0.0794 m,

(2)RPMmax =
Vmax

∅TBM ⋅ π
=

200

10 ⋅ π
= 6.37 rev∕min,

(3)

P =
2 ⋅ � ⋅ T ⋅ RPMmax

60
=

2 ⋅ � ⋅ 9855 ⋅ 6.3

60
= 6501.6 kW,
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with similar projects reported in the literature, appears to be 
suitable for an effective use of the stochastic approach. How-
ever, the reliability of the results obtained is highly dependent 
on the correctness of the assumptions reported in Table 3.

The stochastic modelling was carried out by means of a 
series of custom MATLAB (MathWorks) scripts and is based 
on the Monte Carlo technique (James 1980). Monte Carlo 
method involves the definition of the input variables by means 
of random sequences of numbers, which follow the probability 
distributions assigned to the variables involved. Starting from 
the generated random samples, a deterministic calculation is 
then applied to estimate the distribution of the output vari-
ables, according to the prediction model selected.

4.1  Prediction Model

The prediction model adopted is based on the following 
equations:

(4)ROP =
FNnet

FPI
,

(5)PR =
ROP ⋅ RPM ⋅ 60

1000
,

(6)AR =
PR ⋅ UF ⋅ 24

100
,

where ROP is the rate of penetration in mm/rev, FNnet is the 
net normal cutter force in kN, FPI is the field penetration 
index in kN/mm, PR is the penetration rate in m/h, RPM is 
the cutterhead rotational speed in rev/min, AR is the advance 
rate in m/d, and UF is the machine utilization factor in %.

The input variables are FPI, excavation parameters (FNnet 
and RPM) and UF. ROP and PR, which are outputs of Eqs. 
(4) and (5), are inputs in Eqs. (5) and (6), respectively. Each 
input variable represents a risk variable of the phenomenon 
to be assessed, since a small deviation from its expected 
value may involve potentially misleading results (Copur 
et al. 2014).

FPI is an effective parameter for TBM performance pre-
diction in geological contexts already excavated. It is defined 
as the ratio of net normal cutter force (FNnet) to ROP, result-
ing in an indication of the rock mass boreability. In general, 
high values of FPI are indicative of low boreability and vice 
versa. FPI was employed by several researchers for perfor-
mance prediction modelling (e.g., Khademi Hamidi et al. 
2010; Hassanpour et al. 2011; Delisio et al. 2013; Salimi 
et  al. 2016; Zare Naghadehi and Ramezanzadeh 2017). 
However, FPI may produce misleading results if the new 
project involves significant differences in terms of thrust 
levels applied (Farrokh et al. 2012). Moreover, consider-
able differences in cutterhead and cutter characteristics may 
also involve a variation of FPI (Rispoli 2018). In the case 
under study, the variations in terms of mechanical factors 
that may affect FPI, passing from  METpar to  MCBTgripper, are 
related to an increase of the average cutter spacing and cutter 
diameters. Nevertheless, both the increase of cutter spacing 
(< 3 mm) and that of cutter diameter (2″) are quite limited. 
On the other hand, a different operating level is expected in 
 MCBTgripper compared to  METpar. Thus, in this study the 
value of FPI was selected on the basis of the thrust levels 
applied, according to the data from  METpar.

The excavation parameters define the machine operating 
level, one of the most sensitive aspects in TBM performance 
prediction. In this regard, the basic philosophy in hard rock 
TBM excavation is to provide the highest advance rate, 
which however is not always achieved by the same driv-
ing choices. In particular, hard rock TBMs usually oper-
ate close to their limits of thrust and rotational speed in 

Table 2  Technical characteristics of the Gripper TBM designed for 
the  MCBTgripper excavation

Nominal diameter 10 m
Maximum thrust force 25,471 kN
Cutterhead power 6542 kW
Cutterhead torque 9855 kN m
Cutterhead speed 0–6.3 rev/min
Numbers of disc cutters 63 (+ 7 for overcutting)
Disc cutters size 19″ (482.6 mm)
Cutters spacing 79.4 mm
Conveyor belt capacity 1500–1800 t/h

Table 3  Assumptions that are the basis of the stochastic approach used for TBM performance prediction in the  MCBTgripper

Reference no. Assumption

1 The properties of the rock mass involved in the excavation of  MCBTgripper are similar to those observed in  METpar

2 Supports and reinforcements that will be used in  MCBTgripper are broadly similar to those employed in  METpar

3 The characteristics of the TBM that will be employ for the  MCBTgripper excavation do not differ significantly from 
those reported in Sect. 3

4 The differences in terms of mechanical factors between  MCBTgripper and  METpar have a limited impact on FPI
5 The driving choices that will be made during the  MCBTgripper excavation are consistent with those observed in  METpar
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massive rock contexts (Rostami 2016), whereas an exces-
sively high level of thrust in jointed rock mass implies a 
significant increase of wear and breakages on the cutterhead 
and cutters, resulting in a decrease of the utilization factors 
and hence of the advance rate (Delisio and Zhao 2014). In 
the case under study, as noted above, the operating level 
observed in  METpar may differ from the one that will be kept 
in  MCBTgripper, mainly due to the different characteristics of 
the TBMs employed. However, a similar driving philosophy 
is expected in  MCBTgripper, in view of the same rock mass 
context excavated. On this basis, several scenarios of the 
operating level were considered, on the basis of the data 
from  METpar and from similar projects from the literature.

To define ROP on the basis of FPI, reference was made to 
FNnet, namely the normal cutter force excluding the friction 
losses. In this regard, several factors, such as machine type 
and size, should be considered to assess the friction losses 
(Frenzel et al. 2012). For the same machine weight, Shield 
TBMs generally involve greater friction losses than Gripper 
TBMs, because of the friction between the shield and the 
rock mass. In Gripper TBMs without a partial shield (Open 
TBM), the friction losses depend basically on the resist-
ance force generated by the front shoes of the cutterhead 
(Wittke 2007). On this basis, a proper assessment of the 
friction losses would require the execution of on-site TBM 
penetration tests (e.g., Bruland 1998; Gong et al. 2007; Balci 
and Tumac 2012; Bilgin et al. 2012; Frenzel et al. 2012; 
Yin et al. 2014; Macias 2016; Villeneuve 2017). In lack of 
such tests, several studies in literature assessed the friction 
losses as a proportion of the thrust applied or of the machine 
weight, respectively for Shield TBM or Open TBM (e.g., 
Wittke 2007; Bilgin et al. 2008; Delisio et al. 2014; Bilgin 
et al. 2014; Copur et al. 2014).

UF represents the parameter that allows the transition 
from net performance to overall performance. It is affected 
by operational factors (Bilgin et al. 2014), making an accu-
rate prediction of AR quite complex. Nevertheless, useful 
information about UF can be once again obtained from 
 METpar, considering that a same machine type and similar 
tunnel supports are planned for  MCBTgripper.

4.2  Selection of the Input Variable Probability 
Distributions

The distribution of the selected input variables aims to define 
the aleatory variability caused by some factors affecting the 
TBM performance (Fig. 4). In particular, FPI was employed 
to define the variability of the rock mass boreability; FNnet 
and RPM define the variability of the machine operating 
level; UF accounts for the variability of the operational fac-
tors. An important issue to consider is the possible influence 
that each one of these factors exerts on the others. For this 

purpose, the analysis of the correlation between the input 
variables was performed (Sect. 4.3).

The input variable distributions were selected in accord-
ance with the assumptions reported in Table 3, the results 
from  METpar, literature studies, and technical characteristics 
of the TBM designed.

The reference datasets used for the analysis are the results 
of a further elaboration of data presented in Rispoli et al. 
(2018).

4.2.1  FNnet

As noted in Sect. 4.1, the operating level in  MCBTgripper 
may differ from that observed in  METpar. As for the thrust 
level, a similar shape of the distribution is expected, consid-
ering the assumption No.5 of Table 3 (i.e., similar driving 
philosophy); on the other hand, an increase of the thrust 
applied is also likely, with the aim of the maximization of 
the penetration rate. This increase is however expected to 
be rather low, to avoid consequences in terms of utilization 
factor and therefore advance rate. On this basis, three main 
different scenarios of thrust level were considered starting 
from data of  METpar:

FNnet = FNnet (METpar)

FNnet = FNnet (METpar)
+ 10 kN

FNnet = FNnet (METpar)
+ 20 kN

An estimation was made to take into account the friction 
losses. As reported earlier, the friction losses of Open TBMs 
are generally estimated as a proportion of the machine 
weigh. However, the Gripper TBM employed in  MCBTgripper 
will likely include a roof shield and this may involve addi-
tional thrust losses due to the friction with the rock blocks 
detached from the tunnel crown. Thus, since a frequent rock 
blocks detachment is expected during the excavation of the 
 MCBTgripper, the friction losses were defined as a proportion 

Fig. 4  Factors variability defined by the input variables distribution 
(after Rispoli 2018)
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of the thrust applied and, according to Bilgin et al. (2008), 
a coefficient of 1.2 was applied.

4.2.2  FPI

Since a similar thrust level between  METpar and  MCBTgripper 
is not guaranteed (e.g., scenarios no. 2 and no. 3), same val-
ues of FPI cannot be assumed, considering that FPI tends 
to decreases with increasing FNnet (Hamilton and Dollinger 
1979). However, on the basis of the assumptions reported in 
Table 3 and the TBM characteristics selected,  METpar and 
 MCBTgripper show comparable mechanical and geological-
geotechnical factors. Thus, it can be assumed that these two 
tunnels present the same relationship between FPI and ROP. 
Such a relationship, for a given rock mass context, is usu-
ally well fitted by a power function (e.g., Gong et al. 2007; 
Balci 2009; Yin et al. 2014; Villeneuve 2017) that can be 
expressed as follows:

where SRMBI is the specific rock mass boreability index 
proposed by Gong et al. (2007) and c is a fitting parameter.

Basis on the above, the FPI sample was selected by means 
of a detailed analysis of the FPI–ROP relationship observed 
in each tunnel portions of  METpar with a uniform rock mass 
context. For this purpose, the datasets were developed 
according to the “survey” level of analysis. In such level 
of analysis each dataset is related to a tunnel section that 
showed the same overall rock mass properties (Rispoli et al. 
2019). In Fig. 5 an example of the relationship between FPI 
and ROP for a tunnel section analysed is showed. FPI value 
was define for each tunnel section and thrust level by means 
of a specific Matlab code, which is able to:

(7)FPI = SRMBI ⋅ ROP−c,

– define the equation of the power function (7) with the 
best fit with the data points;

– define the FPI value for each scenario of FNnet according 
to the equation obtained.

4.2.3  RPM

A triangular distribution, which is commonly used for mod-
elling the expert opinion (Copur et al. 2014), was selected 
for RPM, based on TBM characteristics together with 
the need of maximising PR. In this regard, an increase of 
RPM involves an increase of PR, but it may also result in 
extremely high rates of torque together with negative effects 
on cutters and cutterhead in fractured rock masses. The tri-
angular distribution selected for all the scenarios is included 
in the range 5–6.3 rev/min, with the more frequent value 
around 6 rev/min, which was chosen by applying a reduction 
coefficient of 0.95 to the maximum rotational speed, accord-
ing to Delisio et al. (2013), to consider the reduction of the 
RPM that is typically carried out in this rock mass context.

4.2.4  UF

A normal distribution with a mean value of 29.3% was 
chosen for UF, on the basis of data from  METpar. In par-
ticular, Rispoli et al. (2018) showed that the introduction 
of the sieve/crusher system, as well as of the tunnel sup-
port with rebars, significantly affected the value of UF in 
the excavation of Maddalena exploratory tunnel. Since such 
measures are planned for  MCBTgripper, the UF distribution 
was selected by considering only the portion of  METpar 
after their introduction. Furthermore, it should be noted 
that an increase of the thrust level may sometimes involve a 
decrease of the UF due to cutterhead/cutter wear. However, 

Fig. 5  Relation between FPI 
and ROP in the tunnel section 
within pk 4 + 090 – 4 + 108. 
Scenario no. 1: 
FNnet = 196.2 kN, FPI = 72.6 kN/
mm, ROP = 2.7 mm. Sce-
nario no. 2: FNnet = 206.2 kN, 
FPI = 51.2 kN/mm, 
ROP = 4.0 mm. Scenario no. 3: 
FNnet = 216.2 kN, FPI = 36.7 kN/
mm, ROP = 5.9 mm
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the preventive measures in the cutterhead construction rec-
ommended in Sect. 3 should limit the negative effects caused 
by the increase of the thrust level. On this basis, the same UF 
distribution was considered for all the thrust level scenarios. 
In any case, the more the thrust levels of  MCBTgripper and 
 METpar are similar, the more UF distributions will be close.

4.3  Analysis of the Correlation Between the Input 
Variables

The correlation between input variables is one of the most 
sensitive and complex aspects in stochastic modelling. Dis-
regarding it may produce quite misleading results (Smith 
et al. 1992; Wall 1997), because of modelling unrealistic 
scenarios, especially in presence of high values of correla-
tion. However, taking account of it involves two main issues:

– how to evaluate the correlation between the input vari-
ables involved;

– how to take account of the correlation in the generation 
of data samples.

As for the first issue, an effective assessment of the cor-
relation between input variables requires a deep knowledge 
of the variables involved, together with a comprehensive 
reference database, where a quantitative measure of the cor-
relation can be obtained.

With regard to the second issue, numerous studies in the 
literature were focused on methods able to take account 
of the correlation in the random samples generation (e.g., 
Smith et al. 1992; Touran and Wiser 1992; Helton et al. 
2006). Many of them refer to the Cholesky decomposition 
(e.g., Iman and Conover 1982; Haas 1999; Huang et al. 
2013), which allows the factorization of a Hermitian and 
positive definite matrix into a lower triangular matrix and 
its conjugate transpose. By applying Cholesky decomposi-
tion to the correlation matrix assigned to the input variables 
involved, correlated samples can be obtained starting from 
the generated random samples. Briefly, a simple form of this 
procedure can be summarised as follows:

– Generation of the random sequences of numbers related 
to the input variables involved (e.g., two input variables) 
and inclusion in a matrix (A):

where X and Y  are the two random samples generated, 
and n is their size.

– Calculation of the matrix (C) through the Cholesky 
decomposition:

where R is the correlation matrix assigned to the input 
variables, C and CT are, respectively, an upper triangular 
matrix and its transpose.

– Calculation of the new correlated samples:

where A
n
 is the matrix that includes the correlated 

samples.

In the case under study, the input variables are involved 
in the Eqs. (4), (5) and (6) of the prediction model. Accord-
ing to the assumptions reported in Table 3, the correlation 
conditions between the input variables can be evaluated on 
the basis of the datasets obtained from  METpar, which pre-
sent the correlation matrixes reported in Table 4. In particu-
lar, FPI and FNnet show a quite strong positive correlation, 
whereas ROP and RPM present a significant negative corre-
lation. These conditions are due to the driving choices made 
during the excavation of  METpar: the thrust tends to increase 
with decreasing rock mass boreability (i.e., increasing FPI); 
the rotational speed tends to decrease with increasing rate of 
penetration, to limit the torque consumption, as well as the 
cutters and cutterhead wear. The above-mentioned driving 
choices are quite common in TBM tunnelling when jointed 
rock mass are involved (Delisio and Zhao 2014). On the 
other hand, PR and UF show a very limited correlation.

On this basis, the correlation between FPI and FNnet, and 
between ROP and RPM was taken into account in the sam-
ple generation, whereas that one between PR and UF was 
disregarded. The correlation conditions between FPI and 
FNnet were directly ensured by the procedure used to define 
the FPI sample, described in Sect. 4.2.2. The correlation 

(8)A =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

X1 Y1

X2 Y2

. .

. .

X
n
Y
n

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(9)R = C
T
⋅ C

(10)A
n
= A ⋅ C

Table 4  Correlation matrixes 
related to the input variables, on 
the basis of the results obtained 
from  METpar

ρ is the Pearson’s correlation coefficient

ρ FPI FNnet ρ ROP RPM ρ PR UF

FPI 1 0.89 ROP 1 − 0.73 PR 1 − 0.14
FNnet 0.89 1 RPM − 0.73 1 UF − 0.14 1
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between ROP and RPM samples was obtain by means of the 
Cholesky decomposition.

4.4  Generation of Data Samples

The distribution of the data samples generated for each sce-
nario of thrust level is shown in Fig. 6.

With regard to the samples related to Eq. (4), one data 
point of FNnet and FPI was defined for each tunnel sec-
tion of  METpar, according to the “survey” level of analysis 
described in Sect. 4.2.2, with a total of 106 tunnel sections 
considered. The FNnet sample was obtained on the basis of 
the data observed in  METpar and the thrust level scenarios 
assumed. The FPI sample was developed by the analysis 
of the FPI–ROP relationship in  METpar, using the process 
described in Sect. 4.2.2. Basically, data samples with a size 
of only 106 data points were used for the assessment of ROP 

by the Eq. (4). This is quite unusual in stochastic modelling 
by Monte Carlo technique, where data samples with a very 
large size are normally used. However, in this case the high 
level of knowledge available in terms of aleatory variability 
of the rock mass boreability, together with the strong rela-
tionship between FPI, FNnet and ROP, have recommended 
the use of this approach to avoid dramatic consequences in 
terms of reliability in the ROP assessment.

On the other hand, for the samples related to Eq. (5) and 
(6), each data sample was created by generating a set of 
100,000 random numbers. The ROP sample was produced 
on the basis of the distribution with best fit with the “raw” 
sample of ROP obtained by applying Eq. (4) to the FPI and 
FNnet samples. The RPM sample was defined starting from 
an initial set of random numbers based on the triangular dis-
tribution described in Sect. 4.2.3, which was then adjusted 
by means of the Cholesky decomposition, applying the Eqs. 

Fig. 6  Distribution of the data samples generated. CDF is cumulative distribution function
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(8), (9) and (10). The final RPM sample generated was able 
to be consistent both with the initial triangular distribution 
and with the correlation conditions considered, since a cor-
relation coefficient of − 0.73 was obtained between ROP 
and RPM samples generated. Finally, the PR sample was 
created on the basis of ROP and RPM samples generated, 
using Eq. (5). In view of the observations made in Sect. 4.3, 
UF sample was not adjusted and refers to a normal distribu-
tion (Sect. 4.2.4).

4.5  Output Variables Assessment

Output variables were obtained by applying a determinis-
tic calculation to the samples generated, according to Eqs. 
(4), (5) and (6). Before generating the output variables, the 
presence of unrealistic scenarios in the data samples was 
checked, on the basis of the characteristics of the TBM 
designed. In particular, FNnet should be consistent with the 
machine thrust capacity, RPM should not exceed the cut-
terhead rotational speed limit, and PR should be lower than 

6 m/h, which is the maximum penetration rate allowed by 
the haulage system capacity.

The distribution of the output variables predicted by the 
stochastic approach for each thrust level scenario is shown 
in Fig. 7. As noted in the previous section, a ROP sample 
with a size of 106 data points was obtained as output vari-
able of Eq. (4); then, a sample of 100,000 random numbers 
was generated as input variable of Eq. (5), on the basis of the 
distribution with the best fit with the original ROP sample, 
which is consistent with a lognormal distribution. The PR 
and AR samples obtained are also consistent with a lognor-
mal distribution.

5  Comparison Between the Parameters 
observed in  METpar and Those Predicted 
for  MCBTgripper

The average values of the parameters predicted for each 
thrust level scenario are reported in Table 5, together with 
the average values of the parameters observed in  METpar.

Fig. 7  Distribution of the output variables predicted for the 
 MCBTgripper by the stochastic approach. PDF is probability density 
function. CDF is cumulative distribution function. Scenario no. 1—
ROP: PDF = lognormal (μ = 1.0191, σ = 0.2567); PR: PDF = lognor-
mal (μ = −  0.0410, σ = 0.2264); AR: PDF = lognormal (μ = 1.8844, 
σ = 0.3229). Scenario no. 2—ROP: PDF = lognormal (μ = 1.3949, 

σ = 0.3352); PR: PDF = lognormal (μ = 0.3324, σ = 0.2993); AR: 
PDF = lognormal (μ = 2.2587, σ = 0.3771). Scenario no. 3—ROP: 
PDF = lognormal (μ = 1.7449, σ = 0.4077); PR: PDF = lognor-
mal (μ = 0.6908, σ = 0.3751); AR: PDF = lognormal (μ = 2.6155, 
σ = 0.4420)
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As for the input variables, the same values of FPI were 
considered between  METpar and the scenario no. 1 of 
 MCBTgripper, in view of the equivalent thrust level and rock 
mass context, whereas a decrease of the FPI values is found 
in the scenarios no. 2 and no. 3 due to the increase of the 
thrust level. A reduction in terms of RPM is observed from 
 METpar to  MCBTgripper, where the same average values are 
obtained in all the scenarios; in this regard, slight differences 
in the RPM distribution are found due to the adjustment of 
the RPM initial sample performed by the Cholesky decom-
position, which is dependent on the different ROP samples 
generated. The UF of  MCBTgripper was chosen on the basis of 
the data from  METpar, according to the assumptions reported 
in Table 3; however, only the portion of  METpar after the 
introduction of the operational improvements described in 
Sect. 4.2.4 was considered, resulting in the slight difference 
of the average values of UF observed between  METpar and 
 MCBTgripper.

The same ROP is observed in  METpar and scenario No.1 
due to the same values of FPI and FNnet. On the other hand, 
a dramatic increase of the ROP is found with increasing the 
thrust level, as shown in the scenarios no. 2 and no. 3; this 
increase is more than proportional, on the basis of the not 
linear relationship between FNnet and ROP for the same rock 
mass context.

Despite the same ROP, the reduction of RPM results in a 
decrease of PR passing from  METpar to the scenario no. 1. 
The significant increase of ROP in the scenarios no. 2 and 
no. 3 however involves a PR higher than that of  METpar. The 
same considerations can be extended to the values of AR, in 
view of the analogous values of UF.

Assuming an excavation length of 2.96 km, the total exca-
vation time expected for a single tube of  MCBTgripper can 
be assessed for the three scenarios considered. Moreover, 
according to the distribution provided for AR, the probabil-
ity of occurrence of a certain outcome can also be estimated. 
In particular, in the scenario no. 1 the total excavation time 
is expected to be on average around 428 days and between 
361 and 553 days with 50% chance. An average of around 
288 excavation days is expected for the scenario no. 2, with 
a 50% chance that the total excavation time is between 238 

and 396 days. For the last thrust level scenario, a total exca-
vation time is expected to be around 197 days on average, 
and between 159 and 288 with 50% chance.

According to the results obtained by the stochastic 
approach, it can be concluded that an excavation time higher 
than  METpar will be required in  MCBTgripper if the same 
thrust level will be applied. An overall increase of 10 kN 
of FNnet will results in an advance rate that is on average 
around 1 m/day higher than that of  METpar. A significant 
reduction of the excavation time is however expected if an 
overall increase of 20 kN of the FNnet will be performed dur-
ing the excavation of  MCBTgripper, with an average increase 
of more than 6 m/d in terms of advance rate compared than 
 METpar. In this last scenario, it should be noted that the reli-
ability of the assumptions made in terms of UF could be 
affected, due to the impact produced on the cutterhead and 
cutters wear by the increase of the thrust level, resulting in 
a reduction of the overall advance rate; nonetheless, these 
negative effects could be limited or avoided by the use of the 
preventive measures in the construction of the cutterhead 
described in Sect. 3.

6  Discussion and Conclusions

This study provided the TBM performance prediction for a 
specific section of the Mont Cenis base tunnel that is parallel 
to the last portion of the Maddalena exploratory tunnel. The 
observations made during the excavation of the exploratory 
tunnel supplied a high degree of knowledge about some of 
the key factors involved, including the rock mass boreability 
and the excavation conditions expected.

After designing the cutterhead according to the character-
istics required by the design documents, the machine perfor-
mance prediction was carried out by means of a stochastic 
approach based on a prediction model that includes FPI, 
FNnet, RPM and UF as input variables, and ROP, PR and 
AR as output variables. The impact of the driving choices 
on the TBM performance was investigated by considering 
three main different scenarios of thrust level. The values 
of FPI were selected by means of a detailed analysis of the 

Table 5  Comparison between 
the average values of the 
parameters observed in  METpar 
and predicted by the stochastic 
approach for the three thrust 
level scenarios of  MCBTgripper

Parameter METpar MCBTgripper(S.1) MCBTgripper(S.2) MCBTgripper(S.3)

FPI (kN/mm) 52.9 52.9 40.8 31.9
FN (kN) 163.4 163.4 175.4 187.4
FNnet (kN) 136.1 136.1 146.1 156.1
RPM (rev/min) 7.1 5.8 5.8 5.8
ROP (mm/rev) 2.9 2.9 4.3 6.2
PR (m/h) 1.2 1.0 1.5 2.1
UF (%) 26.7 29.3 29.3 29.3
AR (m/day) 8.9 6.9 10.2 15.0



From Exploratory Tunnel to Base Tunnel: Hard Rock TBM Performance Prediction by Means of a…

1 3

FPI-ROP relationship. The correlation between the input 
variables was also taken into account in the generation of 
the data samples. The distribution of the output variables 
was provided, allowing the assessment of the probability 
of occurrence of the outcomes whose reliability is highly 
dependent on the accuracy of the initial assumptions made.

In conclusion, the use of stochastic approaches is rec-
ommended for TBM performance prediction when a high 
degree of knowledge about the input variables distribution is 
available, as in the case of the tunnel section analysed in this 
study. This solution is particularly valuable in the early stage 
of a tunnel project, considering that the probability of occur-
rence of a certain excavation time range can be assessed. In 
the other cases, the aleatory variability of the parameters 
involved cannot be properly addressed, and the use of other 
approaches is preferred.
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