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Abstract
Anevasion differential gameof one evader andmanypursuers is studied. The dynamics
of state variables x1, . . . , xm are described by linear differential equations. The control
functions of players are subjected to integral constraints. If xi (t) �= 0 for all i ∈
{1, . . . ,m} and t ≥ 0, then we say that evasion is possible. It is assumed that the
total energy of pursuers doesn’t exceed the energy of evader. We construct an evasion
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1 Introduction

The field of differential games was pioneered by Isaacs (1965) in the 1960s and since
then enormous amount of work has been devoted to its study (for example, see Fried-
man 1971; Hajek 1975; Pontryagin 1988; Krasovskii and Subbotin 1988; Petrosyan
1993; Başar andOlsder 1999; Buckdahn et al. 2011 and references therein). A substan-
tial part of these works concern simple motion pursuit and evasion differential games
of many players. Often, either geometric or integral constraints are imposed on the
control parameters of players. In Croft (1964) Croft showed that in the n-dimensional
Euclidean ball n lions can catch the man, while the man can escape from n − 1 lions
when the controls of the players are subject to geometric constraints. A similar game
problem was studied by Ivanov (1980) on any convex compact set and an estimate
from above was obtained for guaranteed pursuit time.

Interesting results were obtained in Alexander et al. (2009), Azamov (2008), Bako-
las and Tsiotras (2011), Berkovitz (1986), Bhattacharya et al. (2016), Konstantinidis
and Kehagias (2016) and Sun and Tsiotras (2014) for various games in unbounded
regions as well as on graphs. Evasion problem on time interval [t0,∞) was intro-
duced and studied by Pontryagin and Mischenko (1971). In Mishchenko et al. (1977)
Mishchenko et al. proposed a new manoeuvre for evasion in the game of many pur-
suers.

Chernous’ko (1976) studied an evasion game of one evader and several pursuers
with a state constraint, i.e. the evader was supposed to remain in a neighborhood of
a given ray for the duration of the game. He proved that if the evader is faster than
the pursuers then evasion is possible. This result was extended by Chernous’ko and
Zak (1985) and Zak (1978, 1981, 1982) to more general differential game problems.
Related problems of evasion from a group of pursuers were studied in Borowko et al.
(1988) and Chodun (1989).

In Pshenichnii (1976) Pshenichnii considered a simple motion differential game
of many pursuers and one evader in R

n , when all players have the same dynamic
possibilities. He proved that if the initial state of the evader belongs to the interior of
convex hull of pursuers’ initial states, then pursuit can be completed, otherwise evasion
is possible. Based on this work, Pshenichnii et al. (1981) developed the method of
resolving functions for solving linear pursuit problems with many pursuers. Later on,
the results of paper (Pshenichnii 1976) were extended by many researchers to cover
various cases. For example, when control sets of players are convex compact sets,
Grigorenko (1990) obtained the necessary and sufficient conditions of evasion of one
evader from several pursuers.

The papers Chikrii and Prokopovich (1992) and Kuang (1986) are also extensions
of Pshenichnii (1976). In Kuchkarov et al. (2012) the game problem of many pursuers
and one evaderwas studied on a cylinder. In the recentwork ofKuchkarov et al. (2016),
the results of Pshenichnii (1976) were extended to differential games on manifolds
with Euclidean metric. In Blagodatskikh and Petrov (2009) Blagodatskikh and Petrov
obtained necessary and sufficient condition of evasion in a simple motion differential
game of a group of pursuers and a group of evaders in R

n where all evaders use the
same control. By definition, pursuit is considered completed if the state of a pursuer
coincides with the state of at least one evader. Also, the works (Bannikov and Petrov
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2010; Vagin and Petrov 2001) related to such games. Recently in Scott and Leonard
(2018) the authors consider a pursuit-evasion game involving one pursuer andmultiple
evadersmotivated by the seminal “selfish herd”model ofHamilton (1971). The pursuer
can freely move in any direction with bounded speed and evaders move with bounded
speed and bounded turning speed.Using Isaacs’ heuristic argument they constructed an
optimal strategy for the pursuer and concluded that the optimal strategy for the pursuer
is to focus on a single evader that can be captured in minimum time. Moreover, “non-
targeted” evaders are always able to escape. We refer to Kumkov et al. (2017) for a
survey of results on differential games of many players with geometric constraints. In
the case of integral constraints, simple motion evasion games of many players were
solved in Alias et al. (2016), Ibragimov et al. (2012) and Ibragimov et al. (2018).

In the present paper, we study a linear evasion differential game of many pursuers
and one evader. The controls of players are subjected to integral constraints. To the
best of our knowledge no previous study has investigated the linear evasion game
problem stated in the present paper. The main difficulties in solving the problem are
the construction of evasion strategy and to prove the fact that the objects go around
the origin on some specified time interval [0, T ] maintaining some distances from the
origin. Note that we employ non-anticipative strategies in the present game model
(see, for example, Cardaliaguet et al. 2000).

Note that there is a similarity between the constructed evasion strategies and proofs
of the main results of current and existing works (Ibragimov et al. 2012, 2018). They
are (i) the definition of time intervals [τi , τ ′

i ), (ii) the construction of a strategy for the
evader which allows the evader to use a manoeuvre on [τi , τ ′

i ) against the i-th pursuer,
(iii) estimating the distances between the evader and pursuers, and establishing that
evasion is possible. We believe that these steps will be common for the most of open
evasion differential game problems ofmany playerswith integral constraints described
by the linear system of equations as well. However, the main difficulties in solving the
open problems will remain to overcome the steps (i)–(iii) listed above.

In the case of linear equations studied in the present paper, the strategies of existing
papers do not work since, for the linear equation describing the game, we have to find
its own τi . Also, by contrast, we need bounded τi , τ ′

i and new techniques to estimate
xp(t). Note that according to the strategy of the present paper, in contrast to previous
works, each object, for any control functions of pursuers, moves with a positive speed
in the direction of y-axis on the time interval [0, T ]. Moreover, all the objects will
become on the upper half plane by the time T , and then evasion is established. The fact
that each time interval where the evader uses a manoeuver is contained in the interval
[0, T ] plays a key role in establishing a number of estimates in the proof of the main
result.

This work is a milestone study to undertake a detailed analysis of linear evasion
differential game problem of many pursuers and one evader with integral constraints.
We are confident that the construction in the present paper will be a stepping stone
to open problems and will open prospects for general multi person linear evasion
differential games with integral constraints and this study makes a major contribution
to research on general linear evasion differential games.
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2 Statement of problem

Let x1, . . . , xm , m ≥ 1, be the points moving in Rn whose dynamics are described by
the equations

ẋi = −λi xi + v − ui , xi (0) = x0i , i = 1, 2, . . . ,m, (1)

where u1, . . . , um are the control parameters of pursuers and v is that of evader,λi > 0,
xi , x0i , ui , v ∈ R

n , n ≥ 2, x0i �= 0, i = 1, . . . ,m.

Definition 2.1 Measurable functions ui (t) and v(t), t ≥ 0, that satisfy the following
integral constraints

∫ ∞

0
|ui (t)|2dt ≤ ρ2

i , i = 1, . . .m;
∫ ∞

0
|v(t)|2dt ≤ σ 2. (2)

are called controls of the i th pursuer and evader, respectively.

Definition 2.2 A function (t, t1, . . . , tk, x1, . . . , xm, u1, . . . , um) �→ V (t, t1,
. . . , tk, x1, . . . , xm, u1, . . . , um), V : [0,∞)k+1 × R

2nm → R
n , where t1, . . . , tk ,

0 < t1 < · · · < tk < ∞, are some positive numbers (unspecified) and k is a positive
integer, is called strategy of evader if the following system of equations

ẋi = −λi xi + V (t, t1, . . . , tk, x1, . . . , xm, u1, . . . , um) − ui ,

xi (0) = x0i , i = 1, . . . ,m, (3)

has a unique solution (x1(t), . . . , xm(t)), t ≥ 0, for any controls (u1(t), . . . , um(t)),
of pursuers and along this solution

∫ ∞

0
|V (t, t1, . . . , tk, x1(t), . . . xm(t), u1(t), . . . , um(t))|2dt ≤ σ 2.

The strategy V (t, t1, . . . , tk, x1, . . . , xm, u1, . . . , um) is nonanticipatively defined
with respect to the strictly increasing finite sequence of numbers t1, . . . , tk as follows.
Let the time ti (t0 = 0), i = 0, 1, . . . , k, be occurred. The strategy of the evader
is defined on the time interval [ti , ti+1), i = 0, 1, . . . , k, where tk+1 = +∞, as a
function V = V i (t, t1, . . . , ti , x1, . . . , xm, u1, . . . , um). The trajectories of objects
x1(t), . . . , xm(t) i.e. the solution of (3) generated by this strategy and arbitrary con-
trols of pursuers u1(t), . . . , um(t) are then defined as the solution of the initial value
problem

ẋ j = −λ j x j + V i (t, t1, . . . , ti , x1, . . . , xm, u1, . . . , um) − u j , x j (t)|t=ti

= x j (ti ), j = 1, . . . ,m,

until the time ti+1, i = 0, 1, . . . , k, occurs. The number ti+1 is defined as the first time
when the points x1(t), . . . , xm(t) satisfy a certain condition. In this way, we define
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the solution of (3) on the intervals [ti , ti+1), j = 0, 1, . . . , k. It should be noted that
the evader can predict neither the values of t1, . . . , tk nor the length of the interval
[ti , ti+1), i = 0, 1, . . . , (k − 1).

Definition 2.3 If there exists a strategy V of evader such that for any controls of
pursuers xi (t) �= 0, i = 1, . . . ,m, t ≥ 0, then we say that evasion is possible.

The problem is to find a condition for evasion to be possible.
Thus, the evader knows the values x1(t), . . . , xm(t), u1(t), . . . , um(t) of param-

eters x1, . . . , xm , u1, . . . , um at the current time t . Pursuers apply arbitrary controls
u1(t), . . . , um(t), t ≥ 0, and try to realize the equation xi (t) = 0 at least for one
i ∈ {1, 2, . . . ,m}, whereas the evader tries to maintain the inequalities xi (t) �= 0 for
all i = 1, . . . ,m and t ≥ 0.

3 Themain result

In this sectionwe prove a theorem about evasion. To this end, we specify the conditions
to define the numbers ti and construct an explicit nonanticipative strategy for the
evader.The following is the main result of the current paper.

Theorem 3.1 If

ρ2
1 + · · · + ρ2

m ≤ σ 2, (4)

then evasion is possible in game (1)–(2).

We prove the theorem in several subsections. The proof strategy is as follows. The
solution of the initial value problem (1) is given by

xi (t) = e−λi t yi (t), yi (t) = x0i +
∫ t

0
eλi s(v(s) − ui (s))ds. (5)

Since xi (t) = 0 if and only if yi (t) = 0, below we study the evolution of yi (t).
We construct an evasion strategy such that the second coordinate of each point yi (t)
strictly increases all the time. It remains to look at the situation with initial state yi (0)
with yi2(0) < 0 for some i .

Define an ai -approach time t = τi as the first time for which |yi (t)| = ai and
yi2(t) < 0. (ai ) is a strictly decreasing sequence so τi (if ever defined) is increasing.
Time τ ′

i > τi is specified to ensure that yi2(τ ′
i ) > 0 if a “manoeuvre” is deployed on

the time interval [τi , τ ′
i ).

More essential for the proof of the theorem is that the sequence {τi } is bounded such
that the set I1 = ⋃m0

i=1[τi , τ ′
i ) is contained in [0, T ] for some T . This is essentially

implied by the fact that yi2(t) is strictly increasing for all i and at any time t > 0, and
the definition for the ai -approach time τi requires yi2(t) < 0.

The “manoeuvre” is defined (see (16)) such that once some object yi (τp) is close
to the origin, i.e. |yi (τp)| = ap while yi2(τp) < 0 for some τp, some energy is
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allocated on the first coordinate in order to increase |yi1(t)| (such that |yi (t)| ≥ ap+1
on [τp, τ ′

p], (see (55)), avoiding the origin). Also, yi2(τp) increases on [τp, τ ′
p] (such

that yi2(t) ≥ ap on [τ ′
p,∞) (see (56))). The objective is that after the distance of

point yi (t) from the origin is ap at t = τp, it is not possible for it to be again at an aq
distance at some τq with q ≥ p + 1 (see (53)-(55))

The auxiliary trajectory z p(t) is the trajectory of yp(t) if the evader applies the
“manoeuvre” against the p-pursuer on the whole interval [τp, τ ′

p). In the end, estima-
tions of |yp(t) − z p(t)| and z p(t) are needed to estimate |yp(t)|.

3.1 Notations

It is sufficient to consider the case when n = 2 and

ρ2 := ρ2
1 + · · · + ρ2

m < σ 2 (6)

(see, for example, (Ibragimov et al. 2012, 2018).
Let α be any number satisfying the condition

0 < α <
(σ − ρ)2

2(max1≤i≤m |x0i | + 1)
. (7)

We choose a number a1 such that

0 < a1 < min

{
1

2
,
(σ − ρ)2

4α
,

σ 2

32α
,

α

2�
,min

i
|x0i |

}
, (8)

where � = max1≤i≤m λi . Let

T0 = 1

α
max
1≤i≤m

|x0i |, T = T0 + 2a1
α

, κ = min

{
1

2
,

α

16σ 2e�T
,

α3

8 · 64σ 6e4�T

}
. (9)

Let a sequence {ai }∞i=1 be defined by the formula ai+1 = κ · a4i . It is not difficult to
see that this sequence has the following

Property 3.2
∑∞

i=k ai ≤ 2ak for any k ≥ 1.

Let yi = (yi1, yi2), v = (v1, v2), and ui = (ui1, ui2). Define ai -approach time τi
to be the first time such that

|y j (τi )| = ai , y j2(τi ) < 0, i = 1, . . . ,m0, (10)

for some j ∈ {1, . . . ,m}, wherem0 is a positive integer. In Sect. 3.2 we’ll show that τi
are defined for some points yi , i = 1, . . . ,m0, m0 ≤ m. Note that ai -approach times
τi may not be defined as well (m0 = 0).

First we define τ1 if relations (10) are satisfied at i = 1 for some j . Then, we define
τ2 and so on. Therefore, τ1 < τ2 < · · · < τm0 . Note that times τi are unspecified and
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depend on the evader’s strategy and the controls of the pursuers. It is important to note
the fact that all the numbers τi will be in the interval [0, T ], which will be established
in Sect. 3.2.

Without loss of generality we relabel y j for which |y j (τi )| = ai , y j2(τi ) < 0 by
yi . Note that the condition (10) can occur at the time τi for several j . If so, we label
any one of them by yi . Let

τ ′
i = 1

λi
ln

(
eλi τi + 2λi ai

α

)
, i = 1, . . . ,m0.

Property 3.3 For any i, k ∈ {1, . . . ,m0},
(1) τ ′

i − τi ≤ 2ai
α
.

(2)
∑m0

i=k(τ
′
i − τi ) ≤ 4ak

α
.

Proof To prove item (1), we have

τ ′
i − τi = 1

λi
ln

(
eλi τi + 2λi ai

α

)
− τi . (11)

Since for any a ≥ 1 and b ≥ 0 we have ln(a + b) ≤ ln a + b, therefore (11) implies
that

τ ′
i − τi ≤ 1

λi

(
λiτi + 2λi ai

α

)
− τi = 2ai

α
. (12)

The proof of item (2) follows from (12) as follows

m0∑
i=k

(τ ′
i − τi ) ≤

∞∑
i=k

2ai
α

<
4ak
α

(13)

using Property 3.2. 
�
Further, we define a function r : [0,∞) → {0, 1, . . . ,m0} as follows: set r(t) = i ,

if t ∈ [τi , τ ′
i )\Ii+1, i = 0, . . . ,m0, where τ ′

0 = ∞, Ii = ∪m0
j=i [τ j , τ ′

j ), Im0+1 = ∅.
The function r has the following useful property:

Property 3.4 For i = 1, 2, . . . , (m0 − 1),

(1) r(t) = i for τi ≤ t < τ ′
i if τ

′
i ≤ τi+1.

(2) r(t) = i for τi ≤ t < τi+1 if τi+1 ≤ τ ′
i .

Proof Suppose that τ ′
i ≤ τi+1. Then [τi , τ ′

i )\Ii+1 = [τi , τ ′
i ). Therefore, r(t) = i for

t ∈ [τi , τ ′
i ). This proves item (1).

To prove item (2), suppose that τi+1 ≤ τ ′
i . Since τi < τi+1 < · · · < τm0 , we have

[τi , τi+1) ⊂ [τi , τ ′
i )\Ii+1. Therefore, r(t) = i for t ∈ [τi , τi+1) by definition. 
�
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Fig. 1 The graph of function r(x)

Example 3.5 If

0 = τ0 < τ1 < τ2 < τ ′
1 < τ3 < τ ′

3 < τ ′
2 < τ4 < τ5 < τ ′

4 < τ ′
5,

then r(t) has the graph shown in Fig. 1.

3.2 Strategy for the evader

Now we are ready to construct a strategy for the evader. Let u j (t), j = 1, . . . ,m, be
arbitrary controls of pursuers. Set

v(t) = V0(t) =
⎛
⎜⎝0, α +

⎛
⎝ m∑

j=1

|u j (t)|2
⎞
⎠

1/2
⎞
⎟⎠ , t ∈ [0, T ]\I1, (14)

v(t) = Vr (t) = (Vr1(t),U (t)), t ∈ [0, T ] ∩ I1, (15)

where r = r(t), Vi (t) = (Vi1(t),U (t)), τi ≤ t < τ ′
i , i = 1, . . . ,m0, is defined as

follows

Vi1(t) =
{

α + |ui1(t)|, yi1(τi ) ≥ 0,

−(α + |ui1(t)|), yi1(τi ) < 0,
(16)

U (t) = α +
⎛
⎝ m∑

j=1

u2j2(t)

⎞
⎠

1/2

.
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Note that U (t) doesn’t depend on i . Finally, let

v(t) =
⎛
⎜⎝0,

⎛
⎝ m∑

j=1

|u j (t)|2
⎞
⎠

1/2
⎞
⎟⎠ , t > T . (17)

Equation (15) shows that the function r = r(t) assigns the control Vr (t) for v(t).
For example, if there are 5 pursuers and the numbers τi , τ

′
i , i = 1, . . . , 5, are

arranged as in Example 3.5, then using the values of r(t) in Fig. 1 we obtain from (15)
that

v(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V1(t) if t ∈ [τ1, τ2),
V2(t) if t ∈ [τ2, τ3) ∪ [τ ′

3, τ
′
2)

V3(t) if t ∈ [τ3, τ ′
3),

V4(t) if t ∈ [τ4, τ5),
V5(t) if t ∈ [τ5, τ ′

5).

(18)

On the intervals [0, τ1), [τ ′
2, τ4), and [τ ′

5, T ], where r(t) = 0 on [0, T ], the evader’s
strategy is defined by (14).

If r(t) = i > 0 on some time interval, then we say that evader is applying a
manoeuvre Vi (t) against the i th pursuer, or the evader is under the attack of the i-th
pursuer on that interval. In Example 3.5, r(t) = 0 on intervals [0, τ1) and [τ ′

2, τ4) and
so the evader is not under the attack of any pursuer on these intervals. Since r(t) = 1
on [τ1, τ2), therefore the evader is under the attack of the first pursuer on this interval,
and so evader applies the manoeuvre V1(t) against the first pursuer on this interval.
Also, we can see other manoeuvres of evader in formula (18).

The evader chooses his maneuvers nonanticipatively stage by stage as the game
progresses. For the Example 3.5, the numbers t1, t2, . . . , tk ∈ [0, T ] in Definition 2.2
are defined as follows: t0 = 0, t1 = τ1, t2 = τ2, t3 = τ3, t4 = τ ′

3, t5 = τ ′
2, t6 = τ4,

t7 = τ5, t8 = τ ′
5, t9 = T . As the time ti , i = 1, 2, . . . , 8 (t0 = 0) occurs, the function

r(t) assigns the strategy Vri (t) for the evader defined by (14), (15), where ri = r(ti ).
The evader uses this strategy until ti+1 occurs, that is, on the interval ti ≤ t < ti+1.
Note that ti+1 is unspecified and defined as the first time when r(ti ) �= r(ti+1).

In general, the numbers t1, t2, . . . , tk ∈ [0, T ] are defined as follows. By (14) the
evader uses strategy v(t) = V0(t), τ0 ≤ t < τ1. This means the evader applies
v(t) = V0(t) until τ1 occurs. Set t1 = τ1, tk = T . The numbers t2, . . . , tk−1 are
defined inductively. Let the time ti ∈ {τ1, τ ′

1, . . . , τp, τ
′
p}, i, p ≥ 1, occur and let

ri = r(ti ). Then by (14) and (15) the evader applies the strategy v(t) = Vri (t) starting
from ti until the time ti+1 occurs, for which r(ti ) �= r(ti+1) for the first time, where
ti+1 ∈ {τ1, τ ′

1, . . . , τp, τ
′
p, τp+1, τ

′
p+1}. As the time ti+1 occurs the evader uses the

strategy v(t) = Vri+1(t) starting from the time ti+1 where ri+1 = r(ti+1) and so on. To
determine the times τi , i = 1, 2, . . . ,m0, the evader uses the current values of states
yi (t), i = 1, 2, . . . ,m. To this end, it suffices for the evader to know the current time
t and xi (t), i = 1, 2, . . . ,m. Also, we can see from (14) and (15) that the strategy of
evader has the form v(t) = Vri (t) on the intervals ti ≤ t < ti+1, i = 0, 1, . . . , k.
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We now show that the strategy defined by the equations (14)–(17) is admissible.
Indeed, let

f (t) =

⎧⎪⎨
⎪⎩

(0, α), t ∈ [0, T )\I1
(α, α), t ∈ I1
(0, 0), t > T

,

g(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
0,

(∑m
j=1 |u j (t)|2

)1/2)
, t ∈ [0, T ]\I1,(

|ur1(t)|,
(∑m

j=1 u
2
j2(t)

)1/2)
, t ∈ I1,(

0,
(∑m

j=1 |u j (t)|2
)1/2)

, t > T .

Note that

∫ ∞

0
| f (s)|2ds ≤ 2α2T , |g(t)|2 ≤

m∑
j=1

|u j (t)|2. (19)

Clearly, for v(t) defined by (14)–(17) we have v21(t) + v22(t) = | f (t) + g(t)|2.
Therefore, using the Minkowskii inequality and (19) we obtain

(∫ ∞

0
|v(s)|2ds

)1/2

=
(∫ ∞

0
| f (s) + g(s)|2ds

)1/2

≤
(∫ ∞

0
| f (s)|2ds

)1/2

+
(∫ ∞

0
|g(s)|2ds

)1/2

≤ (2α2T )1/2 +
⎛
⎝

∫ ∞

0

m∑
j=1

|u j (s)|2ds
⎞
⎠

1/2

≤ α
√
2T +

⎛
⎝ m∑

j=1

ρ2
i

⎞
⎠

1/2

= α
√
2T + ρ ≤ σ

since by definition of T , T0 and α

α
√
2T = α

√
2

(
T0 + 2a1

α

)
=

√
2α

(
max

i=1,...,m
|xi0| + 2a1

)

≤
√
2α

(
max

i=1,...,m
|xi0| + 1

)
≤ σ − ρ.

Here, in the last inequality we used (7). Thus, the evasion strategy (14)–(17) is
admissible.

Next, we prove the following statement.
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Lemma 3.6 The following are true

1) For all i = 1, . . . ,m, we have (i) yi2(t) > 0 for t ≥ T0 and (ii) τ ′
i ≤ T .

2) (i) if x0j2 < 0 for some j ∈ {1, . . . ,m}, then y j2(θ) = 0 at some unique θ ,
0 < θ < T0, and y j2(t) > 0 for all t > θ .

(ii) if x0j2 ≥ 0 for some j ∈ {1, . . . ,m}, then y j2(t) > 0 for all t > 0.

Proof We first show that yi2(T0) > 0 for all i = 1, . . . ,m. Indeed, by (14)–(15) we
have

v2(t) ≥ α + |ui2(t)|, 0 ≤ t ≤ T0, (20)

and therefore,

ẏi2(t) = eλi t (v2(t) − ui2(t)) ≥ αeλi t > 0. (21)

Hence, yi2(t), 0 ≤ t ≤ T0, increases strictly. By (21) we have

yi2(T0) = x0i2 +
∫ T0

0
eλi s(v2(s) − ui2(s))ds

≥ x0i2 + α

∫ T0

0
eλi sds ≥ x0i2 + α

λi

(
eλi T0 − 1

)

> x0i2 + α

λi
λi T0 ≥ −|x0i | + max

1≤ j≤m
|x0j | ≥ 0.

Thus, yi2(T0) > 0 for all i = 1, . . . ,m. Since v2(t) ≥ |ui (t)| ≥ |ui2(t)| for t > T0,
therefore for t > T0 we have

yi2(t) = yi2(T0) +
∫ t

T0
eλi s(v2(s) − ui2(s))ds

≥ yi2(T0) +
∫ t

T0
eλi s(|ui2(s)| − ui2(s))ds ≥ yi2(T0) > 0.

Thus, yi2(t) > 0, for all t ≥ T0 and i = 1, . . . ,m. In particular, we obtain that
there is no ak-approach time τk in the time interval [T0,∞), since by definition (10)
of an ak-approach time τk one has to have yk2(τk) < 0. This is impossible for τk ≥ T0
since by item 1) (i) yk2(t) > 0 for all t ≥ T0. Thus, τi ≤ T0 for all i = 1, . . . ,m0.

Next, by item 1) (ii) of Property 3.3 we have

τ ′
i ≤ τi + 2ai

α
≤ T0 + 2a1

α
= T , (22)

and the proof of item 1) of Lemma 3.6 follows. In particular, (22) implies that I1 ⊂
[0, T ].
Remark 3.7 Due to the inclusion I1 ⊂ [0, T ] the set [0, T ] ∩ I1 in (15) is equal to I1.
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Fig. 2 Initial states have negative y-coordinates

Next, we prove item 2) (i). Since by (21) y j2(t), 0 ≤ t ≤ T0, increases strictly
and as shown above y j2(T0) > 0, then we necessarily have that y j2(θ) = 0 at some
unique θ , 0 < θ < T0. In view of (20) we then obtain for t > θ that

y j2(t) = y j2(θ) +
t∫

θ

eλ j s(v2(s) − u j2(s))ds

≥
∫

[θ,t]∩[θ,T0]
eλ j s(α + |u j2(s)| − u j2(s))ds > 0,

which is the desired result. To show item 2) (ii), using x0j2 ≥ 0 we observe that for
t ≥ 0,

y j2(t) = x0j2 +
t∫

0

eλ j s(v2(s) − u j2(s))ds

≥
∫

[0,t]∩[0,T0]
eλ j s(α + |u j2(s)| − u j2(s))ds > 0.

This completes the proof of Lemma 3.6. 
�
Item 1) (i) of Lemma 3.6 implies, in particular, that for the point y j with initial state

x0j for which x0j2 < 0, the inequality y j2(T0) > 0 is satisfied. Thus, we necessarily
have either |y j (τ j )| = a j and y j2(τ j ) < 0 at some 0 < τ j < T0 (see the point yi in
Fig. 2) or y j2(θ) = 0 and |y j1(θ)| ≥ a j at some 0 < θ < T0 (see the point y j in
Fig. 2). The former case will be studied in the following subsections in detail. In the
latter case, we ignore the point y j (t) starting from the time θ since by Lemma 3.6 2)
(i) we have y j2(t) > 0 and so y j (t) �= 0 for all t > θ . That is why in definition of
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Fig. 3 Initial states have non negative y-coordinates

ai -approach time τi (10) we required the inequality y j2(τi ) < 0. The initial states x0k
with x0k2 > 0, and x0l with x0l2 = 0, are shown in Fig. 3. We ignore the corresponding
points yk(t) and yl(t) as well for t ≥ 0 since by Lemma 3.6 2) (ii) yk2(t) > 0 and
yl2(t) > 0 for all t ≥ 0.

Property 3.8 For any i ∈ {1, . . . ,m0} and p ∈ {1, . . . ,m},

τ ′
i∫

τi

eλpsds ≤ e�T · 4ai
α

. (23)

Proof We use (12) and τi ≤ T0 < T to obtain

τ ′
i∫

τi

eλpsds = 1

λp

(
eλpτ

′
i − eλpτi

)

= eλpτi

λp

(
eλp(τ

′
i −τi ) − 1

)
≤ 1

λp
e�T

(
e
2λpai

α − 1

)
. (24)

Since by (8) 2λpai
α

≤ 2�a1
α

≤ 1, then using the inequality ex − 1 ≤ 2x , 0 ≤ x ≤ 1, in
(24) we obtain (23). This completes the proof of the property. 
�

3.3 Auxiliary point zp

Take any p ∈ {1, . . . ,m0} and estimate |yp(t)| on [τp, τ ′
p] assuming that ap-approach

was occurred at time τp with the point yp. To this end we introduce an auxiliary point
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z p whose dynamics is described by the following equation

z p(t) = yp(τp) +
∫ t

τp

eλps(Vp(s) − u p(s))ds, τp ≤ t ≤ τ ′
p. (25)

Note that the point z p(t) is defined only on the interval [τp, τ ′
p]. Since by (15) v2(t) =

U (t), therefore

z p2(t) = z p2(τp) +
∫ t

τp

eλps(U (s) − u p2(s))ds

= yp2(τp) +
∫ t

τp

eλps(v2(s) − u p2(s))ds = yp2(t), τp ≤ t ≤ τ ′
p. (26)

Next, we show that

∫ τ ′
p

τp

|Vp(s)|2ds ≤ σ 2. (27)

Indeed, denoting

f1(t) = (α, α), g1(t) =
⎛
⎜⎝|u p1(t)|,

⎛
⎝ m∑

j=1

u j2(t)
2

⎞
⎠

1/2
⎞
⎟⎠

we obtain

|Vp(t)|2 = V 2
p1(t) +U 2(t) = (α + |u p1(t)|)2 +

⎛
⎜⎝α +

⎛
⎝ m∑

j=1

u2j2(t)

⎞
⎠

1/2
⎞
⎟⎠

2

= | f1(t) + g1(t)|2.

Therefore, using theMinkowskii inequality and then item (1) of Property 3.3we obtain

(∫ τ ′
p

τp

|Vp(s)|2ds
)1/2

=
(∫ τ ′

p

τp

| f1(s) + g1(s)|2ds
)1/2

≤
(∫ τ ′

p

τp

| f1(s)|2ds
)1/2

+
(∫ τ ′

p

τp

|g1(s)|2ds
)1/2

≤ (2α2(τ ′
p − τp))

1/2 +
⎛
⎝

∫ τ ′
p

τp

m∑
j=1

|u j (s)|2ds
⎞
⎠

1/2

≤ 2
√

αap + ρ < σ,
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since by (8) ap ≤ a1 <
(σ−ρ)2

4α , and hence (27) is true.

3.4 Estimation of |zp(t)|

Let τp ≤ t < τ ′
p and for definiteness assume that yp1(τp) ≥ 0. Then by (16) we have

Vp1(t) = α + |u p1(t)|. Therefore,

|z p(t)| ≥ z p1(t) = yp1(τp) +
∫ t

τp

eλps(Vp1(t) − u p1(t))ds

≥
∫ t

τp

eλps(α + |u p1(t)| − u p1(t))ds

≥ α

∫ t

τp

eλpsds = α

λp
(eλpt − eλpτp ). (28)

On the other hand,

|z p(t)| ≥ |yp(τp)| −
∫ t

τp

eλps |Vp(s) − u p(s)|ds. (29)

The integral in (29) can be estimated by using the Cauchy-Schwartz inequality as
follows

∫ t

τp

eλps |Vp(s) − u p(s)|ds ≤
(∫ t

τp

e2λpsds

)1/2 (∫ t

τp

|Vp(s) − u p(s)|2ds
)1/2

≤
(∫ t

τp

e2λpsds

)1/2 (∫ t

τp

2(|Vp(s)|2 + |u p(s)|2)ds
)1/2

.

(30)

Since by (27) and the admissibility of control u p(s)

∫ t

τp

|Vp(s)|2ds ≤ σ 2,

∫ t

τp

|u p(s)|2ds ≤ ρ2
p ≤ σ 2,

then it follows from (30) that

∫ t

τp

eλps |Vp(s) − u p(s)|ds ≤ 2σ

(∫ t

τp

e2λpsds

)1/2

. (31)

Since by (22) τp ≤ t ≤ τ ′
p ≤ T , therefore

∫ t

τp

e2λpsds = 1

2λp

(
eλpt + eλpτp

) (
eλpt − eλpτp

) ≤ e�T

λp

(
eλpt − eλpτp

)
.
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Then by (31) we can see that

∫ t

τp

eλps |Vp(s) − u p(s)|ds ≤ 2σ

√
e�T

λp
(eλpt − eλpτp ). (32)

Combining (29) and (32), and using the equation |yp(τp)| = ap yields that

|z p(t)| ≥ ap − 2σ

√
e�T

λp
(eλpt − eλpτp ). (33)

It is easily seen from (28) and (33) that

|z p(t)| ≥ f (t) = max{ f1(t), f2(t)}, t ≥ τp, (34)

where

f1(t) = α

λp
(eλpt − eλpτp ), f2(t) = ap − 2σ

√
e�T

λp
(eλpt − eλpτp ).

Note that f1(t), t ≥ τp, increases from 0 to ∞ and f2(t), t ≥ τp, decreases from ap
to −∞. It is not difficult to see that f (t), t ≥ τp, attains its minimum at the point
t = t∗, where

f1(t) = f2(t), t ≥ τp. (35)

Let
(
eλpt − eλpτp

)1/2 = z. Then Eq. (35) takes the form

α

λp
z2 = ap − 2σ

√
e�T

λp
z,

or αz2 + 2σ
√
e�T λpz − apλp = 0. This equation has the following positive root

z∗ =
√

λp

α

(
−σ

√
e�T +

√
σ 2e�T + apα

)

= ap
√

λp

σ
√
e�T +

√
σ 2e�T + apα

.

Then

min
t≥τp

f (t) = f (t∗) = f1(t∗) = α

λp
z2∗ = α

λp
· a2pλp

(σ
√
e�T +

√
σ 2e�T + apα)2

. (36)

123



Linear evasion differential game of one evader...

By (8) we have a1 < σ 2

32α < 1
α
σ 2e�T , and so apα ≤ a1α < σ 2e�T , therefore (36)

implies that

|z p(t)| ≥ min
t≥τp

f (t) >
αa2p

6σ 2e�T
. (37)

Next, since by definition

τ ′
p = 1

λp
ln

(
eλpτp + 2λpap

α

)
,

using the fact that yp2(τp) ≥ −|yp(τp)| = −ap we obtain

z p2(τ
′
p) = yp2(τp) +

∫ τ ′
p

τp

eλps(U (s) − u p2(s))ds

≥ −ap +
∫ τ ′

p

τp

eλps

⎛
⎝α +

(
m∑
i=1

ui2(s)
2

)1/2

− u p2(s)

⎞
⎠ ds

≥ −ap + α

∫ τ ′
p

τp

eλpsds = −ap + α

λp

(
eλpτ

′
p − eλpτp

)

= −ap + α

λp

(
eλpτp + 2λpap

α
− eλpτp

)
= ap.

(38)

Finally, let t ≥ τ ′
p. By (26) yp2(τ

′
p) = z p2(τ ′

p), and by (14), (15) and (17), v2(t) ≥
|u p2(t)|. Then using (17), (38) we get

yp2(t) = z p2(τ
′
p) +

∫ t

τ ′
p

eλps(v2(s) − u p2(s))ds ≥ z p2(τ
′
p) ≥ ap.

Thus, we have the following inequalities

|z p(t)| >
αa2p

6σ 2e�T
, τp ≤ t ≤ τ ′

p, (39)

yp2(t) ≥ ap, t ≥ τ ′
p. (40)

3.5 Estimation of |yp(t)− zp(t)|

We have

|yp(t) − z p(t)| =
∣∣∣∣∣
∫ t

τp

(v(s) − Vp(s))ds

∣∣∣∣∣ , τp ≤ t ≤ τ ′
p. (41)
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By (15) and (26)

v(t) = (Vr1(t),U (t)), Vp(t) = (Vp1(t),U (t)), τp ≤ t < τ ′
p. (42)

Consider two cases: (i) τ ′
p ≤ τp+1 and (ii) τp+1 ≤ τ ′

p.
Case (i). Let τ ′

p ≤ τp+1. Then by item (1) of Property 3.4 r = r(t) = p for
τp ≤ t < τ ′

p. Therefore by (42) we have v(t) = Vp(t), τp ≤ t < τ ′
p. Hence, by (41)

|yp(t) − z p(t)| = 0. (43)

Case (ii). Assume now τp+1 ≤ τ ′
p. Then by item (2) of Property 3.4 we have

v(t) = (Vp1(t),U (t)), τp ≤ t < τp+1. Therefore, (41) leads to

|yp(t) − z p(t)|

=
∣∣∣∣∣
∫ t

τp+1

eλps(v(s) − Vp(s))ds

∣∣∣∣∣ ≤
∫ t

τp+1

eλps |v(s) − Vp(s)|ds

≤
∫

[τp+1,t)\Ip+1

eλps |v(s) − Vp(s)|ds +
∫

[τp+1,t)∩Ip+1

eλps |v(s) − Vp(s)|ds.(44)

Since by definition r(t) = p, t ∈ [τp, τ ′
p)\Ip+1 and [τp+1, t)\Ip+1 ⊂ [τp, τ ′

p)\Ip+1,
therefore we have r = r(t) = p, and hence, v(t) = Vp(t) for t ∈ [τp+1, t)\Ip+1.
Consequently, the first integral in (44) is 0, and so (44) takes the form

|yp(t) − z p(t)| ≤
∫

[τp+1,t]∩Ip+1

eλps |v(s) − Vp(s)|ds. (45)

By (16) and (42)

|v(s) − Vp(s)| = |Vr1(s) − Vp1(s)| ≤ 2α + |ur1(s)| + |u p1(s)|,

and therefore (45) implies that

|yp(t) − z p(t)| ≤
∫
Ip+1

eλps(2α + |ur1(s)| + |u p1(s)|)ds. (46)

To estimate the integral in (46), we need to estimate the integrals

∫
Ip+1

eλpsds,
∫
Ip+1

eλps |ur1(s)|ds, and
∫
Ip+1

eλps |u p1(s)|ds. (47)

The first integral can be estimated using (23) and Property 3.2 as follows

∫
Ip+1

eλpsds ≤
m∑

i=p+1

∫ τ ′
i

τi

eλpsds ≤
m∑

i=p+1

e�T 4ai
α

≤ e�T 8ap+1

α
. (48)
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Next,we estimate the second integral in (47).Using theCauchy-Schwartz inequality
we have

∫
Ip+1

eλps |u p1(s)|ds ≤
(∫

Ip+1

e2λpsds

)1/2

·
(∫

Ip+1

|u p1(s)|2ds
)1/2

. (49)

Since

∫
Ip+1

|u p1(s)|2ds ≤
m∑
i=1

∫ ∞

0
|ui (s)|2ds ≤ σ 2

and similar to (48) we get

∫
Ip+1

e2λpsds ≤
m∑

i=p+1

∫ τ ′
i

τi

e2λpsds ≤ e2�T 8ap+1

α
.

Then it follows from (49) that

∫
Ip+1

eλps |u p1(s)|ds ≤ σe�T

√
8ap+1

α
. (50)

Similarly, for the third integral in (47), we have

∫
Ip+1

eλps |u p1(s)|ds ≤ σe�T

√
8ap+1

α
. (51)

Combining (48), (50), and (51) we obtain from (46) that

|yp(t) − z p(t)| ≤ 2α · 8ap+1

α
· e�T + 2σe�T

√
8ap+1

α
≤ 3σe�T

√
8ap+1

α

using the inequality

16ap+1 < σ

√
8ap+1

α

which follows from the inequalities ap+1 ≤ a1 < σ 2

32α (see (8)).
Thus,

|yp(t) − z p(t)| ≤ 3σe�T

√
8ap+1

α
, τp ≤ t ≤ τ ′

p. (52)
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3.6 Estimation of |yp(t)|

Using (39) and (52) we obtain

|yp(t)| ≥ |z p(t)| − |yp(t) − z p(t)| ≥ αa2p
6σ 2e�T

− 3σe�T

√
8ap+1

α
≥ αa2p

12σ 2e�T
,

(53)

for t ∈ [τp, τ ′
p] since by (9)

ap+1 ≤ α3

8 · 64σ 6e4�T
a4p.

Also, it follows from the definition of κ and the inequality ap < 1 that

ap+1 ≤ α

16σ 2e�T
a4p ≤ α

12σ 2e�T
a2p.

Therefore, (53) implies that |yp(t)| > ap+1. Also, by (40)

yp2(t) ≥ ap, t ≥ τ ′
p.

Thus,

|yp(t)| ≥ ap, for 0 ≤ t ≤ τp, (by definition of τp) (54)

|yp(t)| ≥ αa2p
12σ 2e�T

> ap+1, for τp ≤ t ≤ τ ′
p, (by (53)) (55)

yp2(t) ≥ ap, for t ≥ τ ′
p, (by (40)) (56)

Thus we conclude:
If an ap-approach time τp occurs with the point yp (see the point yi in Fig. 2), then

yp(t) �= 0, for all t ≥ 0 (see (54)–(56)). Moreover, for any i ≥ p + 1, there is no
ai -approach time τi for the point yp

(1) on the time interval [τp, τ ′
p] since |yp(t)| > ap+1 ≥ ai for any i ≥ p + 1 (see

(55)).
(2) on the time interval [τ ′

p,∞), since |yp(t)| ≥ yp2(t) ≥ ap > ai for any i ≥ p + 1
(see (56)).

The proof of Theorem 3.1 is completed.

4 Conclusion

We have studied a linear evasion differential game of many pursuers and one evader.
We have constructed a strategy for the evader and proved the possibility of evasion.
The evader uses a manoeuvre on the set I1 and on the set [0, T ]\I1 evader uses the
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control v(t) =
(
0, α +

(∑m
j=1 |u j (t)|2

)1/2)
. The measure of the set I1 can be made

by choosing parameters a1 and α as small as we wish. We have also shown that all
the approach times τi can occur only before a specified time T0, moreover τ ′

i ≤ T .
The total number of approach times τi of all pursuers doesn’t exceed the number of

pursuers m. For t ≥ T , the evader uses the control v(t) =
(
0,

(∑m
j=1 |u j (t)|2

)1/2)

and there is no longer an approach time occurs. The main contributions of the paper
are (i) the construction of evasion strategy, (ii) estimating the distances of objects from
the origin, (iii) the possibility of evasion from many pursuers.

Acknowledgements We sincerely thank the anonymous reviewers for their careful reading of our
manuscript and their many insightful comments and suggestions which helped us to improve the qual-
ity of the paper. This work was completed during the stay of the author Ibragimov G.I. at University
Mediterranea of Reggio Calabria—Dept Di.Gi.ES—as Visiting Researcher and it was partially supported
by Geran Putra Berimpak UPM/700-2/1/GPB/2017/9590200 of Universiti Putra Malaysia and the finan-
cial support by Decisions_LAB-Dept. of Law, Economics and Human Sciences-University Mediterranea
of Reggio Calabria, Italy.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alexander S, Bishop R, Christ R (2009) Capture pursuit games on unbounded domain. Lënseignement
Mathëmatique 55(1/2):103–125

Alias IA, Ibragimov G, Rakhmanov A (2016) Evasion differential game of infinitely many evaders from
infinitelymanypursuers inHilbert space.DynGamesAppl 6(2):1–13. https://doi.org/10.1007/s13235-
016-0196-0

Azamov AA (2008) A lower bound for the advantage coefficient in a search problem on graphs. Differ Equ
44(12):1764–1767

Bakolas E, Tsiotras P (2011) On the relay pursuit of a maneuvering target by a group of pursuers. In: 50th
IEEE conference on decision and control and European control conference, Orlando, FL, 2011, pp
4270–4275

Bannikov AS, Petrov NN (2010) To non-stationary group pursuit problem. Trudy Inst Math Mech UrO
RAN 16(1):40–51
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